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Abstract

We investigate the Vlasov equation in the stochastic magnetic field as a stochastic Li-
ouville equation and derive the equation for the ensemble-averaged distribution function.
The term resulting from the stochastic magnetic field has the derivatives with respect to
both the velocity and the real space coordinates, which is a contrast to both the real space
diffusion as seen in the guiding center picture and the velocity space diffusion as in the
quasi-linear theory of the Vlasov equation including the electric field fluctuaions. We find
that this term retains the mass and energy conservation properties of the original Lorentz
force due to the stochastic magnetic field and yields the additional force in the momen-
tum equation. This additional force produced by the stochastic field gives the drift velocity
which corresponds to the familiar real space diffusion of the guiding center in the stochastic
field. The finite Larmor radius effect on the diffusion is also estimated.
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§1.  Introduction

Particle diffusion due to the turbulent magnetic field is regarded as one of the mechanism
of anomalous transport observed in magnetically confined plasmas.’ Actually clear corre-
lation between the confinement improvement and the reduction of magenetic fluctuations
has been found experimentally as in the L-H transitions in tokamak plasmas.2) Turbulent
magnetic fields are generated from both the errors of external coils and the instabilities
of the plasma itself. From the reason of its practical importance as well as its own inter-
esting features as a problem of statistical physics, many theoretical studies on anomalous
transport due to turbulent magenetic fields has been done.3~*) Most of them are based on
the picture of guiding centers streaming along the magnetic field lines. In this work we
start from the Vlasov equation including the stochastic magnetic fields and consider only
the collisionless case. The advantages of this treatment are that the finite larmor radius
effects are directly included and that the stochastic field effects on the fluid equations are
straightly obtained by taking moments of the Vlasov equation. Here we regard the Vlasov
equation as a stochastic Liouville equation® due to the stochastic component of the mag-
netic field and derive the kinetic equation for the ensemble-averaged distribution function.
This procedure is analogous to that in deriving Fokker-Planck equation from the Langevin
equation. The term resulting from the stochastic magnetic field has the derivatives with
respect to the velocity and the real space coordinates, which is different from both the real
space diffusion as seen in the guiding center picture®® and the velocity space diffusion as
in the quasi-linear theory of the Vlasov equation including the electric field fluctuaions.”
However it will be shown that this term retains the mass and energy conservation prop-
erties which the original Lorentz force term of the stochastic magnetic field has. Then we
will find that the additional force due to the stochastic field appearing in the momentum
equation gives the drift velocity which corresponds to the familiar real space diffusion of
the guiding center in the stochastic field. It will be shown how the diffusion induced by
the stochastic magnetic field is reducuced by the finite Larmor radius effect.

This paper is organized as follows. In §2, the general treatment of the stochastic Liouville




equations are explained by following ref.6. In §3, we apply the theory given in §2 to the
case of the guiding center streaming along the stochastic magnetic field lines and obtain the
familar diffusion term in the collisionless limit. In §4, we treat the Vlasov equation in the
stochastic magnetic field and derive the equation for the ensemble-averaged distribution
function. There we examine the conservation properties of the term derived from the
stochastic field and its relation to the guiding center diffusion. The finite Larmor radius

effect on the diffusion is also estimated. Finally, discussion is given in §5.



§2.  Stochastic Liouville Equations

Here the general theory of stochastic Liouville equations is briefly explained by following

ref.6. A stochastic Liouville equation is written as

af(z,t) _ oo
= Lo+ 1)f (2.1)

where z represents a point in the phase space considered here, } the distribution function
as time t, Lo the unperturbed part of the Liouville operator, and I the perturbation part.
Since L include stochastic functions, the distribution function f is also stochastic.

Taking an ensemble average of (2.1) yields
0f 8t = Lof +(L}) (22)

where f = (f) is the ensemble-averaged distribution function. One of our main purposes

is to derive the equaition for the averaged distribution function f in the form of
of ot =(Lo+1)f (2.3)
in other words, by comparing (2.2) and (2.3), to obtain the operator T' which satisfies
{(Lf)=TIF. (2.4)

Using the interaction representation

§(t) = e (1) (2.5)
we have
dg(t)/0t = Q(t) (2.6)
with
Q(t) = e~Hot L{t)elot, (2.7)

Specifying the non-stochastic initial distribution function g(0) = f(0), we obtain the formal
solution of {2.6) as

9t)

1+ Can0(n) + / dty | Y Q)R + - ] 70
expy (/Dt dt’ﬂ(t')) (2.8)




where an ordered exponential is defined. Here we should note that £2(2)’s are not generally
commutable operators.

