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Abstract

Evolutions of the local pressure gradient and the amplitude
of the helical mode are studied near the critical pressure
gradient against the limear resistive interchange instability in
the high aspect ratioc toroidal helical plasmas, Three
characteristic dynamic evolutions are identified; monotonous
saturation, relaxation oscillation and periodic limit cycle
sclution. As the heating power is increased, the dynamic

)

evolution changes from the monotonous saturation, to the
relaxation ocsillation and finally to the limit cycle. The tinme
average of the pressure gradient is limrited by the critical

gradient agaianst the linear stability. Dependences cf the

amplitude and period of the sawtooth oscillation on the heating



§1. Introduction

Recently much work has been performed to investigate the
stability limit against the interchange mode (Rosenbluth and
Longmire, 1957) in stellarators with the finite shear and
magnetic hill such as Torsatron/ Heliotron devices (Gurldon, et
al., 1968; Mohri, 1870; Uo, 1971). Compared to the flourishing
work on the linear stability problem, few theoretical investi-
gations have beem made on the ?rocess which really limits the
achievable g limit. (@ value is the ratio of the plasma pressure
to the magnetic pressure.) The sawtooth-like oscillation is
known to appear when plasma pressure increases (Harris, et al.,
1384). V¥akatani and coworkers have performed a numerical
simulation for the resistive interchange mode to sinulate it
(Fakatani, et al., 1984). However, the sawtooth oscillation does
not necessarily appear in experiments at beta limit (Meorimoto, et
al., 1889). In addition to it, the resistive WHD calculation
predicts instability for all values in this geometry (Ichiguchi,
et al., 1989, 1991), the concept of the ’beta limit’ is not
clear. The amalysis on the beta-limiting phenomena in this
configuration has beer far from satisfactory.

Fe have recently developed the analytical theory on the
stability of the interchange mode in the high-aspect-ratio
Torsatron/Heliotron configurations, taking into account of the
plasma dissipation such as the resistivity, 7, thermal conduc-
tivity, x, current diffusivity, A, and ion viscosity, v (Itoh, et
al., 1992b). It was found that the small but finite value of

thermal conductivity and ian viscosity is essential in




determining the stability g-1imit {(Itoh, et al., 1992b, Carreras,
et al.,, 1987). 1In this article, we extend this analysis and
study the temporal evolution of the mode amplitude and the
pressure gradient. The dynamics of the pressure gradient amd the
node amplitude are studied by taking into account the back-
ground profile modification. This model reveals the periodic
sawtooth-like oscillation with the bursts of the perturbation
amplitude, Other types of the,solutions, such as the monotonous
saturation or the relaxation oscillatiion are also found. The
boundary in the parameter space for these types of solution is
also obatined. We also investigate the peak value and the time-
averaged value of the pressure gradient as a function of the

heating power, and iliustrate how they are limited by the
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§2. Model

Growth Rate o he Interchange Mode
fe use a model equation based on the reduced set of
equations for stellarators (Strauss, 1980). High-aspect-ratio
plasma is analyzed to obfain the analytic insight. The
cylindrical gecmetry with the coordimates (r, B, 2z) is eamployed.
The growth rate v of the resistive interchange mode, which
is localized near the mode rational surface, is derived as (Itoh,

et al., 1992b)
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where kB=M/PI' & is the poloidal mode number, Py is the
normalized minor radius of the mode rational surface, s is the
shear parameter, pi(al/ap)/t, D nenotes the normalized pressure

gradient
D = -@ 8P’ oy (2)

"=3/3p, P, is the normalized pressure, p(r)=EBpeq(P)]Bz/2u0 and
@ is the averaged curvature of the field limes. 1Im Bq.(1), 7, =,
%, and v are normalized to Ty azpo/rA, aZ/rA. and aZ/rA. respec-
tively. (a2 is the plasma minor radius.) In the following, the
length and time are nornalized to a and Ty, unless specified
otherwise.

Equatiom (1) predicts that v=0 at critical values of D,

which we denote by DC. The critical pressure gradient, DC, is
given as (Itoh, et al., 1992b; Carreras, et al., 1987)
2 2 6 -2
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In the vicinity of the stability boundary, we write

