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The current diffusive ballooning mode is analysed in the tokamak plasma.
This mode is destabilized by the current diffusivity (i.e.. the electron viscos-
ity) and stabilized by the thermal conductivity and ion viscosity. By use of
the ballooning transformation, the eigenmode equation is solved. Analytic
solution is obtained by the strong ballooning limit. Numerical calculation is
also performed to confirm the analvtic theory. The growth rate of the mode
and the mode structure are analvsed. The stability boundary is derived in
terms of the current diffusivity, thermal conductivity. fon viscosity and the
pressure gradient for the given shear parameter. This result is applied to
express the thermal conductivity in terms of the pressure gradient, magnetic
configurational parameters (such as the safety factor, shear and aspect ratio)

and the Prandt]l numbers.

Index 52.30.-q (52.30.Jb) 52.35.-g (52.35.Bj, 52.35.Py, 52.35.Ra)



I. Introduction

Ballooning instabilities have been considered to play an important role
for the beta limit of tokamak plasma.'™ (Beta value is the ratio between the
plasma pressure to the magnetic pressure). The stability boundary against
the ballooning mode has heen calculated based on the ideal magnetohydro-
dynamics {MHD) equations. This stability boundary was compared to the
achieved beta value in experiments, and a correlation between them was rec-
ognized. Presently, the modes with the ballooning nature {i.e.. the amplitude
is larger in the region of the bad magnetic curvature) either with low n-value
or high-n value play a key role in limiting the beta value {n is the toroidal
mode number),

The ballooning modes can become unstable below the critical beta limit
of ideal MHD theory due to the finite dissipation of the plasma. The in-
fluence of the resistivity has been widelv studied.®” It was found that the
ballooning instability persists below the ideal MHD limit of the beta value.
and the growth rate is the increasing function of the resistivity. Since the
plasma temperature is lower near the egde, this mode can be important near

the plasma edge. Theories have heen made on the transport driven by the




resistive hallooning mode.”*

The theoretical prediction has heen given as
A X {ven/ig \/(])(jpszs/Lp)"/z. where y is the thermal conductivity. The
parameter dependence leads 1o \ x n?T'2¢*/% (n, is the density, T is the
temperature and ¢ is the safety factor}, which turns out inappropreate to

experimental observations.*"

To understand the anomalous transport in tokamaks, Ohkawa has pro-
posed the model \ x (¢/wp)?e./(¢f2)."" This formula may explain the
two characteristic features of the experimiental observations on the anomous
transport, i.e:, (1) \ has the radial profile such that it is larger near edge,
and (2) \ is increasing if the heating power becomes higler (so as the plasma
temperature). The essence of the Ohkawa model 1s that the finite electron
inertia has a key role in determining the spatial scale length of the fluctua-
tions. The collisionless skin depth, not the resistive skin depth, is predicted
to determine the correlation length. Several authors have reproduced this
formula.l?® This model. however. has not fully succeeded to explain the
parameter dependence of the tokamak confinemnent. This was partly because
the ballooning nature ol the mode was not taken into account.

We here present the analysis of the new halloonmng mode instability, which



is driven by the current diffusivity below the critical beta limit of the ideal
MHD theory. As was pointed out by Ohkawa, the finite electron inertia
effect has more important role than the resistivity in present day plasmas.
The resistance in the Ohm’s law. n.J. is replaced by 5J — AAJ. where 7 is
the resistivity. J is the current density and A is the current diffusivity. As
1s seen in this relation. the current diffusive term becomes more important
if the current layer width becomes thinner, i.e.. less vesistive. (The current
diffusivity 1s originated by the election viscosity. and has heen discussed in
relation with the global MHD instabilities™ ' or divnamics of the reversed

1820 or current drtve problems.?'} By use of the balloon-

field pinch plasmas
ing transformation, the eigenmode equation is solved. We obtain the growth
rate, mode structure and the stabilitv boundary against the current diffusive
ballooning mode. The stability boundary is expressed in terms of the cur-
rent diffusivity. thermal conductivity. the jon viscosity g and the pressure
gradient. This result is also applied 1o estimate the thermal conductivity.
By employing the Prandt! numbers. y/\ and A/y. the form of the thermal
conductivity is derived.?* The anlvsis is performed here for the wide range

of the geometrical parameters. Analytic theory was developed to obtain the



explicit formula. The numerical computation is also performed, confirming
the analytic calculations.

The constitution of this article is as follows. The basic equation and the
ballooning transformation are given in §2. The stabilitv analysis is given
in §3. The growth by the cunient diffusivity is discussed in §3 A, stabilizing
effects of v and p are shown in §3B and the stability criterion Is given 1n

§3C. Summary and discussion are given in §4.