Taking an ensemble average of (2.8), we have
g(t) = (5(2)) = (1) (0) (2.9)
where the relaxation operator ®(2) is defined by
t
B(t) = (expo ( /0 dt’Q(t’))>. (2.10)
From (2.5) and (2.9), we obtain
f(&) = e™*@(2) (0). (2.11)
The cumulant operator K () is defined as
®(t) = ( ( e
) = (oo ([ a'0t)))

= expp { /:dtl(sz(tl))c+ /0 dt, /0 ’ dtz(ﬂ(tl)g(tz))c'F"'}
o K6, (2.12)

H

Here the expansion of expp K(#) in series is defined in the complicated manner, which
depends on the properties of the operator Q(t), and the suffix P specifies a prescription for
the ordering of Q(¢)’s. A cumulant {Q(Z;) ---2(t,)}. can be expressed by a sum of certain
products of moments of lower and the same order. For example, the lowest-order cumulants

may be written as

Q). = Q1)
Q1)) = (Q(0)222)) - PIQEIHAE:)).

Finally, the equation for f(f) is obtained from (2.11) and (2.12) as
of ot =(Lo+T)f (2.13)

with
WKW

e _—_

r
dt

Il

(2.14)
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Assuming that (L) = 0, we find
(2(0). = () =0
(Q(t:)Q(t2)). = (At)Q(t2))-

I higher than the second order cumulants vanish, Q(¢) may be called Gaussian and then

we have
K(t)= [ ity / " (Qt)UE))- (2.15)

Substituting (2.15) into (2.14) and using (2.7), we obtain
= [ dr(L(t)eB It — r)e~bm), (2.16)
0

where the upper boundary of the integral is taken as infinity instead of ¢ since we assume
that ¢ is much larger than the correlation time 7, of Q(%).
Futhermore, in the case where L does not depend on time ¢ explicitly, (2.16) is written

F = /Dde(EeL“’Ee“I’”)
= /ooodr(ﬂ({))ﬂ(-—'r)). (2.17)

Thus T is given by the time integration of the correlation of Q(¢). In deriving (2.16) or
(2.17), we neglected the contributions from cumulants of higher than the second order in
(2.12), which is not valid if the stochastic perturbations are too large. Actually, (2.17) has
the form similar to the diffusivity of the quasi-linear theory. Renormlization theories$—11)
such as Dupree’s one® and direct-interaction approximation®'?) suggest that, for large
perturbations, the unperturbed propagator e*o” in (2.16) and (2.17) should be replaced
by the renormalized propagator e!?**1)", from which T is defined in the recursive manner.

Discussion relating to the validity of use of (2.16) or (2.17) will be found in §5.



§3. A Guiding Center Streaming along the
Stochastic Magnetic Field Line

As a simple example of the application of the procedure given in the preceding section,
we treat a guiding center streaming freely along the stochastic magnetic field line. Here we
do not consider the effects of collisions and the finite Larmor radius of the particle gyro-
motion. For simplicity, assuming that the guiding center has a constant velocity v along
the field line, the probability distribution of the particle satisfies the following stochastic

Liouville equation

(e, t -
B2 (o4 1)} 1)
where
Ly = —uvby - 9 3.2
o= —tbo: o 2)
~ - 0

Here }(z,t) represents the probability density at time ¢ at the point # in the real space.
The unperturbed part of the Liouville operator Lo corresponds to the guiding center motion
along the unperturbed uniform magnetic field line, the direction of which is denoted by be.
The perturbation part I represents the effect of the stochastic magnetic field component,
and b the stochastic variation in the direction of the magnetic field.

For simplicity, we put
by = e,, b=10.(2)e, +b,(2)e, (3.4)

where e, e, and e, are unit vectors in the z, y and z-directions, respectively. Here we
assumed that the stochastic variables b, and b, are functions of = alone, which do not

depends explicitly on z, y and ¢. From (3.2)~(3.4) and (2.7), we obtain
Q) = —vb(z + vt) 9 3.5
= —v ) 5 (3.5)
We find from (3.4) and (3.5) that in this case Q(t)’s are commutable operators,
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Assuming that b is a homogeneous Gaussian stochastic vector variable with a zero mean,

we have
(&) =0, (B(21)b(22)) = (B(21 — 2:)B(0)) (3.7)

