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Abstract

Two applications of the Kernel Optimum Nearly-analytical Discretization
{(KOND) algorithm to the parabolic- and the hyperbolic type egquations are pre-
sented in detail to lead to novel numerical schemes with very high numerical accu-
racy. It is demonstrated numerically that the two dimensional KOND-P scheme for
the parabolic type yields quite less numerical error by over 2 - 3 orders and rednces
the CPU time to about 1/5 for a common numerical accuracy, compared with the
conventional explicit scheme of reference. It is also demonstrated numerically that
the KOND-H scheme for the hyperbolic type yields fairly less diffusive error and
has fairly high stability for both of the linear- and the nounlinear wave propagations

compated with other conventional schemes.
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§ 1. Inroduction

Various numerical algorithms for solving the three types of partial differential
problems of hyperbolic, elliptic and parabolic equations have been developed [1-18].
While they yield fairly good results for many problems, more effort will be required
to attain higher accuracy and stability when we investigate further the finer structure
of the problem being studied. One of the authors (Y.K) has reported a thought anal-
ysis on numerical schemes and developed a new algorithm called ” Kernel Optimum
Nearly-analytical Discretization (KOND) algorithm” for the construction of numer-
ical schemes [19]. In the thought analysis, we investigate logical structures, ideas
or thoughts used in the objects being studied, and try to find some key elements
for improvement and/or some other new thoughts which involve generality [19-231.
In the previous two reports [19,24], preliminary numerical results have been shown
for two novel numerical schemes of the 1D 2nd KOND-H scheme and the 1D ist
KOND-P scheme, which are two applications of the KOND algorithm respectively
to the one dimensional hyperbolic type equation to the 2nd derivatives and the one
dimensional parabolic type equation to the 1st derivatives. It has been demonstrated
by the numerical results of the 1D 2nd KOND-H scheme that the KOND-E scheme
yields fairly less diffusive error compared with other conventional schemes and has
fairly high stability [19]. It has been also demonstrated by the numerical results
that there appears higher diffusive error and/or noise in the calculation of the higher
derivatives of the solutions. This structural property of the error would be common
in all numerical schemes. The numerical results of the 1D 1st KOND-P scheme has
been shown to demonstrate quite less numerical error than those by the conventional
explicit scheme by 2 - 3 orders, measured quantitatively by the root mean square
deviation from analytical solutions [24].

In this paper, we present in detail the applications of the KOND algorithm to the
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parabolic type equation and the hyperbolic type one. In the case of the parabolic type
equation, we present two schemes for the one dimensional and the two dimensional
equations and show typical numerical results demonstrating that the 2D 1st KOND-P
scheme yields quite less numerical error by over 2 - 3 orders and reduces the CPU
time to about 1/5 to attain the same common numerical accuracy, compared with
the conventional explicit scheme of reference. In the case of the hyperbolic type
equation, we present two types of the 1D 2nd and the 1D 1st KOND-H schemes,
and show typical numerical results demonstrating high numerical accuracy of these
two schemes, compared with the compact CIP { Cubic Interpolated Pseudo-particle
) scheme [15-18] which is known to be less diffusive scheme compared with other
conventional scheme.

In §2, the KOND algorithm deduced from the thought analysis on numerical
schemes is shown briefly together with the concept of losses of two informations on
”relations” embedded in differential equations and on functional ” values” in solutions.
Applications of the KOND algorithm to the parabolic type equation are presented
in §3. In subsection 3.1, we present the detailed procedure for the development of a
scheme to obtain the discrete solutions to the st derivatives for the one dimensional
parabolic equation, in order to show the basic processes of the KOND algorithm and
the origin of the resultant numerical accuracy. Two dimensional parabolic equation
is treated in subsection 3.2, in order to show an example for effective high reduction
of the CPU time to attain the same numerical accuracy. Applications of the KOND
algorithm to the hyperbolic type equation are shown in §4. In subsection 4.1, we
present the KOND-H scheme with very high numerical accuracy which solves the one
dimensional hyperbolic equation to get discrete solutions up to the 2nd derivatives.
In subsection 4.2, we present simpler KOND-H schemes with fairly high numerical

accuracy which solve the one dimensional hyperbolic equation to get discrete solutions



up to the st derivatives. Comparisons among numerical results by the KOND-H
schemes and by the compact CIP scheme are presented in subsection 4.3. Discussion

and summary are given in §5.

§2. KOND Algorithm deduced from Thought Analysis on Numerical
Schemes
We present here briefly the thought analysis on numerical schemes to lead to the
KOND algorithm [19]. In order to understand the structure of the ideas or thoughts
used for numerical schemes for simulation, we try to analyze the basic process for

solving a partial differential problem,
Li(x) = g(x), for x=(z;,---,24) in adomain Q C R? (1)

where L is a linear or nonlinear differential operator, f(x) is an unknown function,
and g¢(x) is a given function. When it is hard to solve analytically eq.(1), we use
usually two approximate methods, i.e. one is the approximate analytic method such
as the perturbation method and the other is the discretization of eq.(1) to solve
the finite-difference equations. When we compare the ideas or thoughts themselves
involved in the two methods, we may find the following elements of thoughts { we call
the idea or thought itself involved in some method, simply like as ” thought [A] 7 ).

In the approximate analytic method:

[A] to find global approximate continuous solutions.

[B] to find local approximate continuous solutions.

In the discretization method:

[C] to find finite-difference equations approximately equal to source equations.

[D] to find discrete approximate solutions on grids.

When we consider the processes for solving the source equation, eq.(1), to obtain
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its solution f(x), we notice that there exist following two types of informations, [Inf.1]
and [Inf.2], in the whole system of the source equation and its solution, and we use
the two informations in the data processings to obtain the solution:

[Inf.1] Informations on the ”relations” which are embedded in the source

equation, eq.(1), and connecting the local values and their time evolutions.

[Inf2] Informations on the functional ”values” embedded in the solution f(x).

Since the finite-difference equation for eq.(1) itself has finite error compared with
the source equation, eq.(1), and therefore it has finite loss of the informations of [Inf.1]
on the "relations” mentioned above, we had better solve eq.(1} directly as possible,
avoiding to use the finite-difference equation.

We now assume here that the analytic true solution f(x) of eq.(1} is obtained.
The whole informations of [Inf.2), mentioned above, that give the whole property or
character of eq.(1) and its solution are included in the following set on the functional

"values” of the analytic solution and its derivatives,

{ f(x): aif(X), aijf(x)v ot }3 (2)

where 8;f(x), 8, f(x),--- stand respectively for 8f(x)/dz,, 6*f(x)/0z:0z,, and so
on. The each element of the set of eq.(2) obeys respectively the following set on the

"relations” of differential equations,

{ eq'(l)s eq‘(4): eq.(5), T }7 (3)

where eqs.(4), (5), - -+, are the followings;

a’v[ Lf(X)=g(X) ]J forx:(mls"'amd)a (4)

B[ Lf(x)=g(x}], forx=(z1,---,%4), (5)



We call eq.(1) "the source equation”, eq.(4) "the first branch equations”, eq.(5) "the
second branch equations” , and so on. These source and branch equations include
the important informations of [Inf.1] on the ”relations” mentioned above.

We first analyze the informations of [Inf.2] on the functional ”values”. Mapping
the set on the functional "values” of the analytic solutions, eq.(2), onto the grid
points X in a given uniform or nonuniform grid G* with mesh size hy, we may
obtain the following set of { discrete values of solutions at grid points, interpolation
curves around grid points, connection relations at neighboring grid points } which is
equivalent to the set of eq.(2):

{ set of discrete values of solutions at grid points )

{ fn: azfm ai]fm }1 (6)

where the subscript n denotes here a d dimensional integer.

{ set of interpolation curves around grid points )
{ Fn(s)i aiFn(S)a aiJFn(S): e }1 (7)

where s is defined as s = x— x~.

n

{ set of conmection relations at neighboring grid points )

Fn(_hd) = fn—l‘ Fn(hd) = f-n-i-l‘ (8)
aiFn(_hd) = 3!fn—1' 61Fn(hd) = aifn+l‘ (9)
a:JFn("'hd) = aijfn—l- 6£3Fn(hd) = 6t;fn+1- (10)



Each element of the set, eq.(7), should be the piecewise segment of the corresponding
analytic solutions of eq.(2). The set of { the discrete solutions eq.(6), the segmental
interpolation curves eq.(7), the connection relations of eqs.(8), (9), (10), --- } is
exactly equivalent to the set of the true solutions, eq.(2). Using the Taylor expansion,

the elements of the set of the interpolation curves, eq.(7), can be written as follows;

Fn(s) = fn+zaifn3i+zatjfn3isj/2+ Ty (11)
i 1.7
a"Fn(S) = 3zfn + Z 8,-3_;‘,,53 + Z a,j};fnSJSk/z + .- 3 (12)
J 2k
B;JFn(s) = 6,'an + zaijkf,,sk + z 3i]kifn5ksl/2 + e f (13)
k kl

..................

We see from comparison between eq.(6) and egs.(11), (12), (13}, - - - that the discrete
values of solution, eq.(6), are themselves the coefficients of the interpolation curves
by the Taylor expansion and therefore they can induce good approximate and locally
continuous solutions around the grid points. In other words, the infinite set of the
discrete values of eq.{6) itself becomes one of the best discretizations for the whole
informations on the functional "values” of the continuous true solutions, eq.(2), based
upon the interpolation curves by the Taylor expansions. This corresponds analogically
to the representation of a given function by the discrete spectra with use of the Fourier
expansion. Since we cannot use the infinite elements of the set of eq.(6), we use two
or three elements from the beginning in eq.(6}, for example, fr, 8;fn, 9;;fo- We then
lose finer informations included in the rest infinite terms beyond the terms of 8,, f,,
in this example, in the Taylor expansions. The rest infinite terms are considered to
carry the semiglobal informations for the uncovered regions between the neighboring

grid points that make the interpolation curves satisfy the connection relations of
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eqs.(8) - (10). Using reversely the connection relations and introducing additional
Taylor coefficients, i.e. three more additional terms for one dimensional problem in
this example, we can recover approximately the lost informations in the rest infinite
terms by the additional terms. In other words, the rest infinite terms in the Taylor
expansions can be folded up approximately in the finite additional terms by using
the comnection relations. From the thought analysis on the loss of {Inf.2] shown
above, we find that if we use more elements in the set of eq.(6) and if we use more
connection relations for the adopted elements in order to recover approximately the
lost informations in the rest infinite terms in the Taylor expansions by folding up
approximately the rest infinite terms into some additional Taylor terms, then we can
suppress effectively the loss of [Inf.2] in data processings.

We next analyze the informations of [Inf.1] on the "relations” in the differential
equations. In order to obtain the values of the adopted elements of eq.(6), we can use
the source equation and the branch equations corresponding to the adopted elements,
and all of those equations would have a common type of differential equations with
each other. In order to suppress the loss of [Inf.1], we should use more elements in the
set of eq.(3) with respect to the source and its branch equations. It is because that if
we use branch equations up to the higher order, we can embed correct informations
on the 7relations” carried by the branch equations into the data processings up to
the corresponding higher order derivatives, as will be shown in examples in the next
section. On the other hand, when we solve the source and the branch equations with
use of the conventional finite-difference equations, we cannot avoid loss of [Inf.1] on
the "relations” by the discretization itself of the source and the branch equations. In
order to suppress the loss of {Inf.1] by the discretization of the source and the branch
equations, we should find higher-order approximate analytic solutions for the source

and the branch equations as analytically as possible.




