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1 Introduction

The toroidal helical magnetic field possesses magnetic surfaces in the prox-
mity of the magnetic axis, while in regions far from the magretic axis sach
surfaces do not exist. The domain in which magnetic surfaces do not exist
is called magnetic chaos domair, and between the magnetic axis and the
magnetic chaos domain lies the outermost magnetic surface, whose position
is an important information from the point of view of magnetic confinement.

Since the divergence of the magnetic field is zero, the magnetic field lines
system can be treated as a hamilionian system. For hamiltonian systems
the phase space structure is subdivided into chaotic and non-chaotic regions,
and this subdivision has a correspondece with the magnetic chaos domain
and the magnetic surfaces domain discussed above.

The existing research in this field is based on numerical calculations
about the structure of the magnetic field, but in these methods numerical
errors are inherently present and this poses limitations on the accuracy by
which the properties of the outermost magnetic surface are investigated. To
enhance the accuracy it is necessary to track many times the magnetic field
lines around the torus, but there are indications that this procedure cause
s shift of the surface towards the magnetic axis. A possible explanation
of this fact is that the divergence-free nature of the magnetic field is not
fully respected in these numerical methods. With this background in mind,
we think that in order to further advance this kind of research it is neces-
sary to approach the problem from the point of view of hamiltonian theory,
in whick the divergence-free property is rigorously respected. Besides, for
hamiltonian systems it is possible to use symplectic integration techniques
to solve the equation of motion, techniques which are free from secular, or
dissipative errors. This fact make the application of symplectic techniques
very aftracéive.

The research approaching the toroidal helical magnetic field problem
from the hamiltonian point of view ends with works done more than ten
years ago {ref. [1], [2] and [3]), partly because of the strong push towards
Iesearch on tokamaks. However, we have two good reasons to revive the
hamiltonian approach to the toroidal helical magneiic field problem:

1). The Japanese Ministry of Education is pushing the reseach concern
ing the helical systems approach to magnetic confinement.

2). The last ten years have seen an impetuous development of chaos
physics, and times are ripen for reseach about the chaotic properties of the
toroidal helical magnetic field lines system.




Recently T'. Hatori and T. Watanabe (ref. [4]) have obtained an explicit
form for the Boozer’s magnetic coordinates in the first order toroidal co1-
rection to the cylindrical kelical magnetic configuration. In this paper a
more systematic procedure (Lie perturbation expansion technique) is used
to proceed to higher orders.

2 General Observations

In this section we will give a very concise descripiion of the Lie perturbativn
technique on which our work is based. This description is simply meant to
serve as a reference for the reader and it is not meant to be a throughout
discussion of the technique itself (the interested reader can consult ref. [5]).
The equations for the field lines flows can be obiained from the variational
principle:

5 ] dAA,(z)dz* dA = 0

where A, is the magnetic potential and A is an arbitrary parameter. With a
redefinition of the coordinates involved, the preceding formula can be written
as: § [ y,dz* = 0. The vector 7, will be called 1-form (more precisely the 1-
form is the quantity y,dz*). A gauge transformation on the potential 4, is:
A, — A, + 0,5, where § is the gauge function. This gauge transformation
induces a gauge transformation on the 1-form v, as follows: -y, — v, +9,5.
The equations of motion, that is the equations for the magnetic field
lines flow, are obtained from the above equation carrying ount the variation
of the integral, and are not the hamilton equations if the variables are not
canonical. However, if the variables are canonical, that is if a hamiltonian
exists,'ca.rrying out the variation we obtain just the hamilion equations for
the magnetic field lines flow. Our purpose in this paper is to transform
the "noncanonical” expression for the magnetic potential into a canonical
one. This will be done using Lie transformations, which are a special kind
of coordinate transformation, specified by a generator g#, which relates the
old and the new coordinates. The starting point is a 1-form of the type:

r=P e+ (1)

where ¢ is a smallness parameter. Using the Lie transormation we change
the coordinates from z* 1o Z¥*. If we define the operator Ly by L, = ¢*8,,



then the new and the old coordinates are related by z# = exp(—¢Lg)Z¥. In
the new coordinates the transformed 1-form