which is used with (2.15) to yield

2

K(t) = fﬁh@ﬁ“ﬁﬂaz+mgmz+mgy

" fzdz
= o [t - (b)) : = 3.8
= & [ drlt = )BAIBO) s 5o (38)
Then we obtain from (2.14) and (3.8)
= 2 ' 5 5 . 92
' = u /0 dr(b(vr)b{0)) : FYrm
5

which can be also derived from (2.17) and (3.5) easily. Here, as in (2.16), we took the upper
boundary of the integral as infinity instead of £ by assuming that ¢ is much larger than the
correlation time 7, which is defined as the correlation length of b in the z-direction divided

by |v]. In {3.9) we defined the diffusion tensor D,, of the stochastic field line by
DmEL dz(b(2)b(0)). (3.10)

Substituting (3.2) and (3.9) into (2.13), we finally obtain the equation for the ensemble-
averaged probability density f = (f) as

(3.11)

Thus we see that the diffusivity due to the stochastic magnetic field is given by |v|D,y,

which coincides with the familiar result in the collisionless case.®®)




§4.  Stochastic Vlasov Equation

Here we apply the procedure described in §2 to the following stochastic Vlasov equation

8}(23”315) _ FYE
L0 — (Lo + D) (4.1)
where
3} d
Loﬁ—'ﬂ'a—(‘bxwt))'g (4.2)
~ d
L= —(‘D X L:’) - —a; (4:3)

Here }(z, v,t) represents the distribution function in the phase space, wy and @ are defined

by _
_ g8y . _¢B
= — o= —

Wy 3 ’
mc mc

(4.4)

where By is the unperturbed magentic field, B the stochastic magnetic field component,
g and m the electric charge and mass of the particle, respectively. The electric field is
neglected here although we will discuss its effects later in §5. As in §3, assuming that the
unperturbed field By is uniform and that B is perpendicular to By, we put

Wy = woe, (wy = qBy/mc = const), @ =.(2)e, + @, (2)e, (4.5)

where we tetained the dependence of @ (or B ) on the perpendicular spatial coordinates
{z,y) as well as the parallel coordinate z, which is inevitable when we take account of the
finite Larmor radius effect.

Without the stochastic field, the particle initially placed at (®,#) in the phase space is
found at {2(2), 8(t)) at time {. Here (2(t), #(£)) is the solution of the ordinary differential

equations
dEg  _ dv 5 x
— =7 —_—= w
di dt 0
with the initial conditions
z(0) = =, 2(0) =7

and they are given by

z(t)

z + (v, fwo) sin wyt — (v, /wo){cos wot — 1)
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) = y+ (vs/wo)(coswt — 1) + (vy/wo) sin wot

) = z+4ut
7(t) = vycoswpt + vy sinwpt
Tu(t) = —ugsinwet + vy, coswpt
T,(t) =wv,. (4.6}

Using (4.6) we have for an arbitrary function F(=,7)
e~ F(w, v)elt = F(a(t), 8(t)). (4.7)

In order to make the analyses easier, it is convenient to use the cylindrical coordinates

(vy,ve,v,) in the velocity space. Then we have

a o . .0 ]
Ly = —Uz'é-; — Uy (cosﬁa + Slng—az[_) + WO%
I = —v,{[@,sind — @, cos 9]i + [@z cos 8 + @, sin G]iﬂ
¥ 6@_._ * ¥ v o9
. d
+ v, [@,sind — &, cos 9]% (4.8)
and
#(t) = z— (vifwy)lsin{f — wot) —sinf)
5(t) = y+ (vp/wp)[cos(f — wot) — cosd]
ﬁi(t) = vy
B(t) = 60— wt. (4.9)

Furthermore making use of the following formula for arbitrary operators A and B

eABet = B+(B,Al+ (B, 4}, 4]+ él-![[[B,A], Al A]+ - (4.10)

we can derive the following relations

0 ) 1. ) d
Lot 7 Lot — _~ 4 T - — sinfl— — — — _
e ame 3. T o ([sm(@ wot) — sin 4] 3 [cos(@ — wot) — cosb] Oy)

a ad v ij d
—Lot Y Lot _ Y UL _ _ 4 [sin(f — — qin Bl—
e gt 5%t o ([cos(9 wot) — cos 6]82 + [sin(f — wpt) — sin Q]By)
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2 0 0

e_L"ta—UzeL“t =5 e (4.11)
Using (4.6)—{4.9) and (4.11) to evaluate (2.7), we obtain
Q) =W([t)+ Z(t) + X(2) (4.12)
where
- s . .= 0
W) = —v, ([wz(z(t)) sin(f — wit) — @y (2(t)) cos(f — wot)]ﬁ
+ [@-(2(2)) cos(8 — wet) + @, (#(2)) sin(9 — wot)]i%)
Z(t) = vi[@-(2())sin(f — wet) — Gy (2(t)) cos(f — wot)] (Bi,, - t;—z)
X)) = Z—; ([@r(i(t))(coswot — 1) — @y (2(t)) Sintdgt]%
PR s d
+ [@(&(t)) sinwet + @, (2(2) )(cos wot ~ 1)]8_y) . (4.13)

