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Abstract
The effect of the continuous eigenvalue of the Vlasov
equation on the cross field ion thermal £lux 1is
investigated. The continuum contribution due to the torcidal
drift resonance is found to play an important role in ion
transport particularly near the edge, which may apply to the
interpretation of the sharp increase of ion heat

conductivity near the periphery cbserved in large tokamaks.
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§1. Introduction

The ion heat conductivity observed in toroidal fusion experimental
devices is larger than the heat conductivity predicted by neoclagsical
theory by more than one order of magnitude (1)~{3) . Numerous studies on
the anomalous ion heat conductivity have been made based on the ion
temperature gradient drift mode{4)~(8) . The most simple and most
frequently used method to evaluate the anomalous diffusion coefficient
D. is to apply the formula D.=y/kZ derived from the balance condition
between the growth rate of certain micro-instability and the damping
rate -kZ D, due to the anomalous diffusion(?), where k, is the
perpendicular wave number of the instability. The above mixing length
formula is some times successful to some extent to interprete
experimentally observed transport phenomenon.

The difficulty with the theory based on the linear instability is
that the electric and/or magnetic fluctuations which are obvicusly
correlated to the instability are usually not observed. Furthemore,
experimentally observed transport coefficient does not change at the
cnset of the instability predicted by the thoery.

The mixing length theory relays on the existence of certain linear
instability or discrete eigenvalue y derived from the digpersion
relation. In addition to the discrete eigenvalue, it is well known
that the basic Vlasov equation has the continous eigenvalue (10)~(12)
The existence of the contincus eigenvalue induced by the wave-particle
resonance condition is one of the most significant characteristics of
the vliasov equation.

Since the continuum extends on the real axis in the complex w-plane,
it may by considered as the continously infinite set of steady oscil-
lating modes. Case{ll) applied Van Kampen's theory{l0) to the Viasov
type neutron transport equation, and constracted the orthogonal
complete set of eigenfunctions corresponding to the discrete and
continous eigenvalues for the Vlasov equation. In neutron transport
theory, the contribution from the discrete eigenvalue corresponds to
the selution of the diffusion equation which describes the random waik

process of particles, while the continuum contribution corresponds to

2



the free flight o©f particle without colligion. The continuum
contribution may also describes the spatial transient phencmenon,
which plays an important role near a source or boundary.

In the field of neutron transgport theory, the transport theory means
that both discrete and continucous eigen modes are included, in which
the major difficulty is in the treatment o¢f the continuum
contribution. The transport theory, therefore, is distinctly different
from the diffusion theory where only particle random walk process is
taken into account. Since the basic equations for neutron transport
and plasma kinetics are the same Vlasov eguation, the importance of
the continuum contribution in neutron transport process may be true
also in the field of plsma dynamics. It is the purpose of this paper,
therefore, to investigate the effect of continuum contribution to the
radial plsama transport in toroidal systems assuming the power spetrum

of electric field fluctuation is given.

§2.Eigenvalue Spetrum of Ion Temperature Gradient Mode
We start with the solution of the first order perturbation of
gyrokinetic equation of the form

f=J0(a)'_L'O—T_wL'T—“FMS“£ (1)

w“(.x)D—(ﬁt r:g
where all notations are standard as defined in Ref.(5}: wp=-

ep(v2/2+v2), wp=2epw*/1, =To/Ti, wr=K, VvV, , &n=Ln/R,1/Lp=-dlnn/dr,
gquantities without index i stand for ion. Introducing eq. (1) into the

gquasi-neutrality condition

1+ 20 @) = (6o @ E (2)
T
yields the electrostatic local mode dispersion relation
Desal+l-jd3vMJi ) Ty =0 (3)
T (ﬂ_wD—wt

The solution of Des(wg)=0 gives the discrete elgenvalue wg.
If we assume wp is a constant with respect to velocity, eg.{3) can
be expressed in terms of the plasma dispersion function Z (L), and

approximate solution may be derived for the eigenvalue w. In this
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approach, however, the correct ni-mode is never obtained. To
investigate the toroldal ni-mcde correctly, the velocity dependence
of ep is essential, and we cannot assume wp as a constant. For the
Maxwellian plasma, by neglecting trapped particles, eg.(l) can be

written in the form of double integral:

w=wx {+m; 62+ -3/2)) ﬁyz_o
w-wp 68 /2+Y7) ~weiy

Des &) ~1+————J°dao<e‘x 3 (a)r dy (4)

where o=(2b)1/2x and b=(k.pi)2/2.