T = [aT/aD](D-BC). (4-1)

and
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Figure 1 shows an example of the growth rate as a function of the

pressure gradient,

(2.2) Evolution of Pressure Profile

Fe next introduce the model egquation for the evolution of
the local pressure gradient. The evolution of the averaged

pressure profile, p(p), is given as

ap/at = 1¥%p - <¥-Vp, (5)

where ~ denotes ihe perturbation, ¢ > indicaites ihe time-phase
average, and the contribution of the local heating power is
neglected. The second term indicates the quasilinear ternm
corresponding to the convective flattening of the background
profile. We here assume that z is constant in space and time for
the simplicity. The perturbation of the pressure P is related to

velocity perturbation ¥ as
- - —= 6
v T7+1k (63

Substituting Bq.(B) into Eq. (5), we have

ap <TVT LD
— = Vavp + T/ Ve . (73
at Tt1k



The development of the averaged pressure gradient is given by

g 9 V(V'er>
—{(Vp) = Vo2(Vp) + —————5“*'(Vp) . (8>
at T+ik

The boundary condition is chosen that the heat flux (supplied by
the external heating method) iF constant in time far from the
region in which this low-m mode activity exist.

¥e develop the point model im order to keep the analytic
insight of the phencmena. We assume that the perturbation is
localized near the mode rational surface, and introduce the scale
length of L, which shows the localization width of the
pertubation. For the amalytical insight, we assume the scale
length separation, i.e., &|Vp/p{<<1 and 2k~0(1). By using this

podel, we estimate as

VKV VT oVp = (Vp)-v<?°VVr> (9)
and

k2 = ko2 + 1702, (18)
The derivative on the perturbation quantity is estimated as

T~ |72 ]/202 (11)



The contribution of the diffusion term (the first term in RHS of
Egs. (7) and (B)) is evaluated in the point model by noting the
boundary condition. Since the heat flux and 1 is constant at

le-p, [>>8, we use the condition

Vo = Vbpeay 2t [e-p |28, (123

and Vpheat is constant in time; By the help of this condition,

the second derivative of Vp is evaluated by

V2 (Vp) = 072 (Vpy o,y -Vo). (13)

The diffusion ferm is usually characterized by the loss time 7.
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Vo - (VPpeat - VPI/T, (14)

Note that Vpy,., is the pressure gradient which is realized by
the balance between the heating and the diffusive loss., In other
words, Vpp,.4 is the pressure gradient which would be realized in
the absence of the low-m mode activity. Substituting Egs. (9),
(11) and (14) into Eq.(8) the model equation which dictates the
evolution of the pressure gradient is obtained. Noting the

relation between D and Vp, we write this equation in terms of D

as
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{The contribution of tﬁe external heating, Dheat’ is defined as
Dheat/VPheat=D/VP. )

Using the growth rate 7, the time evolution of lvrzl is
given as

dlr.2]/at = 2r |v,2]. (16)

Equations (1), (15) and (18) constitute the set of basic

equations,
§3. Temporal Evolution and Beta-Limiting Phenomena

(8.1) Dimensionless Form of Ecuation

Equations (1), (15) and (16) is solved tc study the beta
liniting phenomena near the critical beta value for the stabili-
ty. In order to simplify the analysis, we use a normalized form

as T = D/DC, K = £2<Vr2>/12 and t = t/7, we have

drF KF

dat (Fheat ~ P2 2+9% an
and

dK/dt = 2%% (18)



where the normalized growth rate ¥ is defined as rvr. The Taylor

expansion of 7. Eq.(3) is rewitten as

T =z(F-1) (19)
where the parameter z is defined as

z = (ar/aD)D %/x, (20)

Solution of Bag. (17) and (18) is investigated for the given

paraneters (Fy,,¢- z).

(3 2) Fixed Point and Stability

Equations (i17) and {18) have the fized points.

[
(o]
o+
et
W)
=]
[k}

d/dt=0, we have the fixed points (F,. ;) as

Fy = Freat
(21-1)
Ky, = 0
and
Fy = 1
(21-2)

K* = 2(Fheat"1).

The former solutior corresponds to the case of low heating power,



i.e., Fheat<1 (in other words, Dheat<Dc)' Vhen heating power
increases and Fheat exceeds unity, Ea.(21-1) denotes the unstable
fixed point. The mode grows and the fixed point is given by
Eq. (21-2), for which F, is independent of Dheat’ i.e., the
pressure gradient is limited to the critical value against the
linear stability.

