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Abstract

Theory of the L-mode coanfinement in toroidal plasmas is
developed. The quantitative effect of the anomalous transport
which is caused by microscepic fluctuations, on the pressure-
gradient- driven modes is analyzed, The ExB nonlinearity is
renormalized in a form of the transport coefficient such as the
thermal diffusivity, the ion viscesity and the current diffusivi-
ty. The destabilization by the current-diffusivity and the stabi-
lization by the thermal transport and ion viscosity are analyzed.
By use of the mean-field approximations, the ncnlinear dispersion
relation is solved. Growth rate and stability condition are
expressed in terms of the renormalized transport coefficients.
The transport coefficients in the steady state are obtained by
the marginal stability condition for the least stable mode.

This method is applied to the microscopic ballooniag mode
for the toroidal plasma with the magnetic well (such as tokamak).
The formula of the anomalous transport is cobtained. The role of
pressure gradient in enhancing the anomalous transport is identi-
fied. Effects of the geometrical parameters such as the
rotational transform and magnetic shear are also quantified., The
compariscn with experimental observations are made. A good
agreement is found in 2 various aspects of the L-mode plasmas:
such as the power degradation of the confinement time, large
transport coefficient at edge, iom mass effect and the favourable
effect of the plasma current. The typical wavenumber and level

of the fluctuations for the self-sustained turbulence is also




~obtained. Important role of the collisionless skin depth is
found.

The analysis is also made for the plasma with magnetic hill
and shear (such as torsatron/Heliotron devices). This method 1is
applied to the interchange modes. Formula of the anomalous
transport is obtained. Also investigated 1s the case of the
magnetic well and low magnetic shear (conventional stellarator).
The roles of the pressure gradient and the collisionless skin
depth in determining the anomalous transport are found to be
generic in toroidal plasmas. The difference in the magnetic
configuration affects the transport coefficient. These fornmula
explain major experimental observations on the L-mode confinement
in helical plasmas including the differences from tokamak

experiments.
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1. Introduction

The transport of the plasma across the magnetic field in
tokamaks is much faster than that by Coulomb collisions. It has
long been known as the anomalous transport (For a Review, sese,
for instance Liewer 1885). The L-mode confinement, in which the
energy confinement time 7 decreases as the heating power P 1is
increased, is observed in almost all of the toroidal plasmas.

The L-mode confinement is a generic feature of toroidal plasmas.
A database has been constructed (Goldston 1584, Yushmanov et al,
1990) on how zp depends on the externally controllable
parameters, such as P and the plasma current Ip. The radial
profile of the effective thermal conductivity x (the ratio of the
energy flux per particle to the temperature gradient VT) has been
studied. (For a review of present status, see, Houlberg et al.
1990, Wootton et al. 1890, Ross et al. 1991.) The ion viscosity
is also enhanced, and is the same order of the electron and ion
thermal conductivities (Burrell et al. 1988, Ida et al. 1861).

The paradigm to understand the transport phenomena is that
the anomalous transport is caused by the microscopic instabili-
ties (Liewer 1985). Theoretical development has been made based
on the mixing length estimate (Kadomtsev 1865), the scale invari-
ance method (Connor and Tayler 1977) or the one/two point
renormalization methods (Dupree 19886, 1972). (These gave
identgcal results from the view poinmt of the physics argument

(Yagi 1888).) The theories has shown, in general, that the




transport coefficieat is larger for hotter plasmas, which is
consistent with the power degradation of 7g. It was also shown
+hat the ion viscosity can also be enhanced to the level of the
thermal transport diffusivity (itoh 1892). These results have
shown the progress of the theories. It has been confirmed,
experimentally, that the nicroscopic fluctuations play important
roles for the anomalous transport process (¥ootton et al. 1880,
Ross et al. 1691). However, the experiments have shown that x-
value is increasing towards the edge while the plasme temperature
is becoming lower. This fact is in contrast tc what have been
predicted by theories. The Ohkawa s nodel (Ohkawa 1978), based
on fluctuations of the scale length of the collisionless skin
depth &, is one of the few which can explain that the x-value 1is
larger near the edge and that % is an increasing function of the
temperature. But it does not fully explain the dependences of
Tg- 'No theory has succeeded in explaining the radial shape of x
and the scaling tE[P,Ip,---3 sinultaneously (For a review, see
for instance Callen 1992). The understanding of the L-mode
plasma is far from satisfactory.

