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Abstract

A method to treat a sharp discontinuity by the density function is proposed.
The surface of the density function is described by one grid throughout the calcu-
lation even when the surface is largely distorted. This description is made possible
by the CIP method combined with variable transformation. This scheme is ap-
plied to the linear wave propagation in one- and two-dimensions. In the nonlinear
case, the injection of heavier fluid into Lighter fluid his calculated and the winding

of mushroom structure is successfully treated by the density function.
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L INTRODUCTION

There have been numerous methods proposed for treating interface between
two different materials. These methods are divided into two groups. In one group
the interface is described by a surface function[l], while in the other group the
interface is defined as surface of a density function{2]. In the former case, a main
problem arises from a multi-valued function when the surface is largely distorted
or even breaks up. Although this shortcoming does not exist in the latter case,
the numerical scheme to describe an evolution of the density function without
numerical diffusion is a problem which needs further investigation.

In this paper, we propose a method to treat this density function with high ac-
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curacy in multi-dimensions. For this purpose, we use the CIP (Cubic-Interpolated
Propagation. In the previous papers, P standed for ”Pseudoparticle”. Since the
word ” Pseudoparticle” may lead {o misunderstanding of the scheme, we use ” Prop-
agation ” as P hereafter.) method recently developed by the author[3,4,5,6]. The
CIP methed can trace a very sharp interface. However, the method is still not
sufficient for the problem which we are going to present. The interface must be
treated by one grid over the whole calculation. Therefore, we slightly modify the
CIP method. By this modification, we have succeeded to trace a sharp interface
by one grid throughout the calculation. This method is applied to the mjection of
fluid into a different fluid.

. BASIC ALGORITHM

Here we use a density function ¢ to describe the abundance of matenal A.

Therefore, we define

¢=1  (Material A)

=0 (No material or different material) (1)

This density function evolves according to

a6 04
a-&-mafmi—g, (2)

where u; is the flud velocily component. In the CIP method, this function in-
side a grid cell is approximated by a cubic polynomial 1n three spatial directions.

Furthermore, the spatial derivatives of Eq.(2}

0,0, 0 0
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are also used to determine the polynomial. Therefore, the dependent variables are
¢ and 0¢/0z; and these are determined from Eqs.(2) and (3). Other unknown

coeflicients to determine the polynomial are found by imposing continuity of ihe
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value and the spatial derivatives among neighboring cells. An example of the
procedure will be described later on.

Propagation of a linear wave by this method has been described with high
accuracy. However, diffusion and undulation at a sharp front is still unavoidable
although they are quite small. The previous method to suppress those is successful
only in one dimension but is complicated. In the problem of interface tracking,
we can use much more effective method to suppress them. We propose here to
transform ¢ into F4 which is a function of ¢ only. It is obvious that a new function

Fy also obeys the same equation as Eq.(2).

0F, ,  OF,

675 ' Bm,: - 0’ (4)

Therefore, all the method proposed for ¢ in the CIP method can be used for this
Fy and 8F,/0z;. What is the merit of this transformation ? Let us propose a

tangent function for 7, as

Fy = tanf0.997(¢ — 0.5)], (5)

¢ = (arctanFy)/(0.997) + 0.5.

The factor 0.99 in this transformation is to avoid the infinite value when ¢ =
0,1. If we disregard this 0.99, F, lies in the range from —oo to co for ¢ = 0
to 1. When Eq.(4) is solved for Fy, F, may be shghtly diffusive and may have
undulation. In contrast, ¢ is always limited to a range between 0 and 1 because
of the characteristics of the tangent function. Furthermore, most of values are
concentrated near ¢ = 0 and 1. Therefore, monotone and sharp discontinuity can
be described quite easily. The transformation of this kind is effective only for the
case where the value of ¢ is limited to a definite range throughout the calculation.
The combination of the CIP with such various transformation can open a variety

of application fields.

II1. CIP PROCEDURE
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Here, we briefly summarize the CIP procedure in two dimensions. Most of

equations can be written in a form,
—=(—+uv—+v=—)f=3 (6)

For example, ]?= {p,u,v,e) and § = (—pV - 4, -Vp/p, —{p/p)V - &) for invicid
compressible fluid, where u, v are z, y velocity components, p the static pressure,
and e the specific internal energy. The CIP method solves the equation by dividing

it into non-advection and advection phases. These are symbolically written as

=§, (non - advection phase) (7)

— =0, (advection phase) (8)

Tn the method described before[3,4,5,6], we have used f = (p, u, v, ¢), through-
out the calculation. In the present case, however, the density function ¢ can also
be a component of f because d¢/dt = 0 as given in Eq.(2). In order to include

this general case combined with the transformation proposed in section II, we use

Cii_f =0, (advection phase) (8)

instead of Eq.(8). For example, when f = (p,u,v,¢,8), then F = (p,u,v,e, tang)
: only ¢ is transformed, while other quantities remain unchanged.