The dynamical stability of the fixed point is studied by

expanding Egs. (17) and (18) near the fixed point. We write

F=F,+fandX-= K, + kb (22)

and linearlize Egs. (17) and (18) as

p h 0 ZZK* h
it = (23)
f -1/2, -1+K*(z-1)/2 f
The eigenvalue of the matrix, A, is given as
/2
-T £ /T%-4zK
A - > 2Ky (24-1)
where
Fsl-K*(z-l)/Z. (24-2)

The deviation from the fixed point, (h,f), change in time as

(h,f)=(h0,f0)exp(ht). There are three cases depending on the

10



value of A. V¥hen A is real and negative, 1i.e.,
2 5 8z(Fy,,y-1). and IO, (25)

the fixed point is stable., The trajectory (F,H) converges to the
fixed point (F,,K,) without oscillation. If A is complex and Re
A < 0, the fixed point has an asymptotic stability. (If the
ipaginary part is large, |ImA| > [Re A|, the trajectory
oscillates aroung the fixed point many times or the path of

convergence, ) ¥hen the real part of A is posgitive,

Ke(z-1) > 2 (26)
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the o6ry turns into
lizit cycle. Near by the threshold condition, the frequency of

the temporary oscillation, w, 18 given as
0 = /T2-43K,/2. (27)

Figure 2 illustrates these typical cases, In the first
case, A is real and negative; F and X converges to the fizxed
point and the monotonic saturatiom is obtaimed. Im the secoad
case, i.e., Re AK0 and |Zm A| dose not vanish, the overshoot of F
and K is obtained on the way of the asymptotic convergence. The
instantaneous peak value of the pressure gradient can exceeds the
critical value, In the third case, where Re AD0, the limit cycle

solution occurs; the pressure gradient shows the sawtooth-like

11



oscillation, and the perturbation shows the periodic bursts. In
this case, the instantaneous peak value of the pressure gradient
can also exceeds the critical value., Figure 3 shows the regions

of these solutions in the parameter space of Fheat and z.

(3.3) Numerical Example

Bquations (17) and (18) are solved numerically. In
performing the calculations, we choose parameters z and kezﬂz.
Combinations of % and 2 are chosen so as to give the asigned
value of z., Figure 4 illustrates three typical solutions, i.e.,
saturation, relaxation oscillation and limit cycle oscillation.
The analysis based on the stability of the fixed points is
confirmed. 1In the case of the damped oscillations, the first
peak of the pressure gradient is largest. In high heating cases,
the sawtooth oscillation of the pressure gradient is realized.

As the heating power increased and the pressure gradient tends to
exceed the stability limit, then the mode amplitude starts to
grow., The increased perturbation stops the increment of the
pressure gradiert and causes its collapse. As the pressure
gradient is flattened, the mode becomes stable and the mode
amplitude starts tc decrease. Then the pressure gradient starts
to grow again, allowing the periodic changes.

Figure 5 shows how the pressure gradient and the
perturbation amplitude change as the heating power is increased.
Bold line indicates the time avarage of the pressure gradient in
the stationary solutions. Below the critical value, Freat<ls

plasma is stable, and F grows in proportion %o Fheat' If Fheat

12



exceeds unity, the plasma enters into the unstable region. It is
found that the instantaneous peak value of the pressure gradient
increases as the heating power increases, though much slower than
Freat itself. However, the dynamics of the trajectory (F,K) is
asymptotically stable, and the pressure profile finally reduxces
to a constant value, which is the critical pressure gradient, D..
When the heating flux exceeds the criterion Egq.(26), or

VPheat 1
——leat » | 4 ———
Vo, Dcaf/aD—l (28)

where Vp, is the critical pressure gradient against the linear
stability. The stationary solution turns to be the limit cycle,
and pressure gradient F shows the sawtooth-like oscillation. The
time-averaged vaiue of the gradieni is suppressed below ths
critical value against the linear stability. The peak and bottom
of the periodic oscillation is also plotted in Fig.5 by dashed
lines. The difference between the peak and bottom indicates the
magnitude of the sawtooth crash, The crash amplitude AA/A is

defined as
AA/A=|V(peak)-Vp(bottom) |/ Vo ] (29)

and it scales as

MA/E = By ay-1-1/(2- 1) (30)

The instantaneous peak of the pressure gradient exceeds the

13



stability limit D, but cannot surpass D, much.

The mode amplitude is also shown in Fig.5. Below the
criterion Eq.(28), the saturation amplitude is given by Eq. (21]-
2). When the parameters enters in the regime of the limit cycle
oscillations, the mode amplitude rapidly increases.