II. Basic Equations

To construct the model equations. we will start from moment equation.

The Ohm's law is written as

Ey = —1, (1)

€n,
where Ej| is the parallel electric filed. and £, is the liction force. The
frictional force is written taking into account the resistivity and current dif-

fusivity

1
en.

Ry=1uJ— \AJ. (2)

The perpendicular ion fluid velocity is given by

R TP+ V-1,
=g (B



where P, the ion pressure, and V . II;, the ion stress tensor due to the ion

viscosity. The electron temperature evolution equation is cast into

3 dT,
—n.

yreg = Ve ()

where n.. the electron density. T;, the electron temperature, and ¢, , the

£.** The cross field transport

electron thermal flow by the cross field transpor
process is taken into account through the current diffusivity, ion viscosity, p

and thermal transport coefficient. y. We write.

U=—-pu\V v, (3)

g=-\\_1p (6)

where only the diagonal clements are kept. (A pu.\) can be expressed by
turbulent fluctuations. Details will be reported in separate article [23]. and
in this article we keep (A, g, \} as given parameters. We will briefly discuss
the typical values of these terms in Appendix. According to the conventional
reduction scheme?*?%(See also Ref.26), we obtain reduced MHD model equa-

tions which describe the ballooning modes excited by current diffusive term

G
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il t g lor = Vip (9)
where jj = —(c/47)V1A. ¢, the electrostatic potential. A. the electromag-

netic potential. p. the electron pressiure where we assume o, is constant, and
we dropped off the subsciipt ¢” for convenience.

The eigenmode equation 1s obtained by linearizing Eqs.(7)-(9). This set
of partial differential equation is analyzed by the ballooning transformations.
When the mode number is high. the mode structure of the ballooning mode

is described in the toroidal coordinates (1. 8.() as.

e(Ar.8.0) = Z 5(9+2:/)exp[mq’dr(0+2/T1}—inqurr‘”:,ATpSin9+7'77(q09—C)],
=—r0
(10)
where Ar = 7 — r.. T 15 the radius satisfving ¢(r,.) = @ = m/n,

¢ = dg/dr| p= ’1(/5]{(,/.;', 1= 8x Py 85 and LT = —dlnFPy/dry,.

F=TImn

We note that # in Iq.{10} is defined in a covering space.® * —x < 8 < +oc,



and a large § region corresponds to a small Ar region in the ballooning
representation of (10). By substituting the hallooning representation into

the linearized form of Eqs. {7)-(9), and using the following normalization

L A (1;1_10 SEp
U R B T

mn g (11)
2
TPAX L TP CTI|'P.4 c“ATp,
TA——’L —LBab g, Ti,z——”% 74:713—4—*/\
Ynn g, ‘)nu FET M onie

where 13, = 47ngm,r? [ B}. we obtain

2 2p2 7
n'g fvé =

n 2P fPA — ingep(R + cos§ + (s8 — psind)sin8) + an’* 1 (12)

A~ ()Q ~ 2 ~ “ -4 f
1A= A A (13)
ﬂ,[)q‘umqﬁ[}: —{./'2/3 (14)
¢

where 7 is the growth rate. # = prig?. X = An'g'. i = un?ed. { = i,
F=—¢l - 1/¢*). e =r/Ry. and f? = | + (s — psin#)2. Combining these

equations, we obtain the eigenvalue equation

fz’Y?C; — L)Ld_o_ﬂ }f‘-lg
- 9014 i Loy !
+l +'DL£[E‘+COSH+(s()—psin@)siné’]&. {13)

v

This equation is solved with the boundary condition that |é| — 0 as 6] — oo.




II1. Stability Analysis

ITI-A. Destabilization by the current diffusivity
III-A-1. Analytic Estimate

At first, we study the destabilization by the current diffusivity. Eq.(15)
is solved by neglecting f and {. The characteristic inertia scale is given by
0 ~ 8, = 1/(sv) and the current diffusive scale length is given by 8 >~ 8, =
YA (AMA5). A self consistent ordering for the growth rate - is found by

equating 0, ~ 0, or 5 ~ A3 (ng)ho.
ITII-A-1-1.  Strong Ballooning Limit

We consider the strong ballooning limit in this subsection. Firstly, we
search the mode which is localized around § ~ 0. In the limit of 1 < s,
p & 5, V(0 Pags), v (A ings). 1fs € 0 € }/\/ITT/Zi % ~ 0 which
corresponds to the ordering of 1 4+ §f%/v + 5\_)"4/7 ~ ffffy 4+ )A\f4/'y, and
cosf + (s — psin§)sin# ~ 1. By using these limiting conditions, the model

equation is approximately written by

Ho i Ao X
T =

42070 ~ 6
STERa 200 > 0 (16)

Y



where we neglected the term proportional to 96/96.