§e have recently reporied a new theory to determine the
transport coefficient which 1s enhanced by the pressure gradient
itself (Itoh et al. 1992a, 18582b, 1983). In this new approach,
we incorporate the effects of the anopalous transport process on
the mode stability itself. {The nagnetic shear-stabilized plasma
can become unstable due to the fluctuation-driven dissipation,
and the analysis on the self-sustaining turbulence has been

developed (Hirshman and Molvig 1979, Scott 1680, Itoh et al.



19922, 1692b, 1993, Wakatani et al. 1992.) It is found that,
below the beta-limit of the ideal magnetohvdrodynamic (MHD) nmode,
the microscopic ballooning mode can be unstable if there is the
plasma transport such as the current-diffusivity A, and that
other transport coefficients, x,and the ion viscosity m, stabil-
ize the mode (Itoh et al. 1992a, 1992b, 1993). The transport
coefficients are determined by the marginal stability condition
for the least stable mode. This results on the selfconsistent
treatment of the anomalous transport was confirmed by the scale
invariance method (Connor 1803).

In this article., we develop the nonlinear theory for the
microscopic, pressure-driven iastability, by keeping the ExB
nonlinearity. The nonlinear interactions are renormalized inm a
form of the diffusion effects on the mode. By using the mean-
field approximation, the rencrmalized traasport coefficients are
obtained. The eigenmode equation, which includes the nonlinear
interactions in a form of transport coefficients, are solved.
The toroidal geometry and the effects of magnetic shear and
well/hill are taken into account. The nonlinear growth rate and
mode structure are obtained. It is found that the mode (i.e.,
the microscopic ballooning mode in tokamak geometry) is
destabilized by the current diffusivity, and is stabilized by n
and x. These transport coefficients are enhanced by the
nonlinear interactions. The (de)stabilizing effects depend on
the magnitude of the fluctuations. When the fluctuation level is
low, the destabilizing effect is stronger than the stabilizing

effects on turbulence itself. At a certain level of fluctuation




amplitude, the balance of destabilizing and stabilizing effects
takes place, and the stationary state is realized. The marginal
stability condition is thus realized. From the marginal
stability condition of the least stable mode, the anomalous
transport coefficient and the fluctuation level are
simultaneously given.

This method is firstly applied to tokamak plasmas. The
explicit form of 1 due to the ballooning mode in tokamaks is
obtained. Then the plasma with the magmetic shear and magnetic
hill (such as torsatron/heliotron devices (Gouldon et al. 1968,
Mohri et al. 19702 1970b, Uo 1971) is analyzed. TFinally, the
transport coefficient is discussed for the plasma with magnetic
well and very weak shear (conventional §-2 stellarator; 1 is the
nultipolarity of the helical field). The anomalous transport is
shown to be intrinsically dependent on the geometry and the
plasma profile. The theoretical result of x is compared to the
experimental observations on the L-mode plasma, where the key
feature of the toroidal confinement is considered. The
agreements are shown. In low temperature limit, the resistivity
takes over the driving mechanism from the current diffusivity.
This corresponds to the change from the Pseudo-classical
confinement (Yoshikawa 1970) to the L-mode confinement in low
temperature plasmas.

The constitution of this article is as follows. 1In section
2, the model equation is derived. The renormalization process
and assumptions are discussed. In §3, the set of model

equations, which include the nonlinear effects in a form of



diffusion effects, is sclved for tokamak plasmas. The marginzl
stability condition is derived. In §4, the transport
coefficients are derived, The typical wave number and the level
of the fluctuations are also described. The comparison with
experimental observations on tokamak L-mecde is given inm §5.