As another example of this transformation, if the density or energy ratio at a
sharp discontinuity is extremely high as in the liquid-vapor interface or at strong
shock waves, negative value should appear because even a small error at the large-
value side causes a negative value at small-value side. In order to avoid this |
we may use F' = (logp,u,v,loge). In some cases, however, it is not convenient
to transform the quantities in all equations into logarithmic value. For example,
for the solution of thermal conduction, Eq.(7) had better be solved implicitly in
terms of the temperature (¢ = £T/(y — 1)) instead of log7. Therefore, logT can
not be used in J f_'/i’?t of Eq.(T). Therefore, it is recommended to use F only in
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the advection phase. Therefore, we had better use Egs.{7) and (8’) as a whole
procedure in any cases.

The CIP method needs equations for spatial derivatives g, ]?, dy f of the quan-
tities in the advection phase. In the previous paper[5,6], we have derived the

equations for these quantities from the original equation (6) as

d0:f) _ 0§ Ou, - Ov

dt dr 5a:a$f - Eaﬂf’ )
40P _ 07 _ou, - o
dt  dy (9ya$f 6yayf' (10)

These equations are divided into two phases as in the case of £ In the present
case, however, we transform the variables f into ¥ in the advection phase (see
Eq.(8’)) and therefore we need spatial derivatives of transformed values F in the
advection phase. In the followings, we shall describe the procedure in detail by

including the variable transformation.

(1) non-advection phase

of .
ai ”g)
O FY 8 OF
(Bt )_ b;(—at—)g, (11)
8o, F) 8 OF
A%5) = 50 (12)

where the first term (&ﬁ /8t), symbolically represents the time difference of trans-
formed quantities owing to § and will be described explicitly in Egs.(15) and (16).
This term corresponds to dg/dz and 8§/dy in Eqs.(9) and {10). In the CIP, since
7 is already calculated as a non-advection part of ¢ f /ot in Eq.(7), we need not
calculate 8F/8z, y but can use (9/dz, y)(8f/81),where 88z, y represents 8/dz or
0/dy. In the present case, we need increment of AF /8t in non-advection phase
owing to § and hence we can calculated this contribution as written on the right-

hand sides of Eqs.{11) and (12). Here, {‘)z,yﬁ" are the independent variables and

therefore ¢, , will not be put into finite difference form.
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(2) advection phase

dF
Tl
Ao, F  Ou , 2 v oo
7 _—6$’yazp—a$’yayp (13)

This completes the whole procedure. In the previous papers [5,6], we included
the righthand side of Eq.(13) into non-advection phase (11) and (12). Strictly
speaking, these terms are not the non-advection part but appear from the spatial
derivatives of the advection velocities. Therefore, we include them in Eq.(13) in
this paper.

The sequence of the CIP method is explicitly written as

1. Obtain the values f in non-advection phase.

fii =0+ At (14)

[2%) i

2. Take Tr( f_':“ ) to obtain F *, where TF represents the transformation operator.
3. Solve Eqs.(11) and (12) for gradients 8, F**, 8, F*.
Frg; =B ;= Fhy ;B

i* — §_ i+l
OuFi; = 0K + A (15)
o oA ﬁ:‘*' —F:'*i- ‘ﬁf:”- +F}n-_
By Fy; = 0, I+~ —— 12Ay e (16)

This procedure is referred to NEWGRD(F“ O F, Gy F )-
4. Obtain Fm+1 and their gradients 8, F ”“,83,1*:"”"'1 by shifting a cubic inter-
polated profile with velocities u", v™.
Frbt = [(AL; €+ A2 50+ A3 )E + Ads jn + 0, F7 )¢
+ [(A5: m+ AB; ;€ + AT; )+ B, Fryln + B (17)
B, P = (3ALi5E + 2427 + 243; ;)¢

+ (A4; ; + A6, ;9)n + 51-15;,-3
(ufy; —wi ;)0

~ 0 2Ax
.y (”?H =P )AL
- 8@ Fi,j s 2A; 2 (18)
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8y FIFt = (3A5; ;n + 246, ;6 + 2A7, ;)
+(Ad,; + A2 E)E + 8, FF,

9 P (u?,j+1 - u?,j—ﬂAt
e 2Ay
— By i 19
89’ ¥ QAy ( )

where £ = —u™Afl, = —v" At and coefficients A1 — AT are given in Ref.[6].
This procedure is referred to DCIPO(F‘, O F, 53,13, u, v).