Using WiB method. we obtain from Eq.{16)

N 262 \s?
N AR SR C™)  PRNNCAP) PR . (17)
~v Jo P 7 2

Integration is performed and the dispersion relation is given by

MZVTIE(ﬁﬁl:EEQ+zEu»—AT“)_”(L+é) e

2
3 ~3s L2
where a = ;\p/(r}*,z). kM =af{i+a). K(kYand E(k) ate the first. and second
kind of elliptic functions. respectively.
Eq.(18) predicts the resistive ballooning mode and current diffusive bal-
looning mode. The growth rate of the resistive ballooning mode is given as
by taking the limit of a < 1 or Ap < 72,

A1/302(3 ~2/3 1 /‘\571/3 20 4 )3
IO/ ( __(_l) (19)

¥ W 24 P33 gt
The growth rate which is proportional to 5'/? is vecovered. The cuurent
diffusive ballooning mode is given in the other limit « 1. The growth rate

is written by

RSADUAFVAN LA it Jag — 1/2
i~ (o) — [+ | (20)
37 (20 + 112> iy

where ag = (37 /415 33/55/5(2] + 145 [(pt ).

10




We next study the mode which is localized at 8 >~ 6,. 6, # 0. To treat

this case, we approximate the Eq.(20) as follows

A

025 L + :fl . 2 M\
W-l— 2 (p{cos£)+5031r16)—ﬂr.--j-)@: 0 (21)

where we neglect the first derivate of the line-bending term. The term cos 8 +
s0 sin § makes the local wells at § # 0 so that the locahzation of the mode is
also occurred at these minima of the potential,

Figure 1 shows the function —(cos § + s6sind) versus §. Here a;, and b,
are the positions which satisfy the relation cos 6 4 s#sin = 0 and 8, is the
minimum point of the function in the vegion of [g,;.b,]. The equation giving

eigenvalue 72 is given hy¥

b, 1 a4
/GJ pdl == (1 + §> — (=1 exp (—/b o M(l()) cos Jnjl (22)

J

where [ =0,1,2,..., j = 1.2,.....J and

2 l'{"n\/‘“.'.irl

E (plcost + s0sin ) — 2 7). {23}

14

To treat analytically, we expand the potential near at the point 4,. Then the

integral [ pd@ is approximated as

by X 2
40 ~ 7\| =0, F(8,), | — = 24
/aj D WJ:R J (]) F (0_,) ( )

1l




where

F(0,) = plcos, + s0,sin §,) — +°s°¢ (25)
FU(0,) = p(2s — 1)cosl, — sp0,sinf), — 24%s* {26)

where 6, satisfies with the equation.
pls —1)sind, + spf, cost, — 29%5%0, = 0. (27)

In the case that s is close to unity. Eq.(27) reduces to cosd, ~ 2sv%/p.
Therefore in the limit of s9%/p — 0. Eq.(27) is approximated as cosé, ~ 0
and 0, ~ 5%/2 + 2xj, {(; = 1.2...). Iu this limiting case. neglecting the
second term in Bq.(22), we obtain 5 x Ap(s8,2(1—A2p(s6,)7)?. This formula
suggests that 5 is governed by the parameter ~0,. and the growth rate has
maximum value sy = »f,. In other words. the most unstable mode appears

at the j — th well, #, = s5/5. When the shear is reduced. higher mode is

more unstable.
IIT-A-1-2. Weak Ballooning Limit

In this subsection, we discuss the weak ballooning limit.”*% We start from

Eqs.(12)-(14) instead of Eq.(15}. Introducing the smallness parameter § < 1,



we assume the ordering 7 ~ Q(8). 1.4 ~ O(8). ~ ~ O(f). and /00 =
0/88 +s0]dz. The variable z = s6 represents the slowly varying scale length
along the filed line. We expand ¢ = $O(z) + 66, p = pO(2) + Y,
A=A® 1 §AW In the leading order

R : +10)
~pl + iancﬁ(o) =0. n%(ﬂzquz.—\ ) — ingeptD{cos ) + sinf) = 0 (28)
¢

In next order we obtain solubility conditions lor AU and o', The solubility
condition gives the relation

. b3, -
— g Pl = 57—(712(/2 FAAOY) — rnge{ " (cos 0 + = sin 6)) (29}
J-

— s AR A A = 5 (1 (30}
To complete the set of equations we have for ol and pl*}

de)
o0

B IV
—GffA-AffA =~4 . “/p{)—l-mqeqp():{) (31)