We notice from the above analysis on the losses of [Inf.1] and {Inf.2] that if we
have a method which is nearly analytical for obtaining better approximate solutions
for the more elements of the set of eq.(6), we would get the more accurate and denser
informations for the set of the true solution, eq.(2). The accuracy of the informations
for the solutions by this method is optimum at the grid points, as is seen from the
above argument, and in other words, the discretization by this method is kernel
optimum.

The thought analysis mentioned above leads to the following main set of thoughts
to be used in the algorithm for the construction of the numerical scheme, which is the
combination of the elements of the two sets of thoughts for the approximate analytic
method { [A], [B] } and the discretization method { [C], [D] }. We call the algorithm
»Kernel Optimum Nearly-analytical Discretization (KOND) algorithm®.

Main set of thoughts of the KOND algorithm;

{11, (1], I}, [Iv] }, (14)

where the four elements of thought are as follows,

[I] to use the source equations and their branch equations { Eq.{1), Eq.(4),
Eq.(5), --+ } as many as possible.

[II] to find higher-order approximate analytic solutions as analytically as pos-
sible, by using some methods such as the perturbation method, the Taylor expansion
and others.

[111] tofind the set of discrete solutions { fa, Bifay &;fn, - - } as many elements
as possible, that are the coefficients of the interpolation curves { Eqs.(11), (12}, (13),
.-} by the Taylor expansions corresponding to the local continuous solutions around
the grid points. [ " The kernel optimum discretization of a function by the coefficients

of the Taylor expansion at every grid point”. ]



[IV] to use the set of the connection relations { Eqgs.(8), (9), (10), --- } as
many elements as possible, in order to include the semiglobal informations for the
uncovered regions between the neighboring gird points and to find the additional
higher order Taylor coefficients which represent approximately the rest of the infinite
terms of the Taylor expansion. [ ”"Folding up of rest terms of the Taylor expansion
by the connection relations”. ]

The two thoughts of { { I ], [I1] } are essential to attain higher numerical accuracy
by suppressing the losses of [Inf.1] on the ”relations” embedded in the source and the
branch differential equations. The other two thoughts of { [I11], [IV] } are essential
to attain further higher numerical accuracy by suppressing the losses of {Inf.2] on the
functional ”values” of f(x). Each of these four thoughts { [ 1], [II], [IIT}, [IV] }
of the KOND algorithm may seem to be rather simple and abstract to develop new
schemes with higher numerical accuracy. In the following sections, however, the set
of the four thoughts of the KOND algorithm will be shown to give us novel numerical
schemes which yield quite high accuracy and therefore effective high reduction of the

CPU time to attain the same numerical accuracy.

§ 3. KOND Algorithm for Parabolic Equations ( KOND — P Scheme )

We apply here the KOND algorithm to the numerical scheme for solving the
pa.rabolic type equation. In the following subsection 3.1, we present the procedure for
the development of a scheme to obtain the discrete solutions to the 1st derivatives,
Le. fy and 8 f,, for the one dimensional parabolic equation in order to show the basic
processes of the KOND algorithm and the origin of the resultant numerical accuracy.
We express here the scheme for the one dimensional parabolic equation to the 1st

derivatives by the KOND algorithm like as ”1D 1st KOND-P scheme”. We use the no-
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tations such as 8,f, 8.f, and O, f as the abbreviations for 8f(1,z)/0t, 8f(t, z)/0z ,
and 8™ f(t,z)/8z™ | respectively. In the subsection 3.2, we present a 2D 1st KOND-P
scheme, which is the scheme to obtain the discrete solutions to the isi derivatives
for the two dimensional parabolic equation, in order to show an example for effective

high reduction of the CPU time to attain the same numerical accuracy.

3.1. One dimensional 1st order case (1D 1st KOND — P Scheme)

We treat here one dimensional parabolic equation used for diffusion equations, and
develope a scheme to obtain the discrete solutions to the st derivatives. According
to the first thought element, [T}, of eq.(14), and from eq.(4), we solve the source
equation and the 1st branch equation for the one dimensional diffusion equation,

which are written respectively as follows:

i f(t,z) = P, (15)
O f = 9P, (16)
P = 8] D(t,z)0.f(t,z) ], (17)

where D(t,z) in the definition of P of eq. (17) is a given diffusion coefficient. The

m-th branch equation for the source equation, eq.(15), is written generally as
Oumef = OmaP. (18)

We use the higher order branch equations of eq.(18) as much as possible in the fol-
lowing procedure because of the suppression of the losses of [Inf.1] on the "relations”
in the differential equations, as was discussed in the previous section.

According to the second thought element, [II], of eq.(14), we solve egs.(15} -
(17) locally around a point of (¢, z,) as analytically as possible. Using the Taylor

expansion around the time of ¢x, we write 0,,. P, as
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OnzPr = OmaPy + OmePir + ... (19)

whete 7 = § — 4y, OpmoPn = 0,.P(4,2,), and 8,,,PF = Oz Pltg, 2,). When m =
0 in eq.(19), then eq.(19) becomes the Taylor expansion for P itself. Using eq.(19)
and integrating eqgs.(15) and (16) with respect to T over the time interval of Af, we

obtain approximate solutions for f¥** and 8, f5*! at the point of (tx4,, 2,,} as follows,

= e PRALE BPHA -, (20)

B e = 0, fF 4+ 8, PFAt + %atzpf(my 4o (21)

where f* = f(t;,z,) and afr = 0, f(tg, z,). The first order approximate solution
of eq.(20) with respect to At yields the ordinary finite-difference equation. This
finite-difference equation loses much informations of [Inf.1] on the "relations” in the
given differential equations corresponding to the higher order terms in eq.(20) and also
eq.(21) and higher order branch equations. We use here the second order approximate
analytic solutions with respect to At in eqs.(20) and (21), for simplicity.

We now proceed to the third thought element, [III], of eq.(14). In order to find
the set of discrete solutions of { f¥*!, 8, f¥*' } with use of eqs.(20) and (21), we have
to express the right hand sides of eqs.(20) and (21) by the values at the time of
and/or tx_;. Using the definition of eq.(17), We obtain P, 8,P* 8, P* and 8, P* in

¢qs.(20) and (21) as follows,

P} = 8,DFa, f* + DFoy, f%, (22)
0Py = By, D, fr + 0, DR, 5 + O,.DE 85, f¥ + DXBy, fF, (23)
8. PF = 8,DL0,f¥ + 20, Dk, fF + DF oy, 15, (24)

12




atsz: = 6f21D:61f: + aZID::atzf:: +28tx-D:a2zf: + 28:D26t2:f:

+ 0, DEda, f + DEdys, fF, (25)

In eqs.(23) and (25), there appear again the terms of 8, f¥, 8w, f* and Bp. f¥ to be
determined. We can use again the branch equations, eq.(18), to the third order for

the determination of these terms as follows,

dufy = . P;

= 8, DEOf* + 20, D05, fF + DEOs, fF, (26)

6t2:rf1): = aZIng

= 8, D50, f* + 38, D5 0,, £ 4 30, D585, f* + DX0,, fF, (27)

Biszfy = O3 PX
= 84.7:Dzazf: + 4632D::(922f: + 682:1:Di63.1:f:

+4a:rDﬁ64:cf-r]: + Di:a5xf: (28)

It should be emphasized here again that when we use the branch equations to the
higher order, we can obtain the higher numerical accuracy. This is because that by
using the branch equations as much as possible, we can avoid to lose the important
informations of [Inf.1] on the "relations” to the higher derivatives, which are embedded
in the source and branch equations and connecting the local values and their time
evolutions.

Using the values at the time of t; and/or tx_1, we obtain the derivatives of D, for
example, 8,D% = (Df - DX"1)/At, 8,DF = (D, — D%_,)/2h, and so on, where
h( =1, — 2,_; ) is the mesh size. When we use the approximate solutions for fF*!

and 8,51 to the order of (At)? in eqs.(20) and (21), we can determine the values

13



of £+ and 8, **' with use of eqs.(22) - (28), the values of D at the time of 7,
and t,_;, and the values of Oz [ (m = 0, 1,2,3,4,5). {If we neglect four terms of
Omaf¥ (m=2,3,4, 5) in eqs.(22)-(28) as an approximation, then we can still obtain
the values of 51 and g, 51 without using any additional thought element. In this
sense, we are free from using the connection relations of egs.(19)-(11) in the fourth
thought element, [TV], of eq.{14). In order to attain higher numerical accuracy, we
need the fourth thought element [(IV]. }

We proceed to the final thought element, [IV], of eq.(14). Since we have to
determine the values of S5 and 8, f**+ with higher numerical accuracy from those
of f¥ and 8, f*, we need the values of d,,.,f* (m = 2, 3,4,5) included in egs.(22) -
(28). We therefore use the following interpolation curves up to the term of 8y, f* of
the Taylor expansion, which represent approximately the rest of the infinite terms of

the Taylor expansion,

1 1
Fi{s) = fE+8,f%s+ 50fas’ + gy’
1 1

+ ﬂahffﬁ + '12—065sz$5, (29)

1 1

%Fi(s) = 8,/* + 8, s+ 563I frs? + 6‘94"“’ fhs®

1

+ 5165.1‘.{:34: (30)

where s = 2 — z,. We use following four connection relations for f¥ and 8,f* from
eqs.(8) and (9), in order to fold up the informations included in the rest infinite terms
of the Taylor expansion into the additional four terms of OmzfF (m =23 4,5) and

also to determine their valyes by f¥ and 8, /%,

F:(—h') = rif-l: (31)
Fi(h) =, (32)
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a_rF:(_h) = azfvj:—la (33)

0. F¥(h) = 8, %, (34)

Substituting eqs.(29) and (30) into egs.(31) - (34), we obtain the four additionaj

Taylor coefficients, 8,,, f* (m = 2, 3,4, 5), which are given by f* and 4, %, as follows,

2 1
O fr = ﬁ( i1 — 2+ ) - El—z(a$frl:+l — O, %)), (35)
Buoft = 2o(ph _pr )= (B ft,, + 80,1 4 0, ) (36)
% n k3 a4l n—1 942 Lintl Tin ZJn-1/1
Ot = (o =25+ ) 4 S0, 0 (37)
iz/p = ha\ntl n n—1 h3\TEIntl Fin—1/
90 30
35xf11: = _h_g,( 71:+1 - r]:——l) + F(aﬂ:ffﬂ + 46,f: + BI ::—1)1 (38)

Using the initial values of £,, i.e. [, we obtain the initial values of Oefa, 1o, 8,11,
by 8. f7 = (111~ fL_1)/2h. We may notice from eqs.(21)-(38) shown above that we
avold the losses of [Inf.2] on the functional "values” in f{t, ) by finding the values of
Omzf¥ (m=1,2,3,4, 5) and folding up the informations included in the rest infinite
terms of the Taylor expansion into the additional four terms of Oy f¥ (m = 2,3, 4, 5).
If we treat only the values of f* instead of {7%, 8.£%}, we do lose the important
informations of [Inf.2] on the functional "values” shown above, and these losses of

(Inf.2] will accumulate numerical error to increase during data processings.