In the fluid 1limit, eqg. (4) may be solved by expanding the integrand
in eqg.(4) in terms cf eup/«¢ and carrying out moment integrals for
ep<<w, This approach may give the interchange type soclution
wo={wswpni) /2 when n; is large enough(5). Near the marginal state,
however, the rescnance effect becomes important, and the validity of
this fluid approximation is broken down. To obtain the correct
discrete eigenvalue of the ni mode, eg.{(4) has been solved
numerically by making use of conformal mapring method (13},

The double integral of the complex function in eqg.(4) is time
consuming particulariy near the resonance condition: w=ep+k,v, . If we
neglect the transirt ion, k;=0, and approximate the toroidal drift
frequency in the form wp=wpE for the case without finite Larmor
radius effect b=0, eq.(4) can be written in the form of single

integral:

3
e ER2aE=0 (5)

where E= B/Tj. Numerical results of discrete eigenvalue w, obtained
by solving edg. (5) are plotted in the complex w«w-plane in Fig.l for
varous values of gy and g3  As seen in Fig.l, as &y and/or i
increases, the discrete elgenvalue tends to the negative real awxis.
This behavior is similar tc the more acculate double integral
dispersion relation(11).

The continuum on the ﬁegative real axis is the same as the

contimuously infinite set of the toroidal drift resonance condition:
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e=¢cpE for 0<E<e. That is, the negative real axis is the continuocus
eigenvalue spectrum of the solution (1)} without transit ion. 2As gp
and/cr ni increases, the discrete eigenvalue tends to this continuum
and vanishes. The continuous eigenvalue spectrum may be considered
as the continuously infinite set of steady oscillating modes. Since
discrete mode and continuous modes are orthogenal o gach other, the
continuous eigenvalue does not affect the dispersion relation
Des{up)=0. Rlthough the continuum has no direct effect to the
discrete mode or the ni-mode stability, it may play an important role

for plasma transport.

§3., Cross Field Ion Thermal Flux

We consider the effects of the discrete nj-mode eigenvalue and
the contimuous eigenvalue on the cross field ion thormal flux defined
by (14)

~ am
Q_=Id3V<Eva> xln—d—ré (6)

where Gx ig the radial component of ExB-drift velocity and the
angular brackets represent the ensemble average. We apply the

Fourier representation for the perterbation of the form

ks
Tntroducing the Fourier representation of GX and £ in eg. (6}, and

applying the random phase approximation(l5)’ we have the flux in the

form

o EJ‘d?VVJ’; - (8)
ko '

substitution of the velocity Vi,*=-ikyCe/B and eq. (1) without kyv; for
fre into eq. (8} we have

QL)Z
where & is the normellzed flux defined by

"mgf(%ﬂ“TF%fh (10)
“en

For the discrete n;-mode eigenvalue wog=wrtiy, the growth rate y gives

i LI T (9)

k(.,EB
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the real ion heat flux:

Go= fd3 £o- —Epreeglr L @) Py (11)
fer-wp)?+r T

Far away form the marginal state, 1i>>ne, the growth rate may be of
the interchange type r=(w*wpni)l/2. For this n;-mode, assuming <<y

and ep<< ex, we have form eq. (11} for b=0
1

30=(3%;?9T (12)

The sum over the wave number %k in eg. (%) is replaced by the maximm
value:te¢/T[2/ (k. L) "2, which occurs in the range of 0.1<k, p;<0.3(14)
For the discrete mode, the sum over the frequency is just replaced by
the single terms. If we approximate the characterstic scale length L

by L=(RLp) 1/2(5) the heat flux may be written in the form

2

nT Vi A ag
p= )L = Ny —= 13
Q& R L= TN (13)

where 1/Lp=-dlnTi/dr, the constant A depends on the value of Kypi,
and xi is the ion heat conductivity. From eq.(l3), we have the ion

heat conductivity in term of a:

vy% -
Xi=h-3£-q (14)