T =14l 4+ T2 4 2)

Is given by:
[P =o° (4)
' =dS; - L17° + ! (4)

1
M2 =4S = Ly’ +4 = Loy + 511 (5)
where:

(Ln'}’o)p = gflwgu (6)

0

The tensor " is called Lagrange teusor, and it is defined by:

(‘Usy = 6;1'73 - av72 (7)
In general, we define the Lagrange tensor with respect to an arbitrary 1-form
¢ as follows:

wfw = Oply — av(.u (8)

We will proceed evaluating every single term in the expressions for I'?, ['f,
I'% and so on. The general form of T is:

"= dsn - L1170 + Cn (9)

where €', is 2 I-form calculated from ¥* and the resulis of the preceding
lower order calculations. The generator is contained in the term L. Since
we will be concerned only with expressions up to the second order, we give
the form of €y and Cs:

Ci=7, CG=v-Liy'+3I}H° (10)

It is possible to choose gp = 0 to all orders. The 2N components g, and the
scalar S, can be chosen as to bring the 2N + 1 components of T*, where N is
the number of degrees of freedom, into some desired form. We want a form




in which only the temporal component of [, which will be the g-component
in our case, is nol zero, and this can be done choosing:

g, = (8,50 + Cou )y (11)

where J’ is the inverse of the spatial part of the Lagrange tensor. With this
choice of the generators the temporal component of the 1-form becomes:

7 = V8,5, + Cou Ve (12)

where V' is the Poisson vector, defined as V§ = J(;Jwg]; VP = 1. We stress
that with the choice (11) of the generators, the temporal component of the
1- form is the only one which survives after the transformation. Finally,
in order to avoid secularities we must take the temporal component of the
1-form as the average over the unperturbed orbits of the quantity C,, V"

After this quite concise and abstract introduction to the calculation
strategy we will use, we discuss now the actual form of our magnetic po-
tential, and some manipulation we will make before starting to apply the
technique described. We begin by wiiting the magnetic potential in the
form:

7= (€A™ + 0¢S)E + (AL + AT + 8,5)dn + (€47 +8,5)de  (13)

where ¢ and € are smallness parameters. The explicit form of the terms
A, AT AT and Al can be found in the appendix. The coordinates ¢. 7
and ¢ are toroidal coordinates, in term of which the cartesian coordinates
are z = Esinngf{1 — €cosn), z = (1 — €)% cos /(1 — £cosn), and y =
(1 — 9 2sin /(1 — £cosn). Exploiting the gauge freedom, we choose the
gauge function in order to make the £ comporent of the 1-form to vanish,
so we choose the gauge function to be:

S= —efde‘g" (14)

and therefore the 1-form becomes:

v = (AT +edlm — ¢ / 43, AIm)dn + (¢ A — e[d&%A‘f‘)dcp (15)

We introduce the new variable @ = 5 + {m/l)p, where ! is the poloidal
multipolarity and e is the rnmber of field periods, so that we get:



¥ o= [Al+eAl™ - / dEd, A)dd
+[6’Af£ - (m/2)(A,:1F +5A§7m)
—c [ 200, 4 = (mf1)0, A (16)

The 1-form is of the type: v = vodf + Yedp, and we will proceed to a per-
turbation expansion of the two compenents. This will be done first in the
cylindrical limit approximation, with the purpose of illustrating the tech-
nigue on a relatively simple form of magnetic potential, and then on the
toroidal expression of the magnetic potential.

The analisys is based on an expansion of the magnetic potential in the
cylindrical limit approximation. The expansion is a perturbative one and
the perturbation parameters are the radial coordinate ¢ and the parameters
¢ and ¢

Thrughout this work we will choose { = 2.