Asin (3.7), assuming that the stochastic magnetic field B has a zero mean and is stochas-

tically homogeneous, we can put
(@(=)) =0, (@)@ (22)) = (@(21 — 22)@(0))- (4.14)

From (2.17), (4.12) and (4.13), we find

F=Tw+Tz+Twz +Twx +Tzx (4.15)
where
Ty = /0 * A (W(O)W (=)
T, = fo " 4 {(2(0)2(-1)
Twz = [ dW(©O)2(-r) + ZOW(-r))
Twx = ]0 " dr(W(0) X (7))
Tyx = /0 " 4 (Z(0) X (=) (4.16)
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Here I'yy represents the perpendicular diffusion in the velocity space, which contains the
second-order derivatives with respect to v, and #. We find parallel derivatives 8/0v,
and 8/8z in I'z. In D'y, the perpendicular derivatives (8/0vy, 3/80) are coupled to the
parallel derivatives (0/dv,,8/8z). Similarly T'wx and I'zx contain the cross derivatives
(8/0vy.,0/08) x (8/8z,8/0y) and 8/dv, x (8/Dz,d/By), respectively. Thus ' has the
velocity diffusion terms as well as the cross terms consisting of the velocity and real space
coordinate derivatives. However we should note that I' does not include the real space
diffusion given by the second-order derivatives with respect to the real space coordinates.
This is a remarkable contrast to (3.9) although we will find later that a real space diffusion
similar to (3.9) is derived from (4.15) in the indirect manner.
We define the correlation tensor C(7) as

Ary = ). Cylr)ee,

LJ=T,y

= {(@(2(0) — 2(-7))@(0)) /w;
= (b(2(0) — 2(—7))b(0)) (4.17)

where we used @/w; = B/B, = b. In (4.16) time integration terms such as Jo7 drC{r) cos wpt
are included. If we assume that the gyration period w™ is much smaller than the correla-
tion time 7. for C(7), the integrands oscillate rapidly and these integrals become negligibly
small. With this assumption, we find 'y, 'z and I'yrz to neglected. Then the remaining

terms are given by

g ) 3 3} 0 d

= oo lDee— 5Dy | o-+ | 577 Doy — 57— i
Fwx “o [(avy Dz Bu, Y ) oz + (r%yD ! (%IDW) ay]
01

Wo -
dv, v,

FZX

8 i
[(—vyDu + v Dyz) M + (—v, Dy + 0. D,,) @] (4.18)

which are summed up to give I' = I'w x 4+ I'zx in the greatly compact form as

0 v d
I‘:wog' (;ﬁ-x Da_z) (4.19)

where we put vy = v - by = v, and

D= 3% D,ee = vj /000 drC(7). {4.20)

4,1=7,y
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The equation for the ensemble-averaged distribution function f = {7) is obtained from

(2.3), (4.2) and (4.19) as

f Of _ w2 (2xp. X
N 8 5t (w0 oo (vnx 33) 2

Here we consider the conservation properties of the term I'f deriving from the stochastic

magnetic field. We find from (2.4)

(/ d‘uA(v)fl}) = /dvA(v)I‘f (4.22)

for an arbitrary function of velocity A(w) which is not stochastic. From (4.3) we see that
the left-hand side of (4.21) should vanish in the case of A(») = 1 and A(v) = ;mo?,
which implies the conservation of mass {or mumber) and kinetic energy of particles by the
stochastic operator L. These conservation properties must be retained in the operator T

as is seen from (4.22). Actually, we can easily show from (4.19) that

/ doTf = [ d‘u%mvzf F=0. (4.23)