Substitution of eq.(12) into eq.(14) yields the heat conductivity due

to the discrete nj-mode,
1

vip;
X2 =) [”1%:")2 (15)

where the coefficient A is an adjustable parameter. Although eq. (15)
is derived under many assurptions, the radial profile of eg. (15) was
close to the heat conductivity calculated consistently(l3) with the
dispersion relation (5) removing assumptions Wr<<r, owp<<ws and
ni>>nc.

We now evaluate the contimuum contribution to the thermal flux Qy.
In this case, the imaginary part due to the resonance, the second

term of the formula

1
=P
W  W-Gp

gives the real flux Qj. We introduce the frequency power spectrum

-igdle-wp)




function S{«) for the fluctuations:

2

ep

T

(16)

k0 k"
where S must satisfies the normalization condition [dwS({w)=L.

The sum over the freqguency in eq. (8) should be replaced by an
integral over the continuum C={wl|-=<w<0}. The continuum contribution

to the flux can be written in the form

ol ch[ A
Qf-k o O (17)
22

where the normalized flux is defined by
A 3 2 E
Qo= [as @ [6vi-can L @ Py 8 e-eo) (18)

If we apply the same approximation; wup=-upE/Tj as in the above,

bearing in mind the relation

deVFM ,rf rdEEé = (19)

A 'J_(J.me

Jec=

We have

{(nl Zen)E+(l"-rh)IE} (20}

where »=pB/E, p=Mv2/2B, and Ij is the moment defined by

G=w rdWS(-wDW)w- f HZbKW) (21)

Here wg is the characteristic frequency which represents the width of
frequency power spectrum S(w).

The integral which represents the finite Larmor radius effect in

g(z} =J:% o Wm) (22)

may be approximated by 2J02(Zl/2) when Z is small. For the sake of

eq. (21)

gimplicity, however, in what follows we neglect the finite Larmor

radies effect. In this case, g{0)=2.



§4. Example of Frequency Power Spectrum of Fluctuations

We now proceed to the evaluation of the flux &c and heat
conductivity xj for two different frequency spectrum functions S{w).
Cut-off Power Spectrum

First we consider the simplest case of the cut-off type defined by

St =[;i— for fofses (23)

0 ctherwise

In this case, the moment integral defined by eq. (21} becomes
wg 1.
—+7 —w
E=Iwbw3 e dw . {24)

o]
In the case of the white noise, ws-= «, eg.(24) reduces to Io=nl/2/2,
I;=3I5/2 and I,=5I1/2. However, from eq.(20), éc* C as wg~ «. Since
the integrand in eq. (24} decays fasf as w becomes large, the
integrals Iy can be approximated by the infinite integrals as shown
in the above even when g is finite. For wg/ep>3, the moments are
almost the same as the infinite integrals. Therefore, if we set the

width of frequency spectrum as eg=3up, eq.(20) yields

*

qc=a fni +1-5gp) {25)

The inward transport contribution -5¢n in the brackets in egq. (25)
comes from the first term in the factor w-wsp in eq.{18). When the
continuum C extends to the whole real axis, this term vanishesg. The
nonvanishing of this inward transport term, therefore, is due to the
characteristic of ion toroidal drift resonance.

If we assume a different kind of spectrum width: wg=w«/r, then the
integral limit in eq.{24) becomes wg/up=1/2¢n. In this case too,
when 2ep<<l, Iy may be approximated by the infinite integral, and

eg. (20) vields

~

QC='§7T(r}i+1_55n) (26)
Near the plasma boundary, en<<i. Therefore eq.(26) may be applicable
for the piasma edge. As seen in egs.{25) and (26) depending on the
spectrum width wg the functional form of the continuum contribution

Pal
de changes.