Combining these equations. we obtain

0P 0 xRN s g
P I o AL S £ N S P Y
Dzn +if2 4 A1 0= 2 ”

The fast resistive mode™ was found in the absence of A Setting A zero, we

obtaln



for v* > 7ip?/2. The term p°/2 plays the same role as the unfavorable average
curvature term {When there is a hill term % > 0, then this term is replaced by
Ep). It seems that conventional weak ballooning treatment is not appropriate
for A mode. In the limit = (/1)1 V2v/(A2p). the solution of Eq.(18)
shows oscillatory behavior like ¢ ~ sin{az*/4 -5z /16) or cos(az?/4 —5x/16),
where ¢® = 12p?/(24%5%) since the term Ap?[(24%)6 Las the positive sign

compared to the inertia term. —+ f2o.

IIT-A-2. Numerical Results

We assure the analytic results by solving the basic equation numerically.

The existence of the localized modes are confirmed.

Figure 2.1 shows the shear dependence on the growth rate. For simplicity,
we set = 0. Parameters are chosen as A = 6.561 x 1072 p = 0.432,
E = —0.11111, ¢ = 0.125. and ¢ = 3. The number 1 corresponds to the
fundamental mode(! = 0) caleulated at § ~ 0. The lines denoted by the
number 2 and 3 correspond to the [undamental modes{! = 0) which are

localized at § = 6,. (j = 1 and j = 2). The dashed line corresponds to the

higher harmonics, { = | mode. For the fundamental mode, the growth rate

14




is found to be proportional to s7" ' in the strong shear limit. This result
confirms the analytic result in Eq.(20). In the weak shear limit the growth
rate is proportienal % which is not explained in the framne work of the strong
localization Limit.

Figure 2.2 shows the eigenmode structure corresponding to the modes
1-4 in Fig.2.1. The fundamental mode has the mode structure of the strong
localization. For the higher modes(l = 0,7 = 1 and | = 0,7 = 2), the
mode itself is localized but the peak position of the mode is shifted out.
Especially. in the wealk shear fimit higher modes have larger growth rate than
the fundamental one. I'his tendency 1s expalined in the previous subsection.

Figure 3 shows X dependence of the growth rate for the fundamental
mode. The medium and high shear cases are shown (s = 6.4,and s = 1).
The other parameters are same as [Mig.2. In the hnit A > 03, the growth
rate is proportional to A®?. This confirms the analytic estimate Eq.(20).

Figure 4 shows p dependence of the growth rate for the fundamental mode
with s = 0.4 and s = 1. The parameters are same as Fig.1. In the limit p < 1,
the growth rate for s = 1 is proportional to p®® as predicted theoretically.

For the medium shear case. » = 0.4 to fitting is made as 3 x p%%3(p < 0.7)



which is a little stronger dependence on p compared to the theory p®¢. This
is due to the competition between s and p in the potential. It is also noted
that, in the medium shear case, the growth rate starts to reduce near p ~ 1.

This is discussed latser.

III-B. Stabilization by the Viscosity & Thermal Con-
duction on A mode

I11-B-1.  Analytic Estimate(Strong Ballooning Limit)

Taking the strong hallooning limit as in the previous subsection. we obtain

the following equation

Por: 1 :\ .. . R -
02 206 — R(01°6 — (50156 = 0 (31)
a6z -y

where the influence of the thermal conductivity and viscosity are kept. Using

WKB method, we obtain

fo 1 ) A N 1 -
2 / —p = sl — A0V ) = = (l + —) (33)
Ju \ 2

where 8 is the kernel of the integrand. [u the case of ft = 0. the growth rate

is given by

2.3 YA I
o f%(h’.(:;‘/z.z/l)) (36)



where B is the beta function. In the case of finite i, we treat this term as

perturbation for analytic estimation. Then we obtain

AT of w241 \°
RSt (8(3/2,1/4)” )

This approximate form of the growth rate is valid in the range 1 > j3°s%/ (X345).

kL (B3/2, 1\
T TE A\ R

,\AS 54

This result shows that the growth rate is reduced by y and y.