The period of the oscillation is also studied as a fumction
of the heating power. Figure § illustartes the period as a
function of the heat flux paraPeter Dheat/De- ¥hen Fp...-1 is
close to zaro, the oscillation freguency is close to the value
given by Eq.(27). As the heat flux increases, the peak value of
the node amplitude increases very rapidly. Pressure gradient is
depressed much. In the range |D/DC-1|>(£2k92/z), the damping

rate of the mode is approximated as
T = -1k,2 (31)
o 8 -

The damping rate remains close to this value until D approaches
to D, as is shown in Fig.1. The decay time of the pulse of the
pode amplitude is estimated by R'zke'z in the norealized form.
This value is usually much larger than unity . In such a case,
the contribution of the decay time in the period of oscillation
is large and dominant. The psriod approaches to the value which

is order of l-zke"z. w is close to unity, and the period is an

increasing function of the heat flux Dheat'

§4. Summary and Discussion

In this article, we developed the analytic theory of the

14




dynamic evolution of the plasma pressure gradient and the
interchange mode amplitude near the stability boundary. A
simplified set equation for the mode amplitude and pressure
gradient was derived where the quasilinear back-ground
modification is taken into account,

The dynamical evolution is studied, and we found that there
are three classes of evolutions; the monotonic saturation, the
relaxation oscillation and periodic limit cycle solution. The
parameter region for the appearance of these solutions is also
obtained, As the heating power is increased and the plasma
eniers into the unstable region, the saturation is realized when
the heating power is not strong enough. As the heating power is
increased, then the relaxation oscillation occurs; in this case,

1, e R I T g e AL amd <o -
the overshoot of the pressurs gradient is predicted. Th

(O]

pressure gradient shows the sawtooth-like oscillation, the
amplitude of which is largest fer the first crash, and converges
to the saturation value with reduced oscillation amplitude.
Finally, if the heating power is large enough, the periodic
sawtooth-like oscillation of the pressure gradient is predicted
associated with the periodic bursts of the perturbation
amplitude. Crash amplitude AA/A scales as /?i;;;fﬁzzg as is
shown in Eg. (30), and the period of the oscillation beconmes
longer as the heating power increases.

These result are comsistent with the experimental
observations. In experiments of the Heliotronm E device, it has
been found that the oscillation of the pressure gradient occurs

and that the amplitude of sawtooth-like oscillation is largest

19



for the first crash (Zushi, 1892). Our analysis is also
consistent with the numerical simulation of the resistive
interchange mode by Wakatani,et al., where sawtooth crash was
recovered when the initial pressure gradient is large enough.
These numerical sinmulation have not identified the parameter
space in which the oscillatory solution exists. Our model would
provide the guiding principle for the accurate numerical
sinulations to find out the va;ious class of solutions.

It is noted that only the back-ground modification effect is
kept in this article among various nonlinear terms. For
instance, the excitation of the 2ad harmonics leads to the
nonlinear term in T suchk as 71 = Tg -CK. where 7y is the linear
growth rate and C is a constant (Sugama, et al., 1991). If this
term is kept, the fixed point solution F, becomes an increasing
function of Fy,.4. However, the introducticn of this terr does
not change the qualititive conclusion in this article. The
improvement in the gquantitative estimation would be expected by
keeping this term,

It is also noted that the analysis in this article is highly
simplified for the analytic insight. The assumption that % and &
are constant in time maybe tco simplified. The local pressure
gradient can affect the thermal conductivity (Itoh, et al.,
1992a). The current diffusivity can influence the mode growth
rate for high temperature plasmas, which has a different form of

v[D] (Itoh, et al., 1892b). These problems await future study,
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Figure Caption

Fig.1 Growth rate (mormalized to l/iz) as a fuaction of the
parameter D which is proportional to the pressure gradient.

Parameters are chosen that [ar/aD]DC=2 and R2k92=0.2.

Fig. 2 Typical trajectories of three cases. (a) for the stable
case, (b) for the case of}asymptotic stability and (¢) for
the case of limit cycle. The symbol + denotes the fixed

point,

Fig.3 Regions of the saturation, damped oscillation and linmit

c¢ycle solutions in the Dheat‘z plane.

Fig. 4 Example of the temporal evolution of the pressure
gradient and mode amplitude. Fhea:r 18 1.05 in (2), 1.4 in
(b} and 8§ in (c), respectively. Temporal evolutions from
the inifial condition of (F, K)=(0.2, 1) (a) and (F, K)=
(0.2, 0.1) (b) are shown. For (c¢), periodic solution is

illustrated, Parameters are z=2 and k8252=0.2.

Fig.5 The pressure gradient as a function of the heating
power, Dp,., (2). Time average is shown by the sclid line,
Above the criterion for the occurence of the limit cycle
solution, the time average (solid line), as well as the
transient peak (dashed line) and the minimunm (dotted lime)

are shown. Parameter is chosen as z=3.
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The dependence of the mode amplitude on the heafing
power is shown in (b)J. For the limit cycle solution, the
transient peak (dashed line) and the time average (solid

line) are shown.

Fig. 6 Period of the oscillation as a function of the heating

power. Parameter is chosen as z=5.
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