Gaussian power spectrum
Let us consider the Gaussian type power spectrum defined by

IWH =

In this case, from eq.(21) for b=0, we have the mcment integral

Jale s

values of moments I and I, sharply decrease as the spectrum width

1. 2
_+3 - w
Ij=—1— dww? e —[i} W {28)

ep/ug increases,
When wg”>up, eq. {28) reduces to eqg.(24) devided by 71/2_ In this
limit, I are analytically calculable, for example, I1=3/4 and

I,=15/8. When wg=mep, with m>>1 eq.(20) can be approximated by
" 37r1/2
Jc=

(ni+1-3en) (29)

8E,,

For m=3, as compared with the case of cut-off power spectrum given by
eq. (25), the flux given by eg.(29) is smaller by a factor 2.

If we assume ws=w*/n the spectrum width parameter becomes
(op/wg) 2=4en2. When 4gy2<<l, i.e., near the plasma edge, eq.(20) is
approximated by

qcz%ﬂuz {(ni+1-5€q) {(30)
which ig smaller by a factor al/2 as compared with the case of cut-
off spectrum given by eq.(26). As seen in the above, the functicnal
form of the flux ac induced by the continuum C does not changes as we
change the freguency power spectrum function S(w). The functional
form of &c, however, changes when we change the scaling of the width
wg for the same function Si{w).

For the case wg=Mwp, wg=— « as r— 0 because «p is inversely
propeortional to r. In this case, the freguency power spectrum
becomes white noise, i.e., no particular instability, and form
eq. (20), the normalized flux ac tends to zero at the center. This
seems to be physically reasonable because there is no source of
instability at the center. Near the plasma edge r—>a, on the other

nand, the spectrum width wg becomes almost independent of r which



also seems to be consistent with experimental situations.

For the case of wg =w«/7. on the contrary, the spectrum width Gg
may be almost constant at the center r=0, because rLn becomes a
constant as r—0. Near the plasma edge, however, g™ since L~ 0
as r-a, i.e., the power spectrum width sharply increases and tends
te infinity, which is not likely to happen in experimental
situations. The former case, wg=lep, therefore, i.e., eq.(25) or
eqg. (29) may be more suitable for actual experimental situations.

If we introduce eq.{25) or eq.(29) into eq.{17), we have the
contiruum contribution to ion heat conductivity

2

o o

X{C=7\_1(M_SJ (31)
1 R En

Expression (31) is eguivalent to so called gyro-Bchm form:
. A
Xi=p12vi/In. In this case the flux de and also the heat conductivity

sharply increase near the edge. Substitutron of eq. (26) or eqg. (30)

into eq. (17) yields
x> =h 2 (p+1-5ep) (32)

pa

We now evaluate the radial profiles of the normalized flux g and
corresponding heat conductivity x; assuming simple parabolic type

profiles, respectively, for density and temperature:

n= (0, (-7 ** +1p,) / 0 +11p) (33)

B= (T (-x) T ) / (T + ) (34)
The variation of ion temperature profile as a function of profile
parameter O is presented in Fig. 2 as a three dimensional surface
graphics. The density profile n(x) as a function of opn is exactly the
same as Tj{x) in Fig.2. The variation of the density profile
parameter epn(x) is also presented as a surface graphics in Fig. 3.
The variaton of profile parameter n5{x) is presented as a surface
graphics in Fig. 4a for on=0.5, np=0 and Tp=0.l1. When the density
boundary balue is not zero, np=0.1, while the ion temperature
boundary value is zero, Tp=0, the profile parameter Ny increases near
the edge as shown in Fig. 4b.

A .
The variation of normalized flux g, by the discrete ni-mode given
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by eq. (12) is shown in Fig.5. The variation of normalized flux &c due
to the continuum contribution given by eg. (25) is also shown in Fig.é
for the same profile parameter a,=0.5. The sharp increase of GC near
the periphery is due to the factor ni/en in eq. (25).