We now consider how to treat the boundary values of f* and 8, f*. The boundary
conditions for the source equation, eq.(15), are given usually in one of the following
two forms,

boundary condition (a) : fs = comst. (n=1,N ), (39)
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boundary condition (b) : B, ff = comst. (n=1N), (40)

where (2 =1 and n = N ) denote the boundary grids. We show here how to de-
termine the values of 8, ff (n =1, N) for the case of the boundary condition (a)
of eq(39). [ If we use the boundary condition (b) of eq.(40), then we exchange fE
with 9, fF in the following argument. ] According to the thought elements [111] and
[IV] of eq.(14}, the interpolation curve around the grid point 7 and the connection

relations are given respectively from eqs.(29) and (30) and egs.(31) - (34) as follows,

1 1
Fy(s) = f3 + 0cfis+ 500 L35 + L0 fys®
i

+24

1
84If§34 + 'ﬁ)'35zf2k.95, (41)

1 1
O Fy(s) = Opff + 80, frs + 5632 fis? 4 gau fhs®

+ 0 fist (42)

Fy(—h) = ff, (43)
Fi(h) = f3, (44)

0, FE(~h) = d,fF, (45)
0.F5(h) = 8. /3. (46)

Since &, ff is unknown this time in addition to 8, f5(m=2,3,4,5), we have to
remove the last term of ds, f} in eqs.(41) and (42). Substituting eqs.(41) and (42)
without the term of &, f¥ into eqs.(43) - (46), we obtain the three additional Taylor

coefficients, . f§ (m = 2,3,4), and 8, f*, as follows,
1 1
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3 k k k
Douf} = elfh = 1) = 12 S, (48)
Ouft = (=5 + 47+ 1) + SOSE+2081), (49)

1 1
0ff = 8:ff = Bpuffh+ S0 f3h — 20w f3h°. (50)

Substituting eqs.(47) - (49) into eq.(50), we can determine the value of 8, fF from the
values of f¥* (n=1,2,3) and &, f% (n=2,3). Using the same process mentioned
above, we can determine the value of 8, f§ by replacing h and the subscripts { 1,2,3 }
for grid points in eqs.(47) - (50) with —h and { N, N — 1 , N — 2 }, respectively.
Combining all processes for the four thoughts { [T ], [II], [III], [IV] } and for the
boundary values, i.e. using eqs.(35) - (38), egs.(22) - (28), egs.(20) and (21) to the
order of (At)?, and also egs.(47) - {50}, we find the set of the discrete solutions to the

1st derivatives { f5+!, 8,f+1 } after one time step from the state of { f¥, 8. 7% }.

We show here some typical numerical results by the 1D Ist KOND-P scheme
shown above, comparing with the results by the conventional explicit scheme as a
reference measure. In order to test the accuracy of the numerical results, we calculate
the following case with the analytical solution: the diffusion coefficient D = 1, the
initial profile of f{0,z) = sin(27z/}), and the boundary condition (a) of f*¥ =
0 (n = 1,N), where ) is one period length of f(z). The analytical solution for this
case is written as f(¢,z) = exp[—(27/))%t]sin(27xz/)). When we define M as the
number of meshes in one period length, X is given by A = MhA, and M + 1 grid points
cover one period length. We use the following conventional explicit scheme, denoted
by 1D EXPL” hereafter, obtained from the finite-difference equation, for comparison:
fel = f5 + DA(fF,, - 2fF + fE_)/RF*. In order to measure quantitatively the
numerical accuracy, we use the root mean square deviation, g, from the analytical

solution, which is defined by
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= {5 X [ fi= ftu) PP (51)

The double precision programme is used for the following numerical calculations.

Figure 1 shows typical results of computation for the time evolution of o in the
case of M = 20 and DA¢/h? = 0.1, where two lines of ¢ for the 1D EXPL scheme
( the mark O ) and the 1D 1st KOND-P scheme ( the mark M ) are shown in a
semi-log scale. We recognize from Fig.1 that the error of the 1D 1st KOND-P scheme
measured by o is less than that of the 1D EXPL one by about 2 orders in this case. It
is also seen from Fig.1 that the rate of increment of ¢ in the 1D 1st KOND-P scheme
is less than that in the 1D EXPL one.

Figure 2 shows typical results of computation to see the dependence of ¢ on the
number of meshes M in one period length in the case of DAt/A? = 0.1, where two
lines of o at the time of ¢ = 1.0 are shown in a semi-log scale for the 1D EXPL scheme
( the mark O ) and the 1D 1st KOND-P scheme ( the mark ® ). It is recognized from
Fig.2 that higher improvement rate of accuracy by increasing the number of meshes
M can be achieved in the 1D Ist KOND-P scheme than in the 1D EXPL one. In the
case of M = 40, the error of the 1D 1st KOND-P scheme measured by ¢ becomes less
than that of the 1D EXPL one by about 3 orders, as is seen in Fig.2. The data in
Fig.2 also shows that improvement of accuracy by increasing the number of meshes
saturates faster in the 1D EXPL scheme than in the 1D 1st KOND-P one.

We recognize from Figs.1 and 2 that quite high accuracy can be attained by the
present 11} 1st KOND-P scheme. The local multisubscales and delta function ( LMS-
DF ) method reported in ref.[25] to improve numerical schemes is also applicable to
the present 1D 1st KOND-P scheme as well as to the 1D 2nd KOND-H scheme [19]

for the hyperbolic equation to attain further less numerical error.
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3.2. Two dimensional 1st order case (2D 1st KOND — P Scheme )

We treat here two dimensional parabolic equation used for diffusion equations, and
develope a scheme to obtain the discrete solutions to the 1st derivatives. According
to the first thought element, [I], of eq.(14), and from eq.(4), the source equation
and the 1st branch equations for the two dimensional diffusion equation are written

respectively as follows:

atf(ta Z, y) = P: (52)
Bnf = 0, P By f = 0,P (53)
P = 3,[D(t, 2,9)0:f(t, 2, 9)] + B[ D(2, 2,9)8, £ (2, 2, 9)] (54)

where D(t,,y) in the definition of P of eq. (54) is a given diffusion coefficient. The

(m + n)-th branch equations for the source equation, eq.(52), are written as

atm:rnyf = ammypu (55)

where Opzny f is an abbreviation for 8™+ f /9z™dy™.
According to the second thought element, [11], of eq.(14), we solve eqs.{52) - (54}
locally around a point of (i, #;, y;). Using the Taylor expansion around the time of

1k, we WIite Opumy Fi; a8

amxny-ljij = am,rnyR]fJ + atm:my-P -

T e . (56)
where 7 = t — i, Opnany Fij = Doy P(1, Ti,y;), and 3,,,,,,;3,}’,-’; = Omany P(tx, iy 4, ).
When m = n = 0in eq.(56), then eq.(56) becomes the Taylor expansion with respect

to time 7 for P itself. Using eq.(56) and integrating eqgs.(52) and (53) with respect

k4l g fRtI

to 7 over the time interval of At, we obtain approximate solutions for [, 8.1,

and 3, f,—’j’l at the point of (tx41,%;,7;) as follows,
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1
=+ PEat+ SO (A1) +--, (57)

T

1

0cfisl = Ol + 0P 0+ QB P (A 4+, (58)
1

63' '{:.1+1 = ayf:]fg + ayR'l,EjAt + EafyPiF:J(At)z +-y (59)

where f¥ = flty, 2., 1,), 0:fF, = 0.f(tx, 2., y;) and B, ff = 8,f(tx, z.,1,). We
use here the second order approximate analytic solutions with respect to Af in
eqs.(57)-(59).

We now proceed to the third thought element, [II1], of eq.(14). In order to find
the set of discrete solutions of { f5F*, 8, f#1, 8, fF1 } with use of eqgs.(57)-(59), we

have to express the right hand sides of eqs.(57)-(59) by the values at the time of £,

and/or ;. Using the definition of eq.(54), We obtain P,-’;, &, P¥, 6113}’;, 8:_»51:}3;,
8, P, and 8, P¥ in eqs.(57)-(59) as follows:
Pi},gg = aIDf,JaxﬁfJ + ayDEJay iifj + Dfu(a?z f} + 0y f.?) (60)
6,‘,}):; = atx-Dé]az 5.1 + BszJatxffj + atny,]ay ::7 + 6yD?,Jat?i‘ :,CJ
+0.Df (Ore ff, + Doy £} + D (B ¥, + Biay IE). (61)
8213:3 = aZzDijjaxf:; + azDﬁjazxf:J + B:cyDzj ayfz],c; + 6ny,; 8Eyfi}:j
+8-’1‘D?,3 (62Ifz{c_7 + 62:1 ij,cj) + ch,_;ﬂ (331‘ z:l,:] + 6-’-'—‘2‘.0 i]i;t)‘ (62)

Ouz Py = OaDE, Oufl, + 00, DX Bia fX + 812 DF 8o, f%, + 8, D B i
0y D5, 0, f3, + 2y D By £, + 80, DF, 0us £, + 8, DF 8y f
+0ie DF, (2o fF, + 0ay f5,) + 0. D (B fE, + By ££)
+3th,;‘(53x 4 Oy ;kj) + ij(atsxffj + 3tzzyffg)- (63)

)
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8, PE = 0, DF 0, fF, + 0. D% 00, fi, * + 80y DX, 8, £, + 8, 15,00, 11,
+3ny’j(32, ii,sj + 829 "I:J) + Df.a (a'-’zﬂffj + 639 lk:r) (64)
Ouy PE, = By DF B, f% + Oy DF 04 fi, §* + 02 DY 02y £, + 8:DF By f,

+342y D, 8, + 82, DF 84, F 4+ 0, DF 05, fF, + 8,DF 00y £,

.7 I 17

+5fyD?g(ah f_y + 023 iljg) + any,j(at?z g + 8f2yffg)

L%

+6tD?J (82114 x:,:_'; + 3331 l:lf]) + D?,j (6t2ryffj + atSyﬁ: Jk) (65)

In egs.(61), (63) and (65), there appear again the terms of 8. /%, 8y fF,, On.fF,,

533 e
Oy fl, Ouayfly) Oce E, Ouyft,, Onay fE, and By, &, to be determined. We
can use again the branch equations, eq.(55), to the third order for the determination
of these terms with use of local values of 8,0y f,kd with m + n < 5. It should be
emphasized here again that when we use the branch equations to the higher order,
we can obtain the higher numerical accuracy. This is because that by using the branch
equations as much as possible, we can avoid to lose the important informations of
[Inf.1] on the "relations” to the higher derivatives, which are embedded in the source
and branch equations and connecting the local values and their time evolutions.
Using the values at the time of ¢ and/or t;_,, we obtain the derivatives of D,
for example, 8,DF, = (D¥, — DY)/ At, 8,DF, = (Dhy, — DEy )/ 2As, 8,Df, =
(DF 41 — DE_1)/2Ay, and so on, where Az ( = z; — ;-1 ) and Ay (=% — %=1}
are the mesh sizes of z and y directions, respectively. When we use the approximate
solutions for f*}1, 8, f5 and 8, f}7" to the order of (At)? in eqs.(57)-(59), we can

W] 33

determine the values of f‘f 1,0, /5 and 8, ;";'] by using eqgs.(60)-(65) and the values
of Omany ff} {m+n<5)and D at the time of ¢ and #5;. { I we neglect eighteen
terms of Bmzny fi, { 2 < m+n < 5)in eqs.(60)-(65) as an approximation, then we can

obtain the values of f&1, 8,5 and 8, 5" without using any additional thought

1,3 1 TEug L)
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element. In this sense, we are free from using the connection relations of eqs.(19)-(11)
in the fourth thought element [IV] of eq.(14). In order to attain higher numerical

accuracy, we need the fourth thought element [IV]. }

We proceed to the final thought element, [IV], of eq.(14). Since we have to

determine the values of ff;' 1o, f,kj' ! and 9, fj ' with higher numerical accuracy

from those of f*, 8, 7% and d, k¥ we need the values of Omany fj (2<m+n<

L1 TSy 6,77

5} included in egs.(60)-(65). We therefore use the following interpolation curves up
to the terms of Opgm, f,"J with m + n = 5 of the Taylor expansion around the point
of (2,,,), which represent approximately the rest of the infinite terms of the Taylor
expansion,
F(X\Y)=f +ofE X +o,/8Y

(00 Fh X 4 200, f1XY 4 04 fEV)

+-é-(a3, FEX 3050y 5 XY + 80,0, f5 XY + 85, 2 V?)