3 Cylindrical limit approximation

The starting point is the expansion (see the Appendix):

It

1= To = ~(m/2)y
0 'rjo ey(m?/4)sin(26) (17)
Y = —e(m*[8)0?sin(20) 2 = e(m*/12)y? sin(20)

Where the new coordinate 4 = (1/2)¢2 has been introduced. As discussed
in the previous section, we mow proceed to a perturbative expansiorn of
the components of the 1-form such that the resulting expression is in the
canonical form. The unperturbed part of the potential corresponds to the
zeroth order and is expressed by:

10 = 9df - (m/2)pdy (18)

In this expression ¢ and ¢ play the role of canonical conjugate variables
and the unperturbed hamiltonian is # = (m/2)4. As discussed before the
zeroth component of the transformed 1-form is equal to the untrasformed
one, that is;

I° = ydf - (m/2)ydy (19)



We proceed now io the calculations for the first order. The expression for
' is given by:
Tl = 0,5+ Vy8yS; + V{051 + Crp + Vi Cry +V§Cle (20)

This expression results if we choose the generators of the Lie transformation
in order to make the components '} and T :1; vanish. Proceeding to the
calculation of the various terms appearing in the equation, we obtain:

Crp =75 Cle=7 Cip=0 (21)

The components of the Lagrange tensor are calculated directly from the
definifion, and we obtain:

wge = 6¢~yg - 59’)48 =0 (22)
why = 0oy = Byvg = m/f2 (23)
way = B97y — Byry = —1 (24)

The Poisson vector is oblained from the formula Vg = Jg'wg,, where J9 is
the inverse of the spatial part of the Lagrange tensor. We therefore obtain:
V=0, Vf=m/2 (25)

and we remind the reader that by definiton V¥ = 1. The expression for [‘3&,
becanes:

T} = 8,51+ (m/2)851 + 7, + (m[2)y (26)

Now, we have to take I} as the average over # of the quantity V§'Cy, =
‘yi, + (m/Z)*y;, which vanishes, since:

‘ré +(m/2)v} = e(m?[4)ysin 26 (27)

We have now to calculate the first order gauge function and the first order Lie
generators, which will be nrecessary in order to calculate the second orderx
component of the transformed 1-form. To calculate the first order gauge
function, we have to solve the equation:

8,51+ (m[2)39S1 = -7} — (mf2)7} (28)



A solution of this equation is a gauge function which does not depend on ¢,
that is:

51 =(1/4)edcos 20 (29)

The generators are obtained from the formula

¢ = (35 +Cu)JY (30)

which explicitly reads:
¢ = —8,51 = —(1/4)emcos 20 (31)
g =85S, + 78 = —(1/2)empsin 28 (32)

Now, the second order contribution to the l-form is:

2 = 8,5+ (m[2)8gS2 + Cap + (m[2)Cap (33)

and therefore we now have to evaluate the 8 and ¢ components of the quan-
tity:

Co=v - Lyy' + (1/2)13° (34)
We have:
(Liv')e = g}bwig
= {1 =0 (35)
(L17')y = glwh, +giwl,
= 97075 + 9007}
= —(1/8)m3y (36)
Besides, we have:
L )
(L3 = gty
= gY10,(L17%)s — Bo(L17°)] (37)




2.0 _ e L1y ¥ Liv®
(L1 ) = 91“"9(,; +91‘-"’¢;

= 9%18e(L17°)p — 8y (L17°)e]
+97 [06(L17°)y — 8o(L17°)y]

(38)

and therefore we have to calculate first the components of the operator L;°.