The analysis on the torsatron/Heliotron plasmas and the
comparison with experiments are given in 88. Transport
coefficient in conventional stellarator is discussed in §7.
Summary and discussions are given in §8. Change from Pseudo-
classical confinement to the L-mode is briefly discussed.
Appendix A i1s devoted to the expression of the transport matrix.
The theory in the main text is developed on the assumpiion that
the background fluctuations are isotropic in the directions which

are perpendicular to the magnetic field. The extension to the

case of anisotropic turbulence is given in Appendix B,
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2. Hodel BRquationm

2 1 Basic Eauati

¥o study the circular tokamak with the toroidal ccordinates
(r,8,r). The reduced set of equations (Strauss 1977) is

employed. The equation of motion:
nin; (d(VEe)/dt-n Viel=BEY, T + B{VoxV(2roose/R))-¢ (1)
The Ohm's law:

1 LR d

BryxB = — ] - A V] - — —] (2)

Z
6 ne” dt

and the energy balance eguation
- 2
dp/dt = xC?Lp (3)

constitute the set of basic equations. In these equations
following notations are used: B is the lon mass, Dy is the ion

density, m, is the electron density, B is the electric field, B
is the main magnetic field, p is the plasma pressure, and J is
the current. The transport coefficients due to the Coulomb
collisions are kept and denoted by the suffix ¢ (the current-

diffusivity A, the thermal diffusivity x, the ion viscositiy a,
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and ¢ is the conductivity). ¢ is the stream function, and the

velocity is givern as

v = -VoxB/B (4)

where B is the unit vector in the direction of the main magnetic

field. The time derivative of the quantity V, d¥/dt, is given as

dY¥/dt = a¥/at + [4,Y]/B (5)

where the bracket [] denotes the Poisson's bracket:

[f.g] = (VfxvVg)+F (8)

This bracket represents the Ex3B nonlinearity. We keep the finite

electron mass effect in the Ohm’s law, in order to study the

influence of the current diffusion which causes the collisionless

reconnection (Qhkawa 1878).

2.2 Derivation and Assumptions of the Model Egquation

In the following, we simplify the basic equation by the
renornalization of the turbulence. We here overview the
procedure and list the approximations and assumptions for the
derivation of the model equations.

First, we solve the process of the excitation of the driven

node (k2) by the interaction of the test mode (k) and the bhack-
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ground turbulence (k). ([The process ktk, = ko.] We then
calculate the back reaction of the driven mode to the test mode
through the interaction of the back-ground fluctuations. [The
process kyt(-k;) =+ k.1 By this procedure, the test wave eguation
is derived by keeping the nonlinear contributions of the back-
groung fluctuations. (One point rerormalization.) By this
procedure, the nonlinear term is treated as the effective
diffusion on the test waves., TFor the simplicity, we in this
article only keep the diagonal term in the diffusion-driven-
transport effects on the test wave, We take the assumption that
the back-ground fluctuation is isotropic. We fimally employ the
mean-field approximation, by which the nonlinear contributions

are characterized into the three scalar parameters.

9 3 Benormalization

The nonlinear equations (1)-(3) are transformed to the model
equation by employing the remormalization., In the process of the
renornalization, we keep the process of the back-interaction of
the driven modes (characterized by kz) to the original test mode
(denoted by k). In this renormalization, we study the ExB non-
linearlity. This is because we are interested in the anomalous
transport driven by the electric fluctuations. (The renormaliza-
tion is also possible for the case of the magnetic turbulence
(Lichtenberg et al. 1992). The analysis will be reported in a
separate article: The result is summarized in a same form of the

renormalized equation with different coefficients.)
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The equation for the driven node is derived fronm Egs. (1)-(3)

in the electrostatic limit as

i i -
[__+FU2]U2 - Azpz - igkﬂzjz = - _[¢1,U} (7)
at B
[a [ -
— 455 [Ty * kKygby = - —(ay. ] (8)
st i2]72 H2¥2 3 1

and
[a l I -
—+T ]p + =[5, pq] = - —[d;,p] (93
at P22 B 2' 70 3 l

where [ = ?E@, and the suffix | indicates the background
fluctuations, 2 indicates the driven mode with Ko, and 0
indicates the equilibrium profile, respectively., (lassical
collision term is neglected in Egs. (7)-(9). Notations LY Tig
and sz denote. the decorrelation rates of UZ, JZ and Po by the
back-ground turbulence, respectively. The symbol ~ denotes the
test wave. The coefficients g and £ and the operator A are

introduced to simplify the notation as

oQ
1]

Ez/miﬁi (10)

£ = neezfme (11)

i4




and

XZ]-Vp (12?