For(Pue [ X+ 4040, XY + 6y £, X7V

+48;3, f, ij Y3 48y, fj)Y4)
+-1%(asz 2y X+ 504y fE, XY + 10840, f% X3V
10055 f5, X2V ° + 50,0, [, XY + 85, 1Y) (66)

+J

6$1F‘1-J:‘j (X,Y)= (’%ffJ + 5zzf::,'X + 0y ;,:JY
3 (Ol K + 200, £ XY 4 0, fET)
+%(34¢fij ® o+ 803y X7V + 30000y fi, XY + O 1Y)
bg(Boa [, X 4 400 5 XY + 6045, 15, X7V
+40203 S5, XY + Ooy WY, (67)

ayF;fJ(X, Y) = 81'fi’:] + 6_1-3, il:JX + 3gyff}Y
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+= (amf,'zxz + 2050, XY + 85, fFY?)
+= (asx,, F X3 4 30000y £, XPY + 305y S kXY? + 04, f1Y?)
(34:J:yfk X*+ 48329y f7 XSY + 662:53yf;k3 X%y?

+48,4y fE XY + 85, fEY?) (68)

where X = z —z; and Y = y — y,. In order to fold up the informations included
in the rest infinite terms of the Taylor expansion into the additional eighteen terms

0, and

of c“)‘,,,,zm,ff,‘J (2< m+n < 5) and also to determine their values by U, ”

8, f¥ , we use the connection relations of eqs.(8) and (9) for

U, 3, fF, and ayffj at
eight neighboring grid points around the point of (z.,y,), as is shown in Fig.3. We
have following twenty-four connection relations at the eight grid points of A ~ H in

Fig.3.

A: Fi(Az,0) = fR.,,

3mF3,‘J(A$,O) a t+1,_‘} 3 a Fk (A.‘L“ 0) = ay iifl-l,_;r * (69)
B: Ff_g(oa Ay) = fj'l'l ’

8. FF (0, Ay) = 0.5 4, 8,F5(0,Ay) = 8,7F .. (70)
C: (Aa: A?J) z+l,_:+1 ’

3; Fk (AI Ay} = A1 e+1,741 6ny3(A$:Ay) = ayf::-l,;+l . (71)

D: F:;(—AZL‘, _Ay) = fzk—l,j—l 3

o Fk( Az, ""A?J) = mf —1,3—1 1 3yst,g3(_A$:_A?J) = 8yf:c—1,3—1- (72)

E: FE(-bz,00 = fF,,,
8 FE(—Oz,0) = 005, ,, O,F(—n2,0) = 9,fL,,. (73)
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F: Ff_;u(A‘T Ay) = z+1_7 —1 *

9, Fk (A:c —Ay) = 3::]2]11,_;—1 ; ByE’fj(Am, —Ay) = ayfzk+1,3-1 . (74)

G: FL,(0,-ay) = f5_,,

a, F’“ (0, —Ay) = 8.fF,_; , 6F" (0,~Ay) = 9, ,’;_1. (75)

H: E’;(——A.’E, Ay) = :k—l,;]-l-l ’
o Fk( Az, Ay) = 3 f: 17+1 7 8@&%;(—A$:Ay) = 3yfli-19+1 - (76)
These twenty-four connection relations of eqs.(69)-(76) are reduced to eighteen in-

dependent equations after some algebra, and they are solved straightforward in the

following forms:

0 fly = T Uy = 2 + 20, = s (Bulb, = 2ufEr) (7D
Oy fl, = (3 vy — Oy fiq,) + (a w1 — Ox L)
4/_\;& ( i+17+1 + fik—l,_?—l - fﬁH,J—i - fik—l,_7+1 : (78)
& 2 k k 1 f*
Oy fly = T Fon = 205+ fi) = 5a ol —0uf5). (79)
15

aSszg - A )3( 41,3 fzk—-l,_g) (A )2(8 t+1,7 +86 k +a$ — 1_7) (80)

1
az:ﬂyf:fj = m—(ha-‘rf:f{-l,j+1 - 3-7-'ftk—1,3—1 + 6$fi]:-1,_1 + 3-Tftk—13 282 2,7+1

+40, fF — 28, fF _ )+ — 28,15, + 0,/ )

(A )2(8 +1,3

—"-—1 k
4(A$)2A ( ‘+1J+1 'Sfr,—-l,_f,- 1 + 1‘1‘1;3‘—1 —1.41
—6 k5, + 655, — AfF L+ AFE ). (81)
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1
83’29f:.7 = ZAEA ( a t+1 g+l a?,'fk—l -1 + 9 f 2,941 + 6 zk_-,—l 26&‘ 1,

+48, 5, = 20, fE1 )+ T (Bafiyn — 205, + 017,

b G
1 & k E
+w(5fi+1,3+1 Sfit1y—1 — Jixrg-1 T+ f:—l,}+l
_4 ,‘k+1,] + 4f1‘k—1,J fz J+1 + 6 1_1 1) (82)

15 3
a3yff_;n = 2(Ay)3 (ff}+1 - f!,c]—l) - (A )2 (a.?l 3,7+1 + 86 k + 8 t,_j 1) (83)

Oua fr, = ( (B fEy, — OuE ) - & )(,ﬂj 2fF + R (84)

3
aS:ryf:; = m(ﬂkﬂ,ﬁl + fik—l,;—l - fﬁn,,—1 - fik—l,_1+1)
3
(A ) (893 t,3+1 aﬂ:fj 1) (85)
1
Dy Iy = (Bzdy )2( ARTRE N LRGPP +4f;,
-2 1.k+13 2fk 1,3 2 t,7+1 2fl.l,=j—1)' (86)
azsfk=43“(fk1 +f!k 1_f‘k - 'kl 1)
EEN ) 2A$(Ay)3 t+1,7+1 1—1,7— 1+1,7-1 t—1,5+
3
_m(ay z+1_7 ay ;-1]) (87)
6 . 12

64‘yfij,ij = (_Ay—):-;(a!l 1341 T a‘yfii,cj—l) (A )4 (fz g1 2fz,_-| + f ) (88)

k

851 7 Q(A ) ( 41,7 l—l,])+ (A )4(8 i+1_1+481‘f +8 flkl_]) (89)

6
8453’ E'J_(A.’E)‘?‘A (a f+1_y+1-|'-a ek——lj 1+23 t,3+1 4arfk +28 1._7-1
3
_31fzk+1,_7 - a;rfz’c—la) (A )4A (5f1+l J+1 sf:—l_y 1 + z+1 g1
_f:c—l,]+1 6 zk+1_',- 6fik—1,j - fz,j+1 +4 i,]—l)‘ (90)
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3
k k k k k
83z2yfz,; = W(fz+l,_7+l f “1y-1t z+l,_-,' 1= S 41— 2f;+1,; + 2f1—1,j)

6

s k
(A.’E) (A )2( z IJ+I 26 +a-"3 1,7— 1) (91)
k 3 k k
BZISyfz,j :W( 1+1,3+1 f 1,9-17 z+1_1 a Tl 1541 -2 t,3+1 + 2 3 l)
6
"m(a 1y = 20,5+ 0,5 ). (92)

6
81.4yficj = W( z+1,}+1 + 8 fzk -1 + 25 1+1 J 4ayf=}; + zayfik—lg

3
k k k k
_6:Ufz,]+1 - a&’fi,_j—l) - AJE(Ay)4 (st’+1}3+l 5 =13-1 " 1+1,9—1
+ 1.k—1,]+1 - 6f1]+1 + 6 t,3—1 4fzi:-1,] + 4ffi-l,])‘ (93)

50 30
853' 'zk,j = _(Tng(f{j;-l-l - ::‘]—1) + ( ) (a f 2,7+1 +48 tk; + a 1] 1) (94)

Using the imit1al values of f;,, i.e. f,, we obtain the initial values of 8, f; , and 8,7, ,,
by 8:f., = (fli1, = f1,)/2082 and 8, £} = (1,11 — f1 _1)/2Ay, respectively. We
may notice from egs.(59)-(94) shown above that we can suppress the losses of [Inf.2]
on the functional ”values” in f(t, z, y) by folding up the informations included in the
rest infinite terms of the Taylor expansion into the additional four terms of - ffj
(2<m+n<5)and by finding all of values ofc'?mmz, (1<m+n<5). If we
treat only the values of f instead of {f},, 8.fF,, 8,75}, we do lose the important
informations of [Inf.2] on the functional *values” shown above, and these losses of
[Inf.2] will accumulate numerical error to increase during data processings.

We use the same procedure for the determination of the boundary valures of s ],
d:fF, and 8,f¥ , as was used for the one dimensional case shown from eq.(39) to

eq.{(50). Tn the two dimensional case, we have to deal with two types of boundary,

i.e. the edge boundaries and the corner ones. Using the thought elements [III] and
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[IV] of eq.(14), and reducing some terms from the highest derivative in the Taylor
coefficients in order to match the number of unknown Taylor coefficients and that
of the connection relations, we can obtain the necessary Taylor coefficients for the
determination of the boundary values, in the same way from eq.(39) to eq.(50}. This
part of algebra is rather complicated compared with the one dimensional case, but is
straightforward.