Next, we discuss the modes which are localized at 8 >~ §,, 8, # 0. Ac-
cording to the same procedure in the previous section. the analytic result is
obtained. The potential is written as p* = X/{(p(cos@—i—.s@ sinf}— iy (s8)® —
vi(s6)). (In the limit s — 1, $is*07/p.4 %0} /p < 1, we recover the pre-
vious result, i.e. #; = 57/2 + 2j7.} Expanding the potential near 6,, the

dispersion relation is approximalely given by

a n 3 ~ 2 1 . ~ ? . P ~
(.0501 — AX(s0,)" - *;\(b’fj)l) =3 (an, + 129050 + -SU\ua"f?;*) (38)

>0 ] S

The growth rate is given by a complicated form but the reduction of the
is confirmed. We can also estimate the extremum. e see the growth rate
is maximum at §, ~ (p/fix)*/*/s. If ¥ji is reduced. the higher mode is more

unstable.

17



HI-B-2. Numerical Results

Figure 5 shows the { dependence of the growth rate. The medium shear
case, s = 0.4 is shown and other parameters are the same as Fig.2 except
A, i, and . 1o this case we take A = 6.36 x 107, and change i and ¥
keeping the relation i = {. We plot fundamental and second modes. For
this particular choice of s, the second mode has larger growth rate in the
region ¥ < 0.01 as was shown in Fig.2. However. the damping is faster for
higher modes than fundamental one in the region { > 0.01.

Figure 6.1 shows the  dependence of the growth rate in the case that
A, i, and y change together. We choose the relation A = I x 1073y, and
fi = ¥. In this case, the growth rate shows the different behavior for the
small { limit compared to Fig.5.(In Fig.5. A is kept constant.) The higher
modes(! = 0.j = 1 and / = 0.j = 2) are more wnstable in the small
limit. Figure 6.2 illustrates the profiles of eigen functions. {a). (b} and (c)
corresponds to modes 1, 2 and 3 in Fig.6.1. respectively.

Figure 7 shows the p dependence of the growth rate for the various valtues
of (A, 4,x). (A p,x) are changed keeping the relation A = 1 x 1073y and

1 = \. The square is the case of the large transport coefficient. \ =1 x 107>,

18



the triangle, for the medium value, x = 1 x 107%, and the circle, for the small

transport coefficient , y = 1 x 107", The dashed line corresponds to ideal

stability limit. For x > 1 x 1077, the second stability zone is disappeared.
III-C. marginal stability analysis
In this section, we discuss the marginal stability condition. The result

is applied to estimate transport coefficient. For the analytic estimation, we

restrict our discussion in the stiong bailooning limit.

III-C-1. Zero-Shear limit

Firstly, we take zero shear limit and set the growth rate zero in Eq.(15).

Expand the potential around § = 0. we obtain the following equation,

P26 png’ : : 05
Oyt {(1 +F) -~ (.— +P) 02} o—phnfo=0  (39)
a6? \ 2

Using the WK B method. we obtain

1 ) 2,2 2.2
\K; + p) n\q p= )m\q p(1+7) = Aun®¢® (40)

In the limit p € 1 and ® =~ 0, we solve this equation for p and obtain the

stability boundary on p in the forn: as

7 J\/Tl t ]
S B AR & 41
\/; 4 )\nq+4\/)\nzqz+(ﬂ\“1 1)

19




This result shows that the stability boundary, for fixed values of (A, x) 18
increasing both at small-n and large-n limit. Solving the equation, dp/dn =

0, we obtain the critical condition for the most unstable mode as

25 732\ 3
Pman = peyey (T) (#)\)1/3 (42)
32\5
with mode number.
_ 5 i/t I
ng = ( ) {43)
2pA

£q.(42) is rewritten as \ ~ U.:')Tpi(i(,\/\)(\/,u)‘/l using the Prandt! num-
bers, (A/x) and {g#/\}). As is shown in Ref.[22], if the stationary state is
governed by the relation that the most unstable mode is at the marginal

stability condition, then the expression for the thermal conductivity is given

e e
\ ~0.537p¢ (-) (l) (44)
WAV

For the mode which is localized at # ~ #,. we can obtain the marginal

as

criterion transforming p — p(st,). 1 — u(s0,). The result is that Prmen
is larger by the factor sf, compared 1o Fe.(12). Ty other words. the higher
mode has a larger stability zone, (The fact that the higher mode is stabilized

faster is shown in Fig.6.)



I11-C-2. Strong Shear limit

Next we discuss the strong shear case. In this case Eq.{15) with the

condition v = 0 is approximated by the following equation.

R¢ A ;
a_ei + }Pnzqz(Go — Gy{s0) — Gy(s)* ~ G3(s0)°)9 = 0 (45)
where
GU =]1- j“‘-ﬂ. (J'l = # — % + BJ\H,
Gy = ! ! 3N Gy ==L 1 N4
2= o TN O = e e

where N* = pxn'q*/p. If we take the ordering s ~ Ofe™!) and Ofe} <
N1 < O(€*), These coefficients are approximately given by (g ~ 1 — N,
Gy~ —1/s+3N. Gy ~ 33X G ~ N1 For analvtic estimation. we neglect
(3 term(i.e., s6 > 1) and investigate two limiting cases that 18 G; = 0 and
G1 # 0 perturbedly. For the first case (G # 0.6 = 0). the WKB solution

of Eq.(45) is solved and we obtain the stability boundary.