Components (UB’JZ’pZ) are solved in terms of £¢1,ﬁ], [¢1,f],

and [¢l,§1 as

- 2
1 1kg,8Kks, Ask
b 9 . YXoy8Ko, 2591
2 Ti2 To2
1 T 145ks VP 1Koy E A
7y - uz [, 2, t2k2e%P0l, 2ty o, t Ns} (L6
Kol Ti2 TyaTpob Tieo LEY
and
9 . )
1 T gEKky y” iky VD igk
2 24 8¥-0 o
by = — | [k22 2 {Nl . Nz] (15)
K2 sz TuBTjZ TPZB Ti9
where
Ko, iAokns VD
2 A |
K2 = Tuzkz_!_g + g& ! + (18)
sz sz B

Tu2=T(2)+Fu2, Tj2=f(2}+F527 Tp2=T(2)+Fp2, ¥(2) is the eigenvalue
of the k, mods, a{U2,J2,p2}/at = T(E){Uz,Jg,pz}, and nonlinear

terms N1,2?3 are defined as

—
o1



N]. = - - [¢1,U] (17)

B
1 - ,
Ng = - — (4,71 (18)
B
and
1

The terms N, in the right hand side of Eq. (14), No in Eq.(15) and
NS in Eq. (18) are the diagonal terms, respectively, and others
are the off-diagonal terms in the transport process.

The equation of the test wave is given from Egs. (1)-(8), by

keeping the back interacticn of the driven mode, 2as

a _, ~

—1 - - AT = 20
U e e (20)
3 1.

—W+V!f$+—1=.’\f[ (21
at 4]

and

16




d 1
—F + —[#F pn] = N (22>
at B 0 P

-Vzw, and the nonlinear iferms are given 2as

1

where pGI

i
1
Ml = - ;E £¢_1,U2] (23)
B, 1
N o= - —3 g—z (&1, T (24)
e
1
Np = ‘—];E {¢_1yP2] (235)

and the suffix -1 indicates the modes of -kl, and summation is

taken over kl'

Substituting Egs. {13)-(15) into Egs. (23)-(25)., the

renormalized set of equation is obtained.

2 4 Diffusion Matrix and Diagonal Approxipation

The nonlinear terms (28)-(25) can be expressed in the matrix
form, because {Uz. JZ’ pz} are given in the form of the linear

combination of {Nl’ N2’ NS}_ We write

17



i | -
where summation is taken over kl' The matrix elements Hij are

given directly from Eqs. (13)-(18) and the explicit ferm is given
in the appendix 4.

The nonlinear operator [¢_1,[¢1,?]] is explicitly written as

-~ by a%; al . _
’ ay ax

, 3 a a? ~
iR e e e —ey) | —7 27)
[ Ly Iax : T ax ! ax ay

where x is taken in the radial direction and y is in the polocidal

direction, ¥hen the envelop of the background turbuisence is

almost uniform in space i.e.,

v [E)e {27
[k | >> —= ! (28)
L2 e 2]

18




the term proporticnal to a?/ax 1s neglected. TWhen the convective

damping of the wave is not important, i.e..

ad_ ad
1 1
8x

¢
lax

the terms af/ay and 32§/axay are neglected. The

nonlinear term is approxinmated as

2 ?
26, , 3% 2 3
1 ! =
[ 1= 12—+ |17 = | (30)

[o ) (9,711 - 5

9x ay ay dx
¥e employ the assumption of the isotropic turbulence, i.e.,

lag /ax|® = |ae /oy |2 =~ [k e %/, (31)

By this assumption, Eq.(26) reduces to the diffusion fornm

Ny o ¢y By Hyg v
LT ~

| N |- ZT Hoy Hop Hpg | V21 J (32)
A gy Hgp Hyg i

The nonlinear interaction 1s now renorzalized in the form of the
turbulent-driven transport coefficient for the test wave.