Combining all processes for the four thoughts, { [1], [II], {I11], [IV] }, and for the
boundary values, we can find the set of the discrete solutions to the 1st derivatives {

i, 8 . fEFL, 8, f5F! } after one time step from the state of { f, 0:1F,, 3,1k}

AJ 3

We show here some typical numerical results by the 2D 1st KOND-P scheme
shown above, comparing with the results by the two dimensional explicit scheme
denoted by ”2D EXPL” as the reference measure. In order to test the accuracy of
the numerical results, we calculate the following case with the analytical solution: the
diffusion coefficient D = 1, the initial profile of f(0, z,y) = sin (27z/X;) sin (27y/X,),
and the boundary condition (a) of fj =0(i=1,Nand j = 1,N ), where
the both of total mesh numbers in the z and the y directions are set to be N, and
Az = Ay, for simplicity. Here A, and A, are one period length of f(0,z,y) in
the z and the y directions, respectively, and we show the case of A, = A, in the
following example. The analytical solution for this case is written as flt,z,y) =
exp[—(k2 + k2)t]sin (k-z)sin (kyy), where k. = 27/A; and k, = 27w/ A,. When we
define M as the number of meshes in one period length in the z direction, A; and A;
are now given by A, = A, = M Az, and M + 1 grid points cover one period length.
We use the following conventional two dimensional explicit scheme, obtained from the
finite-difference equation: f&! = f* + DAU[(fh,, —2fF + fL ) /(82) + (0

—2f% + f¥_)/(Ay)’]. The root mean square deviation, o, from the analytical
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solution used for the quantitative measurement of the numerical accuracy is now
given by
1] NN
o= {3 L U = S mou) Y (95)
The double precision programme is used for the following numerical calculations.

Figure 4 shows the initial profile of f* used for the calculation of the two dimen-
sional diffusion equation. Figure 5 shows typical results of computation for the time
evolution of ¢ in the case of M = 20 and DA¢/(Az)* = 0.1, where two lines of ¢ for
the 2D EXPL scheme ( the mark O ) and the 2D 1st KOND-P scheme ( the mark
B ) are shown in a semi-log scale. We recognize from Fig.5 that the error of the 2D
1st KOND-P scheme measured by ¢ is less than that of the 2D EXPL one by over
2 orders in this case. This result similar to the one dimensional case in the previous
subsection 3.1.

Figure 6 shows typical results of computation to see the dependence of o on the
number of meshes A in one period length in the case of DAt/{Az)? = 0.1, where the
values of o at the time of { = 1.0 are shown in a semi-log scale for both of the 2D
EXPL scheme ( the mark O ) and the 2D 1st KOND-P scheme ( the mark ® ). It is
recognized from Fig.6 that quite higher improvement rate of accuracy by increasing
the mumber of meshes M can be achieved in the 2D 1st KOND-P scheme than in
the 2D EXPL one. In the case of M = 40, the error of the 2D Ist KOND-P scheme
measured by ¢ becomes less than that of the 2D EXPL one by over 3 orders, as is
seen in Fig.6.

Figure 7 shows dependence of the CPU time on the number of meshes M for the
computation until £ = 1.0 and with the same parameter of DAz/(Az)? = 0.1. Here,
the CPU time is the computational time on a LUNA 88K SX9100/DT8862 computer
system. It is seen from Fig.7 that the CPU times for both the 2D 1st KOND-P
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scheme and the 2D EXPL one increase almost proportional to M?, as is expected. It
is important to compare the CPU time used for the computation by the both schemes
to get the same numerical accuracy. We take here the case of M = 20 for the 2D 1st
KOND-P scheme as a typical example. In this case, the error by the value of o s
about 107, as is seen from Fig.6. In order to attain this accuracy of o ~ 1078, we
need the number of meshes of about M = 90 for the 2D EXPL scheme, as is seen
from Fig.6. The CPU time for the case of M = 20 by the 2D 1st KOND-P scheme is
130 sec, while the CPU time for the case of M = 90 by the 2D EXPL scheme is 660
sec, as is shown in Fig.7. This result demonstrates that the present 2D Ist KOND-P
scheme yields the same numerical accuracy with o ~ 10~° by using only about 1/5
of the CPU time used by the 2D EXPL scheme. If we take other case of M = 30 for
the 2D ist KOND-P scheme with the value of ¢ ~ 1077, then we need the number
of meshes of about M = 170 for the 2D EXPL scheme, as is seen from Fig.6. In this
case with o ~ 1077, the 2D 1st KOND-P scheme yields the same numerical accuracy
by using only about 1/8 of the CPU time used by the 2D EXPL scheme.

We recognize from the typical numerical results shown above that the KOND
algorithm with the four thoughts { [I], [II], [IlL], [TV] } give us the novel numerical
scheme of the 2D 1st KOND-P scheme which yield quite high accuracy and there-
fore effective high reduction of the CPU time to attain the same common numerical

accuracy.

§ 4. KOND Algorithm for Hyperbolic Equations ( KOND — H Scheme)
We apply here the KOND algorithm to the numerical scheme for solving the
hyperbolic type equation. In the following subsection 4.1, we present the procedure

for the development of a scheme to obtain the discrete solutions to the 2nd derivatives,
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Le. fn, 8- fn and 82, f,, in order to show the basic processes of the KOND algorithm
applied to the one dimensional hyperbolic equation and the origin of the resultant
numerical accuracy. We express here the scheme for the one dimensional hyperbolic
equation to the 2nd derivatives by the KOND algorithm like as "1 2nd KOND-H
scheme”. In the subsection 4.2, we present a 1D 1st KOND-H scheme, which is the
scheme to obtain the discrete solutions to the 1st derivatives for the one dimensional
hyperbolic equation, in order to show some comparisons on the numerical accuracy
with the 1D 2nd KOND-H scheme and the compact CIP scheme which is known to be
less diffusive scheme compared with other conventional schemes. The comparisons of
numerical results among the 1D 2nd KOND-H scheme, the 1D ist KOND-H scheme,

and the compact CIP scheme are shown in the subsection 4.3.

4.1. One dimensional 2nd order case (1D 2nd KOND — H Scheme )
We treat here one dimensional hyperbolic equation, and develope a scheme to
obtain the discrete solutions to the second derivatives, i.e. f,, 8.f,, and 8, f,.

According to the thought element [I] of eq.(14), and from egs.(4) and (5), the source

equation and the Ist and 2nd branch equations are as follows:

Lilf(t,2)] = of + u(t,2)o:f, (96)
Lu[f] = g(t,z), (97)

La[8.f] = 8,9 — 8,ub, f , (98)

Lpl0ae fl = Bong — 20,ubsf — Boyudsf, (99)

where eq.(96) is the definition of the operator L, of the hyperbolic equation, and
the notations such as 4,f, 8.f, and &,f denote again 8f(t,2)/8t, df(t,z)/dz,
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8 f(t,z) /02, respectively. All of eqs.(97)-(99) are the same type of differential equa-
tions. By using the branch equations up to the 2nd order, we can suppress the losses
of [Inf.1] on the "relations” in the differential equations up to the 2nd order.
According to the thought element [II] of eq.(14), we solve eqs.{97)-(99) locally
around a point of (t,, z,) as analytically as possible, in order to suppress the losses of
[Inf.1] on the ”relations” in the differential equations themselves by discretizations.

Using the Taylor expansion, we write u({,z) as
ult, z) = up + OptiyT + s+ -+, (100)

where u, = ulto, %), O, = deults, £,), Opu, = Oultyz.), T =t
and s =z —z,. By using eq.(100), the source equation and the branch equations,

eqs.{96)-(99), are rewritten as

Lao[f(t,2)] = 8:f +u0:f (101)

Lio[f] = GO(t,z), (102)

GO(t,z) = glt,z) — B f(Bruot + Butios +--- ) (103)
Lyo[8:f] = Gl(t,z), (104)

Gl{t,z) = 8,9 — O.ul:f

- a2zf(6tuoT + a:r.uos +--- )a (105)

Lho[a2.rf] = GQ(tsl'): (106)

G2(t, 1) = 029 — 20,ubysf — Bpzudsf
— 85, f(BsueT + Orus + -+ ), (107)
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where Ly, defined by eq.(101) is the operator with a constant value of u,. We may
solve the same type equations of egs.(102), (104), and (106) by using the two phases
of the Eulerian- and the Lagrangean phases, as follows:

( Eulerian phase for eq.(102) [ Non-advection phase ] )

Df

Df - 3tf+ :zf

Eatf+uo 8.f = GO(t, ), (108)

where dz/dt = u, = const. The function GO(t,z) is expanded as follows along the

path of the advection,

GO(t,z) =G0, + 8,G0,r + 8,G0,s + - - -

=G0, + 8,G0,7 + 3,G0u,7 + - -+ {109)

where GO, = GO(t,,z,), :G0, = 9,GO(¢,, z,), 8,GF0, = 8,G0(¢,,z,), T = t—1., and
s = 4,7 1s used. Integrating eq.(108) with eq.(109) with respect to 7 along the path
during the time interval of At, we obtain the solution of the Fulerian phase, f, z),

around the point of (¢,,z,), as follows,

=)= ft,z)+ AfF, (110)

1
Af* = GO,At + -2-(8,;G00+ 0,GO,u) (AL + - - -. (111)
{ Lagrangean phase for eq.(102) [ Advection phase ] )
0" + ud,f* = 0. (112)

Since the solution of eq.(112) is known to be f*(¢,z) = F(z — u,t) because of v,

= const., the solution of the Lagrangean phase is written as

Ft+ At z) = f*(t,z — u,Af). (113)
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Combining the Eulerian- and the Lagrangean phases, we finally obtain the high-

order local analytic solution for eq.{102) around the point of (2,, z,) as follows,
f(t+ At,z) = (8,2 — u,Af). (114)

where f*(£,z) is given by eqs.(110) and (111). Using the same process mentioned
above, we obtain the high-order local analytic solutions for eqs.(104) and {106) as

follows:

B, f(t+ At,z) = 8, (¢, 2 — u,AAt). (115)

Bua f(E + AL, 2) = Ba, [* (1, & — uoAl). (116)
where two functions of 8, f*(t, z) and &, f*(t,z) are given as

B f*(t,7) = . f(t,2) + G1,A8

1
+ 5(&(}'10 +8,G1u,) (At +- -, (117)

azzf*(t, :L') = Bng(t, m) + GQOAt

+ -;-(atho + 8,G2,u,) (AL + -+ (118)

The first order approximate solution of egs.(110), (111}, and (114) with respect to
At yields the ordinary finite-difference equation. This finite-difference equation loses
much informations of {Inf.1] on the “relations” embedded in the given differential
equations corresponding to the higher order terms of eq.(111) and also embedded in
eqs.(115)-(118) and higher order branch equations. We use here the second order
approximate analytic solutions with respect to At in eqs.(111), (117), and (118), for
simplicity.