The ion heat conductivity x; has, as seen in eq. (14), the gyro-
Bohm coefficient pj2vj which is proportional to Ti3/2/B2. Due to the
facter T13/2, the ion heat conductivity x; usually sharply decreases
as we go to the plasma edge, r—a, when the variation a ig mild.
This is the case of xio given by eg.(15) ag shown by a surface
graphics in Fig.6. Due to the factor Ti3/2, the peak in xi° is
shifted toward the center as compared with that of ao as seen in
Figs. 6 and 7. In the calculation of heat conductivity xi, the value
of Api2vy/R at the center is assumed to be unity{imZ/sec) in all
cases. In the case of continuum contribution, x3€ given by eq.(32),
however, increases sharply in the periphery as seen in Fig.8. 1In
large tokamaks, experimentally observed heat conductivity in the L-
mode discharge sharply increases in the periphery(3). The continuum
contribution presented in Fig.8 may, therefore, be applied for
interpretation of the edge transport phenomenon observed in large
tokamaks.

For the different boundary condition with np=0.1 and Ty=0, however,
the variation of the heat conductivity Xic changes as shown by the
surface graphics in Fig. 9. Notice that the variation of xi€ near the
edge changes depending on ap as seen in Fig. 9, i.e., for small ap
xic shows the L-mcde character, but for larger o, xic decreases
toward the periphery which might corresponds to the case of high-Ti
discharge in J7r-60 {3) . The surface graphics of xi€ with different
scaling of the frequency power spectrum width given by eq.(32) is
presented in Fig.10. The heat conductivity should always be positive,
The negative x4 in the above results came from the negative flux ac-
The negative xi© may, therefore, be interpreted as the inward icn
flow.

So far the density profile parameter op is almost fixed at op=0.5.

For larger a,, the variation of heat conductivity x3© in general is
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nearly the same, but the magnitude of xic increases.

§5. Effect of Transit Resonance Continuum

In the previocus sections, we neglected ion trangit frequency kv,
in the resonance dencminator in ed.(1l). In this section, we take into
account the effect of transit iong. When both toroidal drift and
transit effects are taken into account, the corresponding dispersion
relation is described by the double integral form as given by eq. (4).
Althought the transit ion is stabilizing when the transit time is
shorter than the growth time of the discrete mode, the unstable ny-
mode exists{6){7) even when the transit effect presents.

When the transit frequency is introduced, the contimuous eigenvalue
spectrum induced by the resonance condition w=ep+k, v, extends to the
whole real axis in the complex w-plane. Due to the different velocity
dependences of wp and k;V; , the continuum induced by this resonance
has "multiplicity" in the negative real axis. To remove thisg
camplexity and concentrate to the transit resonance continuum effect,
we neglect «p and consider the continuum induced by the resonance
condition w=k,v; .

We evaluate the cross field ion thermal flux induced by this
continuum. The normalized flux in eq.(8), in this case, may be

written in the from

] E 2 .2
qC=Jj°dr.oS(w)7zJ‘d3v(w—m*)Ji ) FM?(‘” “K22) (35)

|
Carrying out the velocity space integration for the Maxwellian

plasma, we have
éc=-l—1/;r aws ) <m+ﬁ)e"'2{w2ro+ro +b&“1—ro)} (36)
ki T
where w=«¢/uy and ni;=0 is also assumed for the sake of simplicity.
When S{w) is even, the first term « in the brackets in egq. (3)

vanishes.
For the cut-off power spectrum, eq. (36) reduces to



[ wg)
N R N — I
o= 2 ETO i) +b(r1—ro)}b(&\§—)-2“—se_l%) (37)

27wy

where Iy (b)=Ip(b)exp(-b), In is the modified Bessel function, and ¢
is the prcbability function defined by

b (z)= —?7-2-szdte

When the spectrum width is large as compared with the ion transit

frequency: wg>>wy, @ tends to unity, and eq. (37) reduces to

A [

3 .
o= {—1‘0 Cb)+b{1“1-1“03} (38)
2T |2

In the white noise limit wg-»<0, &Cﬁ>0. Intreoducing eq. (38) into

eq. (17), we have for bl

2
xf=xpi—:.%;:(1—§b] (39)
In this case too, the scaling changes depending on how we choose the
frequency power spectrum width parameter wg. If we choose wg=mep,
xi¢ increases sharply toward the periphery as in the case of the

toroidal drift resonance.