For the simplicity of the argument, only the diagonal

15



elements are kept in the following analysis. We write

] (33)

N - Akvff (34)
and

N, = 1,V (35)

where the effective ion diffusivity, s effective current
diffusivity, Ao and effective thermal diffusivity, 1y, are

defined as

lk;, o |2 &y 2
B = bX 11 ; 2 {(38)
2B KZ
A, = B2 (37-1)
k HoHek l

2 .

2 _ 4 48U
Bop = L : o ~=—{ kZL + } (87-2)
2B K2 Tig TungzB
ke 121 1 gk, ,?
X’k = T _1___1_ — _LE_Z_[ kZiz + _..i. (38)
282 Ke 7 T, o7
2 'p? u2*j2

u, denctes the electron viscosity, and & ig the collisiocnless

)
skin depth

20



ﬁ=0/mp (39>

(mp;electron plasma freguency). The suffix k¥ indicates that the
right hand side of Egs,(38)-(38) can be dependent on the choice
of the test wave. The decorrelation rates of the driven mode,
ruZ’ sz and sz are also given by the diffusion operator and are

evaluated as “k2k2L2' “ek2k2L2 and xkgkz;z, respectively.

9 5 Mean-Field Approximation and Model Set of Fouations

The original nonlinear eguations are reduced to a coupled
equations with the transport coefficients, {my. Ay, X}, The
purpose of this study is to obtain the level of the amomalous
transport, not to obtain the precise form of the turbulent
spectrun. We therefore take the mean-filed approximationm to
obtain the analytic insight of the problen.

The mean-field approximation is to characterize the
noniinear interactions on the different modes by a single set of
constants, which are independent on the wave number of the test
mode. We approximate the comstants (m, Ay, %)) by a set of
diffusion coefficients {u, A, r}. As is discussed ia Horton
(1984), quantities which are defined by Egs. (36)-(38) reduce to
the diffusion constants in the range of the long wave length.

Since the range of kz ig similar to that of kl’ we approximate as

}lk = H, (40)

21



]ﬁ.k = A (41)
The tramsport coefficients {#, 2, 2) are calculated as
[k, 9, 1% &, 2
. “21 1 (43)
28 Kl
A= 8lanp (44-1)
0%e
1% L9 12 T g Ak gVeg
Hy = 5 — ki_]_ f—_ (44-2)
2B K1 'r“ TulTplB
and
ko 11 1y, gex, 2
= 1”21 ul kuz + £l (45)
28 KI Tpi TulTJI
where
2 K1y L4k Vo
Tit o1

22




is defined by a¥y/at = T(I)Yi, {a, A, %} are the sum of the
classical terms, (au., A&, x.}., and the terms in Egs. (43)-(45).

Combining these procedures, we have the set of model
equations for the nonlinear waves driven by the pressure gradient
in the following form.

Equation of motion:

nimi{a(?i¢)/at-u?f¢} = BZVHJ + BVexV(2rcos8/R)-% (47)

The Ohm’s law:
L 2
E+vxB = —J - avye] (48)
6 L

and the energy balance equation

a 1 9
—p +“[¢,p01 = xV'p (49)
at B e

where the tilde denoting the test wave is suppressed,

23



3. Soclution of the Dispersion Relation for Tokamaks

3.1 Ballooning Transformation

Figure 1 illustrates the geometry of the plasma. The

ballooning transformaticen is employed as {(Connor et al. 1878%)
$(r, 8, L)= EGXP(*imB+inC)j¢(ﬁ)eXp[imﬁ—iHQW}dﬂ, (50)
(q is the safety factor) since we are interested in the

microscopic modes. The partial differential equation is reduced

to the ordipary differential eguation as (Yagi et al. 1893)

d F d$ gl ktcosn+(sn-wsinn)sinnle
—_— ——— _£.
dn T+EF+AFS 47 F+LF
- (T+¥F)F9 = 0. (51)