1/3 1/3
p= (3)2/3 o IRy g : (46)
A /)T \2B(3/2.1/6)) NS - NApe




This stability boundary also has the miniimnum value at a finite mode number.

Estimating the minimum value of Eq.(46). the critical condition is given by

/3 . 1/3
Praen = LA S (l)m [ ! N (47)
2803 \ 2B(3/2,1/6) A Y/,

at the mode number

N=—. (48)

/3

In the sccond case (i # 007 # 0). one obtains

, . 13
= (5 () (£) | 9)
4 A \ NAS(1 — NAB/9(] 4 )83 ]4/3

1 1/s-3)\1
“3"(1 — 1\"1)2/3.\”/3'

= [l dg 00— )y + g+ 11+ 3a63). 92=1+a

Using the ordering for s and N, « is the order O(¢!/?) < a¢ < O(&)
therefore we regard [ as constant. In this case, the critical condition is given

by

K . . if3
B E 1/3 31/‘3 ._\_ 2/3 ﬁ 2[/:3“3/3 (,0)
Panere = 1 71/3 [-I/'i ,\ \ v 5 2

at the mode nummber

7‘5/4

N~ ~—33/453/4 (51)

[ SN
o



Using the similar argument as Eq.(41), we obtain expression of the trans-

port coefficient. For the first case, (Gg # 0.Gy = 0), Eq.(47) is rewritten

16 (2B(3/2.1/6)\" A\ [\ 5 .
R

In the second case. we obtain the expression for the transport coefficient

from Eq.(50) as

4IN /7 1/2 ; A \ 1/2 1
== {5 ""\-)|2 53
' (77) (3) P (\) (;1) s52 (53)

Comparing Eqgs.(44),{52}, and (53). we can write

where a = 0 ~ 2.5.

I11-C-3. Numerical Results

Figure 8 shows numerical results of the growth rate versus n. The param-
etersare A=1x107%. \ = =1 x 107", p=0432. ¥ = =0.11111, ¢ = 3,
and s = 0.0.1.0.4,1.0. For larger shear. the maximum growth rate is moved
to the lower n. The stability boundary appears at the low-n side and high-n
side. At these stability boundaries, the eigenmode (with v = 0) has the

23



localized structure. This confirms the analytic study for the existence of the
localized marginal stable modes. Figure 9 shows p versus n for the marginal
stability conditions for the fixed transport coefficients. The parameters are
same as Fig.7 and we plot cases of s = 0.1.0.4,1.0. The stabilitv condition
p{n) has the minimum value at the intermediate n-value as is predicted by
the theory. For larger shear. p,.,.. is shifted to lower n. This also assures the
theoretical prediction.

Figure 10 shows the toroidal mode numbers of the mode, n which gives
maximum growth rate and those for the marginal stability. py... The pa-
rameters are same as Figs.7 and & The toroidal mode number, n which
gives maxitnum growth rate is fitted with n x 1/s2. The toroidal mode
number n of the least stable mode, which gives p,.,, in the marginal point,
are compared in low shear case and finite shear case. In the low shear limit.
n approach to constant. In the regime of 0.5 < s < 1. nis fitted as n x 1/s
{(n ~ 10/s for these parameters).

These formula show that shear dependence on the growth rate and ther-
mal diffusivity are not described with one power law in general sense. (For

very low shear case y o %, for strong shear, y x s72).



IV. Conclusion and Discussion

In this paper, we investigated the linear stability of current diffusive bal-
looning mede (A mode). For low temperature plasmas, the resistivity drives
the ballooning mode but for high temperature plasmas, the current-diffusivity
drives modes. The finite electron inertia and the electron viscosity are the
origin of the current diffusivity. The geometrical toroidal effect, magnetic
shear and g-value, as well as the pressure gradient are investigated. By em-
ploying the ballooning formalisi. eigenmode equation is sohved. The analytic
as well as the numerical calculations are made.

Analytic theory is developed to study the parameter dependence of the
mode. we notice that v x A% so that the small amount of X is enough to
give the large growth rate. Instead of the weak ballooning approximation,
we develop the theorv for the mode which is not localized at § = 0. By this
method we show another estimation of mode which 1s relevant of arbitrary
shear. In the low shear limit higher mode which is trapped in the local
potential 1s more unstable compared to the fundamental mode.