1t should be noted that these conservation properties are not satisfied generally by the real

space diffusion type operator consisting of the sencond-order derivatives with respect to

the real space coordinates, and therefore that we cannot allow that type operator as I'.
When we put A(®) = mo in (4.22), we obtain the average force per unit volume due to

the stochastic magnetic field as

Q’Bo 3f

= /dvm'vI‘f =22 [a0 U—“ = (4.24)
Then the average drift velocity vp produced by this force is given by
¢ of
= % Fxbo=— / Nl .
novp B X bg deD P (4.25)

where n = [ dvf is the density. We see that the particle flux {4.25) is driven by the gradient
of the distribution function in the real space, which corresponds to the real space diffusion

as given by (3.9).
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From {4.6) and (4.9}, we have the relative displacement of the particle in the time interval

T as

r(r) = &(0)—2(-7)

= v, + (ve/wo){[sin(f + wor) —sinfle, — [cos(f + wyT) — cosble,)

(4.26)
from which the parallel and perpendicular distances are given by
n(r) = yr
ri{r) = 2vy/wp)|sin(wr/2)]. (4.27)

It is seen from (4.17), (4.26) and (4.27) that the correlation tensor C{7) dampes due to
the parallel motion and oscillates due to the perpendicular gyro-motion as r increases.
The parallel damping is much slower than the perpendicular oscillation because of the
assumption employed to derive (4.18). Here we define Ly and L, as the parallel and
perpendicular correlation lengths of the stochastic magnetic field. For the particle with the
Larmor radius p = v, fwy much smaller than I, decorrelation due to the perpendicular

motion can be neglected and the diffusion tensor (4.20) is rewritten as
D= vﬁL dr(b{u78)B(0)) = gD (for p < L)) {4.28)

where D, is the diffusion tensor of the magnetic field line given by (3.10). This diffusion
tensor has exactly the same form as in (3.9). However, for the particle with the Larmor
radius much larger than L), the perpendicular decorrelation is so strong that the diffusion

tensor (4.20) becomes smaller than (4.28) by a factor of L, /p and we have
D~ (Li/p)loy|Dm (for p> L)) {4.29)

When the Larmor radius py, = vg/wo given by the thermal velocity vy = /T/m is much
smaller than L, we find from (4.25) and (4.28)

2\ /2 3
) i (4.30)

nvpz——(—— D - —
T oz
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where we used the local Maxwellian distribution funtion with a constant temperature T
for f. On the other hand, when the thermal Larmor radius py = vy /wp is much larger
than L, (4.25} is roughly estimated using (4.29) as

L, n
~— ) y,D,, - 2 ,
noy (Pth) Vs, e (4.31)

which is smaller than (4.30) by a factor of L, /ps,.
In Appendix, the expression of the particle flux unifying the both limits (4.30) and (4.31)
is given by specifying the wavenumber spectral function of the stochastic magnetic field

with the statistical isotropy in the perpendicular plane.
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§5.  Discussion

In the preceding section, we negelected such effects as collisions, electric fields, inhomo-
geneity of the unperturbed (or external) magnetic fields and explicit time dependence of the
stochastic fields. Therefore these effects are required to be small for the results we obtained
to be valid. Here we examine the conditions of the validity. Since the main contribution to
the integration (2.17) or (4.20) for T’ comes from several correlation times of the stochastic
field, the mean free path between the partcle collisions and the characteristic length of the
inhomogeneous external magnetic field should be larger than the correlation length of the
stochastic field. If collisional effects are significant, transport due to the stochastic field is
expected to decrease compared to that in the collisionless case as in refs.4 and 5. When
the effects of the inhomogeneities of the external magnetic field such as magnetic shear and
curvature are not negligible, we must use the correct particle orbit in the inhomogeneous
field instead of (4.6) for the path integral of (4.20).

In our calculations, the stochastic field should be regarded as static whithin the corre-
lation time {which is defined as the correlation length of the stochastic field devided by
the thermal velocity). The external electric field also need to be negligible although, when
the external electric field is homogeneous and perpendicular to the external magnetic field,
we can apply the same procedure as in §4 using the Galilean transformation to the frame
moving with the E x B drift velocity. Then we must take account of the E x B drift motion
in the relative displacement »(7) = 2(0) — 2(—7) appeared in the correlation tensor C(7)
defined in (4.17). This shows the possibility of the reduction of the particle diffusion by the
external perpendicular electric field through the enhancenment of the relative separation
and the resultant decorrelation. If the fluctuations of the electric field, which were ne-
glected in this work, exist, we should add well-known velocity space diffusion, which causes
the energy transfer between particles and fields in contranst with the stochastic magnetic
field case {see (4.23)).