We now proceed to the third thought element, [I11), of eq.(14). In order to deter-

mine the values of the solutions at the next time step from eqs.(114)-(116), we need
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the interpolation curves for the functions of f*(¢,z), d,f*(¢,2) and D2 f*(t, 7). The
interpolation curves with use of the Taylor expansion, eqgs.(11), (12), (13), ..., are
determined by the discrete solutions of f7, 8,7, 85, f7, and so on. We represent here
again the discrete solutions at the time of kAt on the grid point z,, as f*, 8, f* and
8y fy- Using the interpolation curves of F¥*(s), 8, F*%(s) and 32, F¥*(5) respectively
for f**(z), 8,f*"(z) and 8z, f**(z), we obtain the discrete solutions at the time of

{(k + 1) At from eqs.(114)-(116) as follows,

A =Fr(r), (119)
B fit = 8,FF(r), (120)
Bao fF = B, F" (1) | (121)

where r = — 45 At and of = u(kAt, z,). [ If we use only the terms of fr, 8 fr, and
02 f, for the interpolation curves of eqs.(11)-(13) by neglecting the terms beyond
2 £, we can still obtain f3**, 0, ¥+ and 8, f5* from f*, 8, f* and 8, f* by using
eqs.(119)-(121) without any additional thought element. In this sense, we are free
from using the connection relations of eqs.(8), (9) and (10) for the determination of
the discrete solutions. |

We proceed to the final thought elements, [IV], of eq.(14). We use here three
connection relations to the 2nd partial derivative, egs.(8)-(10), and therefore we in-
troduce three additional terms of the Taylor expansion beyond the term of O f.
Using egs.(11)-(13) for the interpolation curves and eqs.(8)-(10) for the three connec-
tion relations at the left neighboring grid point z,,_, for the case of uk > 0, we write
the interpolation curves and the connection relations as follows,

By (s) = f +0:.f0s + %azzf,’:*ﬁ

1

ol (122)

1 1
+ ga;hf::*ss + 54—341)‘,’:*54 +
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BEF:*( )_— Ifk*+821fk*s+ a’imfk* g

+ gé‘uffi*sz‘ + ﬁasxf,’i*s*, (123)

BuFE(5) = OnafE 4 Bsa 75 4 50U SIS+ SO0a 75 (124)
F*(—=h) = f*,, (125)

B, F¥(—h) = B, (126)

Do FF*(—h) = O fFr (127)

where s = ¢ — z,,, and 85, 84 f* and 5, f** are the Taylor coefficients of the
additional terms. Using the three connection relations of eqs.(125)-(127) at the left
neighboring grid point z,—; for the case of uk > 0, we obtain the three additional
Taylor coefficients, 33: I k= and 35x * which carry the semiglobal informations

for the uncovered regions between the neighboring grid points, as follows,

60 12
anfj:* = '}F(fﬁ* - ::1) - ﬁ(gaxfk* + 20 f:: )
3
+ 5(352sz* - 0nf57)) (128)
360 . .
tuntir = S = i)~ (801 47012
12 . .
+ (30 f 20, ) (129)
720, 4. " 360 "
Boefi = S f = 112) - —(a i+ 0.fin)
h3 (aZIfk* bz :::1) (130)

where A (= #, — Z,—;) is the mesh size. From comparison between eqs.(11)-(13)

and eqs.(122)-(124), we see that we have folded up the rest infinite terms beyond the
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term of d;, f* in the Taylor expansions approximately into the three additional terms
of B, f&, 8, f* and 8;,f** by using the connection relations, as was discussed in
section 2.

We may notice from egs.(115)-(130) shown above that we can suppress the losses
of [Inf.2] on the functional ”values” in f(?,z) by finding the values of 8, f** (m =
1,2,3,4,5) and folding up the informations included in the rest infinite terms of the
Taylor expansion into the additional three terms of 8., f** (m = 3,4, 5). Tf we treat
only the values of f* instead of { f¥,8,f* 8,,f* 1, we do lose the important
informations of {Inf.2] on the functional ”values” shown above, and these losses of
[inf.2] will accumulate numerical error to increase during data processings.

Combining all above processes for the four elements of thoughts, [1], [11], [II1],
and [IV], we find the set of the discrete solutions up to the 2nd derivatives
{ FE2, 0, f542, 05, f¥+1 ) after one time step At from the state at the time of kA as

follows,

* % 1 *
B = 0+ S0 fr

1 1 1
_aI k+_3 _6 kw4 _a kx5 131
+63fn7‘+244a:fn?‘+1205zfn7’: (131)

1
O[3 = 0.1+ 00 fir + B0 fEr?

1 1
+ Ea4mf:*7'3 + iza5zf:*7‘4, (132)

1 1
Opefi ™ = O fi" + Bsafi°r + 534xf,’f‘?"2 + gassz’TS, (133)

where r = —u¥At, and 0, f¥*, Oy, f** and 85, f* are given by eqs.(128)-(130) with
the condition that £ and the subscript n—1 are replaced respectively by —A and n+1

for the case of u < 0. The values of f*, 8, f** and &y, f* are given as follows to
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the order of (At)?, by using eqs.(110), (111), (117) and (118) with the definitions of

eqs.(103), (105) and (107);
IR = fa + aaAt

1
+ 5[6tg,‘§ + 0,05k — (Bk + Bukub)0, FRI(ALY, (134)

Oufi™ = Ocfy + (Bt — urli0a f) A

1
+ 'é[atzgfz - atxuiazf;‘: - azuiatmf: - afuiiah‘fr’:
+ (Bregk — Dot O f) — 20.0505. f g ) (A1), (135)

Do fi" = Ono [+ {2adh — 20,1800 ) — Doatp0: ) N8

+ ‘;‘[3&:91‘; — 28,0k By, f¥ — 20,uk 0. f)

— Oiaa b0, 5 — 0yt O ff — sy O, S

+(Bs0gk — 30y,uk 0o, fF — 30.u505, 7

— dsgth 0, fr U )(AL) (136)
Here, the right hand side of eqs.(134)-(136) are all given by the values at the time of
k and/or (k — 1), for example, 8,95 = (g%,; — g% _,)/2h, Bigk = (9§ - gE=1)/At, and
SO on.

We may notice from eqs.(131)-(136) shown above that we can suppress the loss ol
[Inf.1] on the "relations” to the second order derivatives, which are embedded in the
source and the branch equations to the second order and connecting the local values
and their time evolutions during data processings.

We may find from the detailed application of the KOND algorithm to the hyper-
bolic type equation, shown above, that in order to attain higher numerical accuracy,
we need to suppress both of the losses of [Inf.1] on the "relations” in the differen-
tial equations and of [Inf.2] on the functional "values” in f(t,z) and its derivatives

Bmaf(t, z), to the higher order as possible, during data processings.
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4.2. One dimensional 1st order case (1D 1st KOND — H Scheme )

In order to compare numerical accuracy and its origin with the 1D 2nd KOND-H
scheme shown in the previous subsection 4.1, we develope here a 1D 1st KOND-H
scheme to obtain the discrete solutions of the one dimensional hyperbolic equation to
the first derivatives, i.e. f, and 8,f,. Accoding to the thought element [I] of eq.(14),

and from egs.(4) and (5), the source equation and the branch equation are as follows:

Liff(t,z)] = &f + ult,z)8:.f, (137)
Lilf] = g(t,2), (138)
Lh[axf] = azg - azuaxf 3 (139)

where these equations are the same with egs.(96)-(98)

According to the thought element [II} of eq.(14), we solve eqs.(138)-(139) locally
around a point of (1,,z,) as analytically as possible, in order to suppress the losses of
[Inf.2] on the "relations” in the differential equations themselves by discretizations.

The solutions have been solved in the previous subsection 4.1 and are written as,

flE+ At z) = f*(t, 2 — u,At) (140)
O-f(t+ At z) = 8.f*(¢,2 — u,At) (141)

where two functions of f*(¢,z) and 8, f*(¢, z) are given as
F(t,2) = f(t, ) + GO, At
1
+ 5(afG(),, + 0.G0,u,) (At + - -, (142)
8 f"(t,2) = 8, f{t, z) + GL A
+ %(atcno + 8,GLau (A + - --. (143)
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We proceed to the third thought element, [III], of eq.(14). In order to determine
the values of the solutions at the mext time step from eqs.(140)-(143), we use the
interpolation curves of F¥*(s) and 9,F*(s) respectively for f**(z), and 8, f**(x),
and obtain the discrete solutions at the time of {k + 1)At from eqgs.(140) and (141)

as follows,

R =F(r), (144)

k]

Bzf,i:+l = 33F1’:*(1‘) ’ (145)

where r = — ¢*At, and «f = u(kAt, z,,).

We proceed to the final thought elements, [IV], of eq.(14). We consider here the
following two cases of the connection relations: {«) two connection relations to the 1st
partial derivatives, and () three connections relations to the 1st partial derivatives.

In the case of (@), we introduce two additional terms in the Taylor exansion
beyond the term of 8, f**. Using eqs.(11) and (12) for the interpolation curves and
eqs.(8) and (9) for the two connection relations at the left neighboring grid point z,-,

for the case of u* > 0, we write the interpolation curves and the connection relations

as follows,
k= Fon R+ 1 kx 2 1 kx 3
Fn (S) = fn + al'fn 5 + Eagxfn s° + -6—83zfn s, (146)
1
BEF:*(S) = a,f,’;* + 32$f::*s + 553,f:*32 ) (147)
F(-h) = fi, (148)
amF:*(_h) = & r'f:l! (149)
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where s = = — z,, and 8, f* and 85, f** are the Taylor coefficients of the addi-
tional terms. Using the two connection relations of eqs.(148) and (149) at the left
neighboring grid point z,_; for the case of u* > 0, we obtain the two additional
Taylor coefficients, d,, f¥* and 8, f**, which carry the semiglobal informations for

the uncovered regions between the neighboring grid points, as follows,

* 6 * * 2 * *

Ooefrn = ~ g5l = Fi0) + 220 £7 + 8.1, (150)
¥ 12 * x 6 * £

Ousfra = —palfa” = fali) + 5 0uf +8:£271), (151)

where b (= 2, — 2,,) is the mesh size, and the subscript o denotes the case of (a).
We express here the numerical scheme by the case of (@) as "the 1D 1st KOND-Ha

scheme”.

In the case of (§), we introduce three additional terms in the Taylor expansion
beyord the term of 8, f**, and we write the interpolation curves and three connection

relations for the case of uf > 0 as follows,

FF(9) = [+ 01 + 3010757 + 0l 0L, (152)
B F(s) = 0, fF + 0o fi"s + %é?szf,’i“s2 + %ah s, (153)

P (=h) = 7, (154)

O Fy"(=h) = Bufyy (155)

AF(h) = 0:12% (156)
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where 8y, f5*, 5. f% and 8y, f* are now the Taylor coeflicients of the additional
terms. Here, after some trial computations we have used the connection relation
of the first derivative at the right neighboring grid point for the third connection
relation, eq.(156), in order to suppress the loss of [Inf.2] on the functional ” values” of
the first derivative 8, f(¢,z). Using the three connection relations eqs.(154)-(156} at
the left- and the right neighboring grid points for the case of u¥ > 0, we obtain the

three additional Taylor coefficients, 8, f**, 8:. fF* and 8y, f**, as follows,

£ 4 e *
a?:rf:: = ”};(f: - n-—l) + (6 n+1 + 168 fjc + 78, n—l ’ (157)
as:f:* = (3 n+1 28xf,’f* + axfri::l) ’ (158)
K 24 F= o *
a4$fn = F(fn - :n.—1) + (a n+1 + 88 f + 36 —1) - (159)

When we use the three additional Taylor coefficients given by egs.(157)-(159), we
find that there appear some noises in the resultant numerical solutions, while the
numerical diffusion in the computation of the first derivative 8, f(¢,z) is suppressed
effectively, compared with the case of («). Therefore, in order to suppress both the
numerical diffusion and the numerical noises, we have combined the additional Taylor
coefficients by eqs.(157)-(159) with those by eqs.(150) and (151), by using numerical
weighting factors. After some trial computations, we have found that the following
Taylor coefficients, obtained by a combination of 0.6 times eqs.(157)-(159) and 0.4
times eqs.(150) and (151), yield fairly good suppression of both the numerical diffusion

and the numerical noises,

baufs = — g (" — FE0) + 10 (0u e + 320,45 + 150.05%,) . (160)

10h

Bou £ = — o (" = AT+ S0y + 2005 +50,52)) , (16D)

5h2
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144
R

2 3 Ed £ 3 3‘6 * *® *
a4zf:ﬁ = (f:: - :—1) + Ee,-(6$f:+l + Saxf: + 36zf:—1) . (162)

We use here the subscript £ for the combination mentioned above, and express the
numerical scheme obtained by eqs.(160)-(162) as "the 1D Ist KOND-HfS scheme”

hereafter.