The stabilization by g and \ 1s studied. \e estimate the viscosity effect

on A mode and obtain 7 x AZp*/( ") in the limit p = 0. Also we show the



second stability region disappeared for the current-diffusivity. We emphasize
that the stabilization is possible when both the y and y are finite.

We calculate the marginal stability boundary of A mode and obtained the
transport coefficient driven by the least stable mode. The stability boundary
is given as p = C(/ )P\ N2 ¢(s) where C, numerical constant and
g(s), some function of shear. for zero shear, g(s) = const, for high shear,
g(s) ~ s*3. Though the higher mode has large growth rate at small shear,
these modes are easily stabilized by u. . Tlence the fundamental mode
determines the stability boundary.

The formuia of the stability boundary is applied to estimate the ther-
mal conductivity at the saturated turbulence.?? As is shown in a separate
article,?® coefficients (A, i, \) can be expressed in terms of the back-ground
turbulence by the renormalization. The Prandt! numbers are weak func-
tion of the fluctuation amplitude. The stability boundary Eqs.(42),(47).
(50) are rewritten as the formula of the thermal conductivity., We found
x o< o200 1)V F(s) where f(s) s the funetion of shear. Function fls),
f(s) ~ consi.{s — 0).5% (large 5): is not described with one power law in gen-

eral. If we use A/y = po(c?/wl )/rl,. and \/ju ~ | we can write transport




coefficient explicitly as \ = f(s)g*(8/e)*/*(c*/wl )v4/R. Comparing this
formula to Ohkawa model™® which is written as x oc ¢! Y*(c?[w?, Jva/R,
our model shows the favorite q dependence. Also our model accords to
Gyro-Bohm type scaling in the global sense.  Dimensional dependence is
given by [\] = [IT7[e]7'[8})". In the local sense. the transport coeffi-
cient is increasing at edge region due to 32 This means conventional
global scaling should be modified with such factor when it is used in the
transport simulations. We note the form of y is also confirmed by scale
invariance analvsis.® Typical wave number is given by ki = ng/rmx ~
PIM(X/#)1/4/.\’1/2/7'7,“1 ~ (r/wpe)‘1.}”(5)”1/2/)‘1/2 which is inversely propor-
tional to poloidal gyro-radius. Here we use the Eq.(48). Saturation amplitude
is estimated by mixing length theory and given by 7t /n oc f(5)/2p % (cfwye) /1,
which means larger near edge and {or high power and low current.

The stability of the A mode may be aflected by the compressibility effect.
The effects of compressibility of the resistive ballooning mode is investigated
by Hender et al.?® Thier conclusion is that at high 3,. the pressure convection
limit is a good approximation for instabilities with toroidal mode numbers

greater than 10. But lower 3, or higher tempeiatures the effects of compress-

8%
—~1



ibilities are crutial. Especially, the perpendicular compression is important
for the ballooning modes. Furthermore. we neglect ion diamagnetic effect
and Vg effect in our svstem. These also stabilize modes. More qualitative

mvestigation is a future work.
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Appendix

We here briefly show the typical values of the ratio Afg and p/v. To estimate
transport coefficient. we only know the ratios A/y. and u/\. The ratio A/x

1s obtained from quasi-linear estimation. The kinetic equation for electrons

in the presence of magnetic stochasticity?” can be written as

df. ‘ R ) 1f.
e o s LBk B ol = Ly

e A
ot ", r oy T (AL

where (' is a collision operator and D)y indicates the diffusivity of the mag-
netic field lines in the presence of stochasticity.

Assuming f = (fag) + ffﬂ)(fM_L +efy), the quasi-linear electric field is
evaluated by balancing third term in LHS and the first term in RHS in
eq.(A.1). multiplying by —coy/[eyl and integrating over the velocity space,

T, d (7.]“ \ 92 f“
= _¢

ff”l‘ul_f_\[([‘%‘% ME B ’ 't

EJF = — (A.2)

where fu; = faz % fary. and A = (ﬁ/?);m((-g/w,j?)z'TPDM. The divergence
of quasi-linear heat flow is evaluated multiplving (1/2)m. 02 1o Eq.(A.1) and

integrating over velocity space.

a 1 af; d T,
v, q?f‘ = —E].-H)—nzg'vzfl’l!wn%d‘%v = —E\ene—c_ﬁ {A.3)

30




where . = (3/+/7 vy, Diy. Then we obtain A/y, = (T/G)ﬁ()(fz/wge.