We obtain:

(L17°)e = g¥wly = —(1/2)emysin 26
(L1 7°)y = giwg, = (1/4)erncos 26

(L17°)p = giwp, + Q’f"""?be = (1/4)m eysin 20

Substituiing, we get

(1/2)(L35%)e =0

(1/20L37%)p = —(1/16)*m*4

Using these results we obtain:

Cae = 12 — (L1 + (1/2)(L37°)s = —(1/8)em>1’sin 26

Carp = 'Yf, ~ (L1 + (/2N L3Y")e
= (1/12)em*y?sin 26 + (1/8)e*my — (1/16)e*m>y
= (1/12)em*y’sin 26 + (1/16)*m*y

Averaging over ¢ the quantity
Cap + (mf2)C2e
we get the second order contribution to the transformed 1-form:

2 = (1/16)’m’y

{39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)



Accordingly, the expression of the transformed 1-form up to the second order

1s:

I'=9dd + [—(m/2)¢ + (1/16)*m’ ¢]dy (48)

In this expression the magnetic potential is expressed in canonical form,
with 9 and & playing the role of action angle variables. The hamiltonian up
to the second order is

H = (m/2)¢ — (1/16)*m3y {49)

The equations of the magnretic field lines flow are obtained directly from the
above expression. This result is consistent with the result obtained in the
ref. [2] .

4 Toroidal case

We now proceed to the calculation of the transformed 1-form in the torcidal
case, along the same line followed for the cylindrical limit approximation.
The starting point is again the expansion of the magnetic potential:

= Yo=-%

% = QUL gl = —n 2yl
+2eUJ,sin 26 + ¢'Uplwsin g

(50)

Yo =(1+cos”)9? 73 = —Z(1 4+ cosn’)y? + (29
(1/6)[2U5,sin 2ncos n — Uycos 2nsin 7]
—(1/2m)e(29)32U8,_cos nsin 26

The quantities US, . and UY, are constants (see the appendix). We notice that
the zeroth order term is identic to the zeroth order term of the cylindrical
limit approximation. The zeroth order in the expansion is the unperturbed
part of the potential:

1 = wdo — Zydy (51)

and it is in canonical form, with 4 and ¢ playing the role of action angle
variables and —'yg playing the role of the hamiltonian for the umperturbed

16




system. However this is true only for the zeroth order, as can be deduced
observing the structure of the expansion.

We now proceed to the calculations of the transformed 1-form to the
various pertarbative orders. For the zeroth order we have that the 1-form
is left nnchanged, that is:

1% = 4° = ydf — (m/2)$dyp (52)

We also notice that this is the same expression that we obtained in the
cylindrical limit approximation. For the first order we have to calculate the
expression:

L =8,81+ V) 8,51V0551 + Crpp + V¥ Ciy + VECy (53)

Sinee the Lagrange tensor is calculated on the non perturbed part of the
I-form, we obtain the same result obtained in the cylindrical limit approxi-
mation:

wle =0, Wl =m/2, Wi =-1 (54)

The same is true for the Poisson tensor, which is therefore:

Vi =0, W=mf2 V¥=1 (55)

The equation for T, then becomes:

% = 8,51 + (m[2)8651 + v} + (m/2)7} (56)

Again, in order to avoid secularities we take I'* as the average over 4§, with
1 fixed, of the quantity V3'Cy, = %1’ + (m/2)v;, which is:

Ty, = 26/Ufypsin 29 (57)

For the gauge function we have the equation:

(m[2)09S1 = —2¢elU sin 20 (58)

which has the solution;

2
Sy = Ugm%cosw (59)

For the first order generators we obtain:

11



2
98 =-0,5 = —Ugmuﬂizcos 26 (60)

4
98 = 0,51+ = —Ugmfmfsm 20 + (29} 2220

The equation for the second order contribution is:

12 = 0,8, + VE0eSs + Vi 0y Sz + Cap + CogVE + Coy V¥ (62)

2
"2

which becomes, after substituting the values of the Poisson vector:

Ffa = 34,52 + (m/2)3952 + CQ:,o + (m/2)029 {63)

For the second order we need therefore to evaluate the quantity €, = 5% —
L7 +(1/2)L34°. The calculations of the explicit expression of the operators
L’s is straightforward but quite long, so we give only the results:

(L1v'), = ~(2/m)eUS, cos 20[49eUS, cos 26 + 4¢'UYywcas 29]
+[(1/3)(29)* ?cos 7 — {4/m)ex UL sin 26]
[~(m/2)(2¢)*2cos n + 2¢US, sin 29 + U 2sin 2] (64)

(v = (2¢) M cosq[(1/3)(2¢/)* *cos g
—(4/m)epUS_sin 24] (65)

/D% = (1/2)(1/3) (280 cosn — (4fm)esTS, sin 26]
i(2¢)Y%cosn — (4/m)eU_sin 26

—(4/m)el, sin 28] (66)
(1/2) (L3, = —(1/2)eU3 cos20[(8/m)ey U cos 26}
+(1/4)m](4/m)exUS, sin 28 + (1/3)(2¢ ) *cos 7]
[(290)%cos n — (4/m)eUS, sin 26] (67)

12



Again, taking the average over 8 of the quantity Cy, -+ (m/2)Cae, we finally
obtain:

I’i = e'(21j;)3/2(1/6)Ugo[—231u 2ncos 1) — cos 2ysin ] +

1yt o
Yo 2 (68
!

il
n "

Therefore, up to the second order, we have the following expression for the
hamiltonian:

—H=T,=T3 4T, +T% (69)
H = +(m/2)¢ — €U 29sin 2n — €' (29)3?
0 : . 4y o 2
(1/6)U3[—2sin 2ncos i — cos 2nsin i) — U3 (7T0)
e

5 Conclusions

We have derived in this work an expression for the hamiltonian for the
toroidal helical magnetic field lines system up to the second perturbative
order, both in the cylindrical limit approximation and in the toroidal case.
Going to higher orders will be a straightforward application of the same pro-
cedure used in this work, and the only difficulty to be expected is algebraic
complication. The particalar hamiltonian we have derived is not the only
possible choice, since we can manipulate the Lie transformation in order to
get different hamiltonians {in different canonical coordinates). Different ex-
pressions for the hamiltonian could be of interest when analyzing particular
problems, or for the application of symplectic integration schemas to the
solution of the equations deriving from the hamiltonian.
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A  Appendix

The explicit form of the various terms appearing in the expression of the
magnetic potential for the toroidal case is given by:

A7 = (1/2[(1 - cosp)™ m(.l.—li;f;ﬂ) 41— conm) g 1 iczsn)]

Im _

- —:‘T’_ — 1/2 ntimp
¢ m{(1 — {cosn) Uim(£) (1 — &cos )/ Pexp

A = T geo )€1~ €006(1 = gc0s ) /2Ty (E)exprirme

3
Ai? = —/ dz[z(1 — zcos )]~ U (£)0y(1 — rcos ) 2exptin
0

The U),,,(£)satisly the equation:

2 2
OelE(1 = )0 Uim(&)] = (3> + % L

¢
1 _ ég)Uim(f)

and can be expanded as:
U (€) = UL, + EUL, + 202 + ...

where U, Ul | etc. are constant. For [ = 2 we have U2, = m?/8 and
Ug, = 1/2. These are the only terms we will need.

We now proceed to a Taylor expansion of the various terms, using as
smallness parameters £, ¢ and €. Introducing also the new variable v =
(1/2)&2, we obtain, up to the second order:

V5 =¥ g =—2

%= (@) g = Ry Rl

+2¢eU sin 20 + ' U Iysin

15 = (1+cosn®)g? 42 = ~ (1 + cos P2 + €(24)3/2
(1/6)[Ugyisin 2ncosn — U cos 29sin 7]
—(1/6m)e(29)>2UL_ (12 = 1)cos nsin 20

14




Throughout this work we have chosen { = 2. In the case of the cylindrical
limit approximation we obtain (for I = 2):

= Yo = —(m/2)¥
4=0 Ve = €(m?[4)sin(26)
vs = —e(m*/8)97sin(20) 42 = e(m*[12)y? sin(26)
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