Combining all above processes for the four elements of thoughts, I], [H1], {II1], and
[IV], we find the set of the discrete solutions to the 1st derivatives { fitt, o, /541y
after one time step Af from the state at the time of At as follows:

In the case of (@) [ the 1D 1st KOND-He scheme ]

1 1
S = S A Ol 4 S0 f 4 < (163)

1
O fa ¥ = 8o fF + Boafir + 5027, (164)

where r = —uf At, and 8,, f* and 85, 7% are given by eqs.(150) and (151) with the
condition that /& and the subscript n — 1 are replaced respectively by —h and n+ 1
for the case of u* < 0.

In the case of (8) [ the 1D 1st KOND-HB scheme ]:

1 1 1
f:ﬂ = ff* + amf::*?“ + *Z‘ame:*f‘Q + §83xf11:*7'3 + z—iauf:*r‘i » (165)

1
OFE = 01+ O0ufr + SO0 4 Lo e, (166)

where r = —ufAt, and 8y, f¥*, 8;, f¥ and 8y, f** are given by eqs.(160)-(162) with
the condition that A and the subscript 2 — 1 are replaced respectively by —4 and n+1

for the case of u* < 0.

In both of the 1D 1st KOND-He and the 1D 1st KOND-HS schemes , the values
of f¥ and 8, fF* are given as follows to the order of (At)?, by using eqs.(142) and

(143) with the definitions of egs.(103) and (105);
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= L+ gt

1
+ {0k + dughul — (B + 0kl MY, (167)

a'rf:* = azf: + (as:gi - 3$uﬁ3$f,’j)At

1
+ 5[@:95: - 8t:cuia:rf,i: - &ruiatzf:: - atuiafo-,I:

+ (D20 gk — Oa,ub 0, fE — 20,ulBaa fE R (ALY, (168)

4.3. Comparison of numerical results

We show here some typical numerical results by the 1D 2nd KOND-1 scheme, the
1D 1st KOND-He scheme, and the 1D 1st KOND-HS scheme shown in the previous
subsections, in order to compare their numerical accuracy and the origin of numerical
error. We also compare the numerical tesults by the three KOND-H schemes with
those by the compact CIP scheme [15-18] which is known to be less diffusive compared
with other conventional schemes such as FCT [6], QUICKEST [7], TVD [10,11], and
PPM [12,13].

Figure 8 shows typical results of computation for the linear wave propagation
of f(t,z) for the case of a triangular wave after 1000 time steps, where (a), (b),
(c), and (d) are the resulis respectively by the 1D 2nd KOND-H scheme, the 1D
1st KOND-Ha scheme, the 1D 1st KOND-HS scheme, and the compact CIP scheme
without interpolation check [16-18]. In the figure, the numerical data of f, and 9. f.
are shown by the 4 marks together with the analytical profile of f(2,z) by the solid
lines. The raw numerical data of the peak point, f,, corresponding to the analytical
value of 1.0 at the peak point of the triangular wave are also shown for the four
schemes in Fig.8, together with the relative error at the peak point, defined by A =
(1.0 — f,)/100, and the numerical error measured by 0. We see from Fig.8(a) that
the value of A is only about 2.2 % and the step functionlike profile of 9, f, is well
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realized until 1000 time steps in the 1D 2nd KOND-H scheme. We recognize from
the comparison between the 1D 2nd KOND-H scheme of Fig.8(a) and the 1D 1st
KOND-Ha scheme of Fig.8(b) that the numerical diffusion increases fairly large, as
is seen clearly by the profiles of 8, f, and by the both increments of the A value
from 2.2 % to 8.4 % and the ¢ value from 0.0025 to 0.0077. This result comes from
the structural difference between the 1D 2nd KOND-H and the 1D 1st KOND-Ho
schemes that affects on the both losses of [Inf.1] on the "relations” and of [Inf.2] on
the functional ”values” up to the Ist derivative 8, f or to the 2nd derivative 8,,f,
as is seen from the derivations of the both schemes in the subsections 4.1 and 4.2.
The numerical accuracy of the 1D 1st KOND-HA scheme is improved, compared with
the 1D 1st KOND-Ha scheme, as is seen clearly by the profiles of 8, fn and by the
both decrements of the A value from 8.4 % to 6.9 % and the ¢ value from 0.0077
to 0.0062 [ cf. Figs.8(b) and 8(c) ]. This result comes from the suppression of the
loss of [Inf.2] on the ”values” by using more elements of the connection relations in
the 1D 1st KOND-Hf scheme than in the 1D Ist KOND-He one, as is seen from the
derivations of the both schemes in the subsection 4.2.

We recognize from comparison among the three figures of Figs.8(a), 8(c), and
8(d) that the two of the 1D 2nd KOND-H and the 1D Ist KOND-HS schemes yield
fairly less diffusive error, compared with the compact CIP scheme [15-18] which is
known to be less diffusive compared with other conventioral schemes such as FCT
[6], QUICKEST [7], TVD [10,11], and PPM [12,13]. The 1D 1st KOND-Ha scheme
is seen to yield almost the same diffusive error with the compact CIP scheme [ cf
Figs.8(b) and 8(d) ]. It will be demonstrated later, however, that the 1D 1st KOND-
Ho scheme yields quite less diffusive error compared with the compact CIP scheme
for the case of the computations of the nonlinear wave propagation such as the soliton

wave.
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Figure 9 shows typical results of computation for the linear wave propagation of
F(t,z) for the case of a squate wave after 1000 time steps, where (a), (b), (c), and
(d) are the results respectively by the iD 2nd KOND-H scheme, the 1D 1st KOND-
Ha scheme, the 1D 1st KOND-H scheme, and the compact CIP scheme without
interpolation check. In the figure, the numerical data of f, and 8., are shown again
by the @ marks together with the analytical profile of f{¢,z) by the solid lines. We
see from Fig.9(a) that the transition region of the square wave is expressed only
by two data points and the delta functionlike profile of 8, f, is neatly realized until
1000 time steps in the 1D 2nd KOND-H scheme. We recognize from the comparison
between the 1D 2nd KOND-H scheme of Fig.%(a) and the 1D 1st KOND-Ho scheme
of Fig.9(b) that the numerical diffusion increases fairly large, as is seen clearly by the
both profiles of f,, and 8, f, and by the increment of the ¢ value from 0.027 to 0.052.
The numerical accuracy of the 1D 1st KOND-Hp scheme is improved, compared with
the 1D 1st KOND-Ha scheme, as is seen by the amplitude of 3. f, profile and by
the decrement of the ¢ value from 0.052 to 0.048 [ cf. Figs.9(b) and 9(c) ]. The 1D
1st KOND-Ha scheme yields almost the same diffusive exror with the compact CIP
scheme [ cf. Figs.9(b) and 9(d) |. These features of the numerical results for the
square wave are the same with those for the triangular wave, and the discussions for
the results of the triangular wave mentioned above are also applicable to these results

of the square wave.

As a typical example of the nonlinear wave propagation, we next show other
results of computation for the soliton wave described by the Korteweg-deVries (KdV)

equation [26],
Of + fO.f+80s.f = 0. (169)

Putting u = f and g = —6%05,.f in the source and the branch equations for the
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hyperbolic equation, we can solve q.(169} numerically. We have used the space-
centered finite difference equation to obtain the values of 83, f in the KAV equation.
Figure 10 shows the typical numerical results for the soliton wave after 5000 time
steps, where (a), (b), (¢}, and (d) are the results respectively by the 1D 2nd KOND-
H scheme, the 1D 1st KOND-Ha scheme, the 1D 1st KOND-Hg scheme, and the
compact CIP scheme without interpolation check. In the figure, the numerical data
of f, and 8., are shown again by the  marks together with the initial sine profile
of f(t,z) by the solid lines. It is seen from Fig.10(a) that the soliton wave is well
realized with fairly high numerical stability in the both profiles of f, and 3,1, by
using the 1D 2nd KOND-H scheme. In detailed observations, however, we find that
there appears higher diffusion and noise in the calculation of higher derivatives of f
in general, like as 8,, f,, as was reported in the previous paper [19]. This is because
that we use the smaller number of terms in the Taylor expansion for the interpolation
curves in the higher order derivatives, as is seen from eqs.(122)-(124). We recognize
from comparison among the three Figs.10(a), 10(b) and 10(c) that both of the 1D 1st
KOND-He and the 1D ist KOND-HS schemes yield almost the same results of the
soliton wave with those by the 1D 2nd KOND-H scheme in the both profiles of £,
and 3, f,,. When we observe in detail the data of fn at the highest peak of the soliton
waves, we find that there takes higher numerical diffusion in the 1D 1st KOND-Ha
scheme of Fig.10(b) compared with the 1D 2nd KOND-H scheme of Fig.10(a), and
the error by the numerical diffusion is improved in the 1D 1st KOND-Hf scheme
of Fig.10(c) compared with the 1D 1st KOND-Ha scheme. ( These differences of
the numerical accuracy will be shown quantitatively in the next figure. ) On the
other hand, it can be found from comparison between Figs.10(b) and 10(d) that the
numerical diffusion takes place to suppress more the amplitudes of the soliton wave

and there appears higher roise in 8, f, in the calculation by the compact CIP scheme
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of Tig.10(d), compared with the 1D 1st KOND-Ho scheme of Fig.10(b). When we
compare the numerical results of Figs.8(b) and 8(d) for the linear wave propagation
with those of Figs.10(b) and 10(d) for the nonlinear wave propagation like as the
soliton wave, we find that the 1D 1st KOND-Ha scheme yields faiily accurate and
stable numerical results compared with the compact CIP scheme for the case of the
nonlinear process, while both of the two schemes yield the similar numerical results
for the linear wave propagation. This difference originates from the nearly analytical
approximate solutions used for the construction of the 1D 1st KOND-Ho scheme in
order to suppress more effectively the loss of [Inf.1] on the ”relations” in the partial
differential equations, as was shown in detail in the subsection 4.1, compared with
the compact CIP scheme [16-18]. The CPU times used for the computations of Fig.10
are about 131 sec by the 1D 2nd KOND-H scheme, 70 sec by the 1D 1st KOND-Ha
scheme, 83 sec by the 1D 1st KOND-HJ scheme, and 55 sec by the compact CIP
scheme.