For ion anomalous viscosity, we assume J < 1, then the Alfven speed 15
intermediate to the jon and electron thermal velocities, so that ion responds
to the electrostatic fluctuations. In that case we can write the ratio of ion

anomous viscosity and thermal transport coefficient as®

dw w ?
i, Z:k f s (kﬂv’) I/k'w
T
l Zk f Z—f (A';z',) I/k.w

(A4)

where

IyimZ,

Vhw= T
1/‘2_T||/?ni{k|||

and Z;, the plasma dispersion function, Ty the parallel ion temperature and

(A.5)

I1; 1s defined as

.

(Eglhk.w) Eg(k . 2)) = 276, 400w + (A.6)

If we assume [q; constant for an eigenmode of frequency w. and I'mZ; has the
Gaussian form, the ratio is order unity. Furthermore, if y. ~ y, 1s retained,

we obtain g,/y, ~ O(1).
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Fig.1 The plot of the function —(cos# + sfsin §) versus 8. a;, by, a, are the

positions which satisfy the relation cos# + sfsin@ = 0.

Fig.2.1 Growth rate versus S.
The growth rate for A, mode is calculated for the parameters with
=\ =pu=0.A=6561x 167, p=0.132.F = —=0.11111. The circle

correspond- to the fundamental mode{! = 0). the triangle corresponds

to [ = 0.; = 1 mode, and the diamond corresponds to ! = 0.7 = 2
mode. The dashed lire corresponds to /7 = 1 mode.

Fig.2.2 The mode structures corresponding Fig.2.1.
The mode structures are plotted corresponding to Fig.2.1. The funda-

menial mode (a} is plotted at 5 = 1.0. the { = 6.7 = 1 mode {c}. 2t
$ =04, thel =0, = 2mode {d). at s = 0.2, The{ =1 mode {b) is

plotted at s = 5.0.

PR

Fig.3 Growth rate versus A.
The growth rate for the A mode corresponding to the fundamental

] o
harmonic is calculated for the parameters with n =\ = ¢ = 0.5 =

0.432. ® = —0.11111. in the case of median shear{s = 0.4) and high
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shear{s = 1.0), respectively.

Fig.4 Growth rate versus p.
The growth rate for A mode corresponding to the fundamental har-
monic is calculated for the parameters with n = y = g = 0, A=

6.561 x 1071, ® = —0.11111, in the case of median shear(s = 0.4) and

high shear({s = 1.0), respectively.

Fig.5 Growth rate versus ¥.
The growth rate for A mode corresponding to fundamental. and [ =
0,7 = 1 mode are calculated for the parameters with A =6.561 x1071,

f=7%, p=0432 % = —0.11111, and s = 0.4, respectively.

Fig.6.1 Growth rate versus {.
The growth rate for A mode corresponding to fundamental. [ =10, =
1, and [ = 0, = 2 modes are calculated for the parameters with
A=10"%y, p = x, p = 0432, F = —0.11111, respectively. The circle

represents the fundamental, the square, / = 0,7 = 1 mode, and the

diamond, [ = 0, = 2 mode, respectively.

Fig.6.2 The mode structures corresponding to Fig.6.1.
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The fundamental mode (a) is plotted at { = 4.05x107%  the{ =0, =1
mode (b}, at ¥ = 3.24 x 107%, and the [ = 0,j = 2 mode (c), at

§=1.62x10°3.

Fig. 7 The growth rate versus p.
The growth rate is calculated with A = 107*y and g = y, s = 1.0,
% = —0.11111, n = 30, and ¢ = 3. Here the circle corresponds to the

5 and the

case with y = 1077, the triangle, the case with \ = 10~
square, the case with \ = 107>, The dashed line corresponds to the

ideal stalnlity line.

Fig. 8 Growth rate versus n.
The growth rate of A mode is calculated for the parameters with A =
1072, p = y, p = 0432, F = —0.11111 in the case of the low
shear(s = 0.1}, the median shear(s = 0.4), and the high shear(s = 1.0),

respectively. The triangle represents the case of s = 0.1, the circle,

s = 0.4, and the square, s = 1.0.

Fig. 9 p versus n.
The p for the marginal point is calculated for the parrameters with

3%



Fig.

A=1073y, u = v, p = 0432, F = —0.11111 in the case of the low
shear(s = 0.1), the median shear{s = 0.4), and the high shear(s = 1.0).
The square represents the case of ¢ = 0.1, the circle. s = 0.4, and the

triangle, s = 1.0.

10 »n versus s. n determined by p,,., in the marginal point, and n
determined by 3., are callculated for the parameters with A = 1072y,
g =1\, p=0432.%F = =0.{1111. The circle represents the n deter-

mined by pn.., and the square, the n determined by V0
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