In writing Eq. (51), we use the normalizations

r/a - F, (52-1)
t/rAp - i, (52-2)
xrAp/az -+ %, (52-3)

24




sty /a2t s i (52-4)

TAP/}Ioﬁcaz - 1/8, (52_5)
AtAp/poa4 - A, (52-6)
Tpr"):i-. (52-7)

and use the notations

Ty = a/ugmiag/B, (53-1)
z = n2q2/s, (53-2)
A = dntqt, (53-3)
¥ - 4n2¢2, (53-4)
i - o2l (53-5)

Qther notations are standard: Bp=Br/qR, e=r/R, a and R are the
najor and minor radii, B is the pressure divided by the magnetic
pressure (8=n0n(Te+Ti)/B2), T is the growth rate, s 1is the shear

parameter,.

s = r{dq/dr)/q, (54-1)

25



F=1+(sn-asian)?, (54-2)
k is the average well,

k=-(r/R)(1-1/42), (54-3)
« denctes the normalized pressure gradient,

a=q28’/e (54-4)

and g’ =dg/drf.

The partial differential equation is reduced to the ordinary
differential equation, Eq.(51). This equation is the generali-
zation of the previous ballooning equations (Connor et al. 1979).
If we neglect X, % and {, Eg.(51) is reduced to the resistive

ballconing egquation as

¢ A de )
. - + alrtcosnr(sn-asian)singie - ¥4Fé = ¢ (55)
dn T+EF d7n

The ideal MHD mode equation is recovered by further taking 1/6=0

(2=0) as

d d¢ 5
—F— + alktcosnt(sn-asinn)sinnle - T4Fe = ¢ {(56)
dn d7n

26




3.2 Current-Diffugive Instahility

We here review the stability analysis briefly. Details are
given in Yagi et al, (1983). Since k is small but is negative,
the interchange mode is stable and the ballooning mode is the
most unstable. Eguation (51) predicts that the current-diffusive
ballooning mode has a large growth rate. We take the limit of
1/6=0. (The validity of this simplification is discussed in the
final section.) The growth rate of the short wave length mode,
driven by the X term, is estimated by the Wentzel-Kramers-
Brillouin (¥KB) method by neglecting ¥ and A terms. For the most

unstable mode, we have

bid WC
— - | dn
4+ o

where the kermel of the integral vanishes at =7 and the well

1+AF2/ ¥ -
———~———-/&[cosn-(sn-asinn)sinn}-? ¥ {57)
F

term ¥ is neglected. For the analytic insight, we take the short

wave length 1imit, A/T>>1, which yields

J1/F+AF/ T/ AF/ 7 (58)

By approximating dF/dn=2s/F, Eq.{(57) is reduced to

r/4 = [/0/5/2s1/af, (59)
where Fc= F(ﬂc). ¥e also consider the case that the inertia term

27



determines U having the estimate FC =a/?2. Using these
limiting approximrations, the dispersion relation Egq. (57) is

written as
n/4=[/A/5/2s]e/2/%2, (60)

or (Itch et al, 1992bL)

t o al/9(nq)4/848/55-2/5 (61)

Since the exponeant to A is !/5, even the very small current
diffusivity gives rise to the ballooning iastability. The condi-
tion A/7T>>1 requires in4q4>a3/4/J§i

This large growth rate is confirmed for a wide range of
parameters by the numerical calculation (Yagi et al. 1993).
Flgure 2 illustrates &« vs ¥ and X vs ¥, keeping A/% and %i/a
constant. The analytic estimation for small X is coafirmed. As
the transport coefficients are increased much, the stabilizimg

effects by % and A overcome the destabilizing effect of A.

3.3 Marginal Stability Condition

The stability boundary is derived. Setting ¥=0 in Eq. (51),
we have the eigenvalue equation, which determines the relafion
between X, A and &. V¥e here study the case that the ballooning
mode is destabilized by the normal curvature, not by the geodesic

curvature, 1i.e.,
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1/2+e0s. (62)

For the strongly localized mode, szn2<1 and n2<1, this eigenvalue

equation is approximated by the