5. Perform inverse transformation to obtain f*+! as fo+1 = TF_.I(F’”H) for the
next nonadvection step.

6. Store F**1 and &, ,F"*! into F” and d; , F™ and return to step 1. These
F™ and 8,, F" will be used in Eqs.(15) and (16).
It is interesting to note that we do not need gradiemts of f but those of F

because dependent vanables in advection phase are F.
IV. LINEAR WAVE PROPAGATION

For the linear wave propagation, only the procedure given by Eqs.(17)-(19)
are necessary. As shown in the previous paper [5,6], the CIPO given here is not
a momnotone scheme. However, since the error in the CIP0 is quite small with
small undulations, most of the problems have been successfully solved with high-
accuracy by the CIPO [5,6].

As was discussed in section II, we had better use some transformation for
a special purpose like the density function. In the hnear case, this procedure
is nothing more than using F, =tan¢ in Eqs.(17)-(19). This result is inversely
transformed into ¢ only when the value of ¢ i1s necessary. In order to show how it
works, we show a result of square wave propagation in Fig.1. In the case of density
function, the value of function is always limited to a definite range between 1 and
0, and hence the transformation by Eq.(5) is quite effective.

The CIP is applicable directly to any dimensions without directional splitting
as shown in Eqgs.(17)-(19)[6]. In Fig.2(b), we show a result of two dimensional
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rotation of a solid body with the CIP0 method described in the previous paper[6].
The computational condition is the same as that used by Zalesak [7]. In this case,
the advection velocity is not constant and hence we need to calculate the time evo-
lution of gradients due to spatial gradients of velocities and this 1s already included
in Eqs.(18) and (19). In the CIP0, the quantity is not transformed and hence F in
Eqs.(17)-(19) is merely ¢. Thus the procedure is CALL DCIPO(¢, 0.9, 0y ¢, u, v).
Although this result is comparable to and betier than other methods[8,9],
we can further improve this result by simply using a transformation proposed 1n
Eq.(5) like CALL DCIPO({F,, 8, Fy,
8y Fy, u,v). Figure 2(c) is the result of the present scheme. Surprisingly, the shape

of the function is preserved throughout the computation.
V. NONLINEAR EXAMPLE

This method is used for the injection of heavier material into lighter mate-

rial. The equation used here is the incompressible Navier-Stokes equation.

Au; Ou; _ 10p

5t Y%z, T pox (20)

where the density is given by p = 1.0x ¢ +0.3 x (1 — ¢}, and u; stands for » and v.
The density funciton ¢ is described by Eq.(2). In the CIP method, Eq.(20) is split
into nonadvection (Ju; /0t = —(1/p)0p/8z;) and advection (Ju; /0t +u; Ou; [Oz; =
0) phases. Although the CIP was first proposed for compressible fluid, it can also

be applied to incompressible fluid.

(1) Nonadvection phase

In this phase, only the pressure term is solved with a finite difference method:

uf —ul 10p”

3 i

At p o, (21)

In the above equation, the superscript * means one time step after the nonadvec-
eq 3 % P P

tion phase, and these quantities having * will be used in the advection phase. By
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forcing V - & = dul /0z; = 0, we come to the MAC (Marker and Ceil){10}-like
procedure to determine the pressure
0 L 10w
dz; pOz;’ At Bz,

(22)

After the pressure is obtained from Eq.(22), the velocity is calculated with this
pressure in Eq.(21).

(2) Advection phase

After uf is obtained in the non-advection phase, the CIP solver described in

the previous section is used as
CALL NEWGRD(u;, 8w, 0y w)
CALL DCIPO(u;, 8,u;, By u;, u, v)
CALL DCIPO(F,, 0, Fy, 0, Fy, u, v)

where F; is given by Eq.(5). These two phases complete the numerical pro-
cedure and are repeated step by step.

This scheme is applied to a problem used previously {11]. Initially two fluids
are placed at rest in contact with each other. The density of these fluidsis p = 1 for
0<2<0.3and p=_0.3 for 0.3 < z. The boundary is free in the x-direction and
mirrored in the y-direction. The pressure is uniform and the velocity perturbation
of incompressible mode (du; /0x; = 0u/dz + dv/0y = 0) is imposed around the
interface whose amplitude is 0.8 x 0.72. Figure 3 shows the density contours at
t = 0.2,0.4 and 0.6, where the grid size 1s Az = Ay = §.01/3(180 x 90 grids}.
Since the density changes only at the interface, the contour lines concentrate there.
Thus, the sharp interface has successfully been treated by one grid throughout the
calculation.

The scheme proposed here can also be used for coexisting compressible and

incompressible fluids by using CCUP procedure [12].
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Fig.1: Propagation of a square wave after 1000 time steps with uA?/Az = 0.2.

Fig.2 : Rotation of a solid body. (a) Initial profile, (b) after one rotation with the
CIP0, (c) with the present scheme.

Fig.3 : Injection of heavier material into lighter material. Density contours at ¢ =

0.2,6.4 and 0.6.
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