In order to see the numerical error of the data by the three schemes of the 1D 1st
KOND-Ha, the 1D 1st KOND-HS and the compact CIP more quantitatively, we use
here a relative root mean square deviation, og, of the data f* by the three schemes

from the data f¥(2nd) by the 1D 2nd KOND-H scheme, where oz is defined by
1 N ko 4) 2 112 17
n=1

Figure 11 shows typical time evolutions of the relative root mean square deviations,
o, of the data by the three schemes of the 1D 1st KOND-Ha, the 1D 1st KOND-H4
and the compact CIP, where the three marks of O, M, and # denote the numerical data
respectively by the 1D 1st KOND-Ha, the 1D 1st KOND-HS and the compact CIP
schemes. We see from Fig.11 that the relative numerical error by the 1D 1st KOND-

Ho scheme is smaller by over one order than that by the compact CIP scheme. The
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numerical accuracy by the 1D 1st KOND-HS scheme is improved further compared
with the 1D 1st KOND-Ho scheme, as is shown in Fig.11. We recognize from the
data by the two 1D 1st HOND-H schemes in Fig.11 that the numerical error is kept
to be small and constant until 1000 time steps and it begins to increase at around
1200 time steps. On the other hand, the numerical error by the compact CIP scheme
increases from the beginning of the data curve, as is shown in Fig.11. In order to
investigate relations between wave forms and the increase of the numerical error,
Fig.12 shows three temporal wave forms of fE at 1000, 1200, and 1400 time steps,
which are obtained by the 1D 2nd KOND-H scheme. We find from the comparison
between the wave forms of Fig.12 and the time evolution of the numerical error by the
two 1D ist KOND-H schemes in Pig.11 that the numerical error is kept to be small
and constant while the wave form has moderate profiles, and it begins to increase at
around 1200 time steps when the wave form begins to have sharp peaks. This feature
can be understood to originate from the fact that the second branch equation for the
second derivatives d,, f(¢, ) is not solved in the two 1D Ist KOND-H schemes, while
it is solved in the 1D 2nd KOND-H scheme. On the other hand, the numerical error
by the compact CIP scheme increases even if the wave form has moderate profiles like
as the wave form at 1000 time steps, as is seen from the comparison between Fig.11
and Fig.12. This may be understood to originate from the higher loss of (Inf1] in
the compact CIP scheme, compared with the two 1D 1st and the 1D 2nd KOND-H
schemes where the loss of [Inf.1] is suppressed by using the nearly-analytic, higher

order approximate solutions.

§ 5. Discussion and Summary

We have presented in detail two applications of the KOND algorithm to the
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parabolic- and the hyperbolic type equations. In the data processings for numerical
schemnes to solve differential equations, we depend upon the two types of informations,
i.e. [Inf.1] on the "relations” and [Inf.2] on the functional ” values”, as was discussed
in §2 for the thought analysis on numerical schemes. When we map the informations
of [Inf.2] onto the grid points, they are expressed by the infinite set of the discrete
values {f, Bz fny 2cfas -+ } of eq.(8), based upon the interpolation curves by the
Taylor expansions. The informations of [Inf.1] are also mapped onto the infinite set
of the discrete values on the grid points, and they are expressed by the infinite set of
the relations of eq.(3), i.e. the source and their branch equations. Since we cannot
use all elements of these two infinite sets of eqs.(3) and (6), we have to adopt finite
clements from the lower order derivatives. We then inevitably lose large part of
the two informations of [Inf.1] and [Inf.2}, and therefore numerical errors accumulate
gradually during the data processings. The thought analysis on the numerical schemes
to attain higher numerical accuracy leads inevitably to the KOND algorithm with the
four main elements of thoughts { [1], [I1], [I1], [IV] } of eq.{4). All of the four main
thoughts { [I], [I1], [I1I}, [IV] } are necessary to suppress effectively more the losses
of [Inf.1] and [Inf.2} in order to attain higher numerical accuracy, as was discussed in
§2.

We have presented in detail the KOND algorithm for the parabolic equations in
§3 and have shown the two schemes of the 1D 1st KOND-P scheme and the 2D 1st
KOND-P one. One of the important procedures for suppressing the loss of [Inf.1]
i0 these KOND-P schemes is that the branch equations up to the third order are
ased to construct the numerical schemes, as shown at egs.(26)-(28) and eqs.(60)-(65).
We have demonstrated the high numerical accuracy of the KOND-P schemes by
the typical numerical results which show less numerical errors than the conventional

explicit scheme by over 2 - 3 orders, measured quantitatively by the root mean square
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deviation from the analytical solution, as are shown in Figs.2 and 6. We have also
shown that the 2D 1st KOND-P scheme yields the same numerical accuracy by using
only about 1/5 of the CPU time used by the conventional explicit scheme of reference,
as was shown at Figs.6 and 7. This result indicates that numerical schemes with quite
high accuracy lead to effective high reduction of the CPU time to attain the same
common numerical accuracy.

We have presented in detail the KOND algorithm for the hyperbolic equations in
§4 and have shown the three schemes of the 1D 2nd KOND-H, the 1D 1st KOND-He,
and the 1D 1st KOND-HS. We have demonstrated numerically in Figs.8 - 11 that
all of the three KOND-H schemes yield fairly less diffusive error and has fairly high
stability for both of the linear- and the nonlinear wave propagations, compared with
the compact CIP scheme [15-18] which is known to be less diffusive compared with
other conventional schemes such as FCT [6], QUICKEST [7], TVD [10,11], and PPM
[12,13]. The 1D 2nd KOND-H scheme solving up to the 2nd derivatives yields the
highest numerical accuracy compared with the other two 1D 1st KOND-H schemes
solving up to the Ist derivatives, and the difference of the numerical accuracy between
the 1D 2nd and the 1D 1st KOND-H schemes indicates the importance of the two
thoughts of { [I], [IT] } in eq.(4) in order to suppress the loss of [Inf.1] to attain the
higher accuracy [ cf. Figs.8, 9, and 11 ]. The 1D Ist KON D-Hf scheme with three
connection relations yields higher numerical accuracy than the 1D 1st KOND-Ha
scheme with two connection relations, and the difference of the rumerical accuracy
between these two 1D 1st KOND-H schemes shows the importance of the thought of
[[V]in eq.(4) in order to suppress the loss of [Inf.2] to attain the higher accuracy [ cf.
Figs.8 and 11].

We have shown and discussed the origins of numerical errors by using typical

numerical results and connecting the losses of [Inf.1] and [Inf.2]. The KOND algorithm
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would seem to be somewhat abstract algorithm to attain higher numerical accuracy by
suppressing the losses of [Inf.1] and [Inf.2]. We have presented, however, the KOND
algorithm in detail in §3 for the parabolic type equations and in §4 for the hyperbolic
type equations, by showing the procedures step by step for each thought element of
the set { 1], [IT], [TTT], [IV] } of eq.(4). We believe that the KOND algorithm would
be useful to construct novel numerical schemes with higher numerical accuracy, when
we investigate further the finer structure of the problem being studied, as was shown

and demonstrated in the present paper.
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[ Figure captions ]

Fig.i. Typical results of computation for the time evolution of numerical error
measured by ¢ in the case of M =20 and DA/A® = 0.1. Two lines of ¢ for the 1D
EXPL scheme ( the mark O ) and the 1D 1st KOND-P scheme ( the mark MW ) are

shown in a semi-log scale.

Fig.2. Dependence of numerical error measured by ¢ on the number of meshes
M in one period length in the case of DA/A? = 0.1. Two lines of ¢ at the time of
t = 1.0 for the 1D EXPL scheme ( the mark O ) and the 1D1st KOND-P scheme (

the mark M } are shown in a semi-log scale.

Fig.3. Neighboring grid points used for the connection relations.

Fig.4. Initial profile of ffj for the two dimensional diffusion equation.

Fig.5. Typical results of computation for the time evolution of & in the case of
M =20 and DAt/(Az)* = 0.1. Two lines of ¢ for the 2D EXPL scheme ( the mark

00 ) and the 2D 1st KOND-P scheme ( the mark ® ) are shown in a semi-log scale.

Fig.6. Dependence of numerical error measured by o on the number of meshes
M in one period length in the case of DAt/(Az)? = 0.1. Two lines of ¢ at the time
of £ = 1.0 are shown in a semi-log scale for both of the 2D EXPL scheme ( the mark
00 ) and the 2D 1st KOND-P scheme ( the mark ).
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Fig.7. Dependence of the CPU time on the number of meshes M for the compu-

tation until t = 1.0. DAt/(Az)* =0.1.

Fig.8. Typical results of computation for the linear wave propagation for the
case of a triangular wave after 1000 time steps, k{= cAt/Az) being 0.2. (a) 1D 2nd
KOND-H scheme, A = 2.2 %, ¢ = 0.0025. (b) 1D 1st KOND-Ho scheme, A = 8.4
%, o = 0.0077. (c) 1D 1st KOND-HS scheme,; A = 6.9 %, ¢ = 0.0062. (d) compact
CIP scheme without interpolation check, A = 8.4 %, ¢ = 0.0077. Numerical data of
£, and 8, f, are shown by the @ marks together with the analytical profile of f(t,z)
by the solid lines. f, denotes raw numerical data of the peak point, corresponding to
the analytical value of 1.0 at the peak point of the triangular wave. A denotes the
relative error at the peak point, defined by A = (1.0 — £;)/100.

Fig.9. Typical results of computation for the linear wave propagation for the case
of a square wave after 1000 time steps, k(= cAt/Az) being 0.2. (a) 1D 2nd KOND-H
scheme, ¢ = 0.027. (b) 1D 1st KOND-He scheme, ¢ = 0.052. (c) 1D 1st KOND-HS
scheme, ¢ = 0.048. (d) compact CIP scheme without interpolation check, ¢ = 0.052.
Numerical data of f, and 8, f, are shown by the 4 marks together with the analytical
profile of f(#,z) by the solid lintes.

Fig.10. Typical results of computation for the nonlinear wave propagation for the
case of the soliton wave after 5000 time steps. (a) 1D 2nd KOND-H scheme, CPU time
= 131sec. (b) 1D 1st KOND-Ha scheme, CPU time = 70 sec. (c) 1D 1st KOND-HB
scheme, CPU time = 83 sec. (d) compact CIP scheme without interpolation check,
CPU time = 55 sec. Numerical data of f, and 9, f, are shown by the ® marks

together with the initial sine profile of f by the solid lines. At/Az =0.1/2.0. 6 =
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1.8. The amplitude and the wave length of the initial sine profile of f are 0.2 and

200, respectively.

Fig.11. Typical results of the time evolution of the relative root mean square
deviations, op, from the data by the 1D 2nd KOND-H scheme for the computation
of the soliton wave. Three lines of oy, for the 1D 1st KOND-Ha scheme ( the mark O
), the 1D 1st KOND-HS scheme ( the mark W ), and the compact CIP scheme ( the
mark 4 ) are shown in a semi-log scale. At/Az = 0.1/2.0. § = 1.8. The amplitude

and the wave length of the initial sine profile of f are 0.2 and 200, respectively.

Fig.12. Temporal wave forms of f¥ obtained by the 1D 2nd KOND-H scheme.
(a) 1000 time steps. (b) 1200 time steps. (c) 1400 time steps. At/Az = 0.1/2.0. §
= 1.8. The amplitude and the wave length of the initial sine profile of f are 0.2 and

200, respectively.
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