§6. Summary and Discussion

The cross field ion thermal fluxes due to the ion temperature
gradient mode and the continuous eigenvalue spectrum induced by the
toroidal ion drift resonance have been evaluated by assuming the
toroidal ion drift frequency «p is proporticnal to ion energy E.

Assuming the relation |epT;l 2= (w)/k?L2 with I2=RLy and k, pj=const.,
the ion heat conductivity x4 is expressed in term of the gyro-Bohm
coefficient with the normalized flux a as given by eg. (14}. Since
xio induced by the discrete nj-mode as given by eq. (15} is peaked in
the intermediate region as seen in Fig. 7, the discrete n4-mode may
be applicable to the interpretation of of experimental cbservations

at least in the intermediate region(3). On the other hand, x;€
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induced by the continuum contribution as given by eg. (31) increases
sharply toward the edge, eg.({31l) may be applicable to the
interpretation of the experimental observation, sharp increase of Xir
in the periphery. In the central region, the ion heat conductivity
given by the necclassical theoy may be applicable,

The profile of y; strictly depends on the assumptions we have made.
The most important assumtion for the profile of X3 1s the character-

istic scale lenght L. If we assume L2=LyLy, eq.(14) changes to

A

,
pyvi
xizx—i—-:fl {(40)
R g
While if I=L, is assumed as in usual theory, eq.(14) is transformed
to
) A
Vi
yi=a—— L (41)
R e

If we apply eq.(40) or eq.(41l), due to the factor /ey, X; may
sharply increase in the periphery. The assumption that k, pj=const.
independent of r also contradicts with the variation of T4y, because
pi is proportional to Til/2/B. The functional form of ac also depends
on the scaling of the width of frequency power spectrum function
S{¢), as shown in egs.(31) and (32).

The gyro-Bohm coefficient vipi2/R is used in common to express the
ion heat conductivities (15), (31) and (39), respectively induced by
the discrete ni-mode, toroidal drift resonance continuum and transit
resonance continuum. This coefficient is derived under the
assumptions of Xk, pi=const. and L=RLy as mentioned in the above.
Without these assumptions, xi can be expressed by x{=Dp/k, L where

Dp=cT/eB is the Bohm diffusion coefficient. If we assume S{w)=1l, this

e
i

This expression is the same as the upper bound of the diffusion

expression can be rewritten by

Xi=

coefficient due to electrostatic turbulence derived by the resonance

broadening nonlinear treatment (17).
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Figures Captions

Fig. l: Variation of discrete ni-mode eigenvalue in the conplex «-plane for
wg=0, b=0, and various values of g, and 14 -

Fig.2: Surface graphics of ion temperature profile as a function of

profile parameter ap for Ty=0.

Fig.3: Surface graphics of gnprofile as a function of profile parameter

an for my=0 and «0.25.

Fig.4a: Surface graphics of ni-profile as a function of profile parameter

op for an=0.5, my=0 and Ty,=0.1.

Fig.4b: Surface graphics of q;-profile as a function of profile parameter

ap for ay=0.5, my=0.1 and Ty=0.1.

Fig.5: Surface graphics of normalized flux ao due to discrete nj-mode
as a function of profile parameter ap for oz=0.5, m,=0. and Ty,=0.1.

Fig.6: Surface graphics of normalized flux Gc due to continuum contribution
as a functicn of profile parameter ap for ay=0.5, ny=0. and Ty=0.1.

Fig.7: Surface graphics of ion heat conductivity yx;© due to discrete
ni-mode as a function of profile parameter ap for an=0.5, np=0
and T,=0.1,

Fig.8: Surface graphics of ion heat conductivity x,€ due to contirmum
contribution ag a function of profile parameter op for oy=0.5, =0
and Ty=0.1

Fig.9: Surface graphics of ion heat conductivity x1€ due to continuum

contribution for ap=0.5, T=0 and my=0.1.

Fig.10: Surface graphics of ion heat conductivity x;€ due to

contimmum contribution with wg=w* for ay=0.5, Ty=0 and my=0.1.
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