In evaluating the diffusion tensors (3.10) and (4.20), we did not take accout of the mod-
ification of the integral paths due to the stochastic field. The effects of the perpendicular

16



diffusion of the integral paths due to the stochastic field on (3.10) and (4.20) can be ne-
glected if the stochastic field line diffuses perpendicularly less than 7, during the parallel
displacement of L :

EYP < L/

If we estimate roughly the parallel and perpendicular correlation lengths as Ly ~ R (the
toroidal major radius) ~ 10° — 10'm and L) ~ p{= ecv/m,T./eB) ~ 107°m with T, ~
10? — 10%¢V and B ~ 10°T', the above condition is given by (52)11'2 < 10~* — 1073, This
condition is likely to be almost satisfied in the present tokamak plasmas. However, for
larger magnetic fluctuations with (52)1" 2> L1/Lj, we need to include the correction due
to the stochastic field into the integral paths of (3.10) and (4.20), which requires more
advanced treatment such as renormalization technique.®~"

in order to derive (4.18), we used the drift ordering given by (wor)™ = p/L < 1,
which is considered to be valid in the experimental plasmas where the parallel corzelation
length is quite larger than the thermal Larmor radius. Since generally the perpendicular
correlation length is shorter than the parallel one, it possibly happens that the Larmor
radius is comparable to or larger than the perpendicular correlation length. Then the
diffusion of the particles with such large Larmor radii due to the stochastic field is expected
to be comsiderably reduced according to (4.29) and (4.31). Actually it is experimentally
observed that the anomaly of transport of the energetic particles is relatively smaller than
that of the particles with less energy and so is that of ions compared to that of electrons.)

One may have wondered why the term resulting from the stochastic magnetic field has
the form given in the right-hand side of (4.21) which is different from both the real space
diffusion in (3.11) and the velocity space diffusion as seen in the case of the electric field
fluctuaions. However this form is natural from the point of view of the conservation prop-
erties owned by the original stochastic magnetic field term as found in (4.23). The term we
derived retains the mass and energy conservation. Then it was shown that the additional
force due to the stochastic field appears in the momentum equation and that this force in
turn gives the drift velocity leading to the familar type of diffusive flux. It is interesting as

a future task how this force affects the instability or other problems when it is included in

17



the momentum equation or in the Ohm’s law.
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Appendix:
Finite Lamor Fadius Dependence of the Diffusivity

If we assume that the stochastic magnetic field B is statistically isotropic in the plane
perpendicular to the unperturbed magnetic field By, the correlation tensor (B(#)b(0)) is

expanded in the wavemumber space as

(b()B(0)) = (—23?)3 [ aw [ kadh | " dpexplik-I)QULELPG) (A

where (k1 , ¢, k) are the cylindrical coordinates in the wavenumber vector space and the

tensor P(¢) is defined by

P(¢) =1L —n.(d)n.(9) (A.2)
with
1 = 1—boby=e;e, +ee,
n(¢) = kifki=e,cosd+e,sing. (A.3)

Here P(¢) appeared due to the solencidal condition V-b = V - B/B;, = (9B, /dz +
8B,/8y)/Bo = 0. We can write P(¢) in the form of 2 x 2 matrix in the (z,y)-plane as

P(¢) =

sin® ¢ —sin¢cos ¢ }

— sin ¢ cos ¢ cos® ¢

Using (4.17), {4.20), (4.26) and (A.1)~(A.3) and assuming that wy > kyvy, we have

2 0 o k
) ] dky f koap, 2Rk (ml)
—0o0 0

227 )? —tkyuy + 0 0 wy
k k k
Jo( “’*) - JQ( ”’l) cos 26 -—Jz( 7L ) sin 26
733 o Wy
X (A.4)
-7, (k”’l) sin 20 Jo (k“’l) iy k”"l) cos 20
o o \ o
Now we assume that the spectral function Q(ky, k) is written as
Y = 0! 1,2 12\ {
Qlki k1) = Qjilky) exp \ ~H1 L1 (A.5)
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where L, is interpreted as the perpendicular correlation length of the stochastic magnetic
field. Substituting (A.4) and (A.5) into (4.25) and using the local Maxwellian distribution

function for f, we obtain

nop — \/E Ve Doy an (A6)
{1+ 4(pew/L1)21Y2 02y
where we used 8/02, =1 - 0/0# and the diffusivity tensor defined by (3.10) rewritten as
D = Dpl1 due to the assumption of the isotropy in the perpendicular plane given at the
beginning of this appendix. In the limits of py/L; € 1 and py/L) > 1, (A.6) reduces to
(4.29) and (4.31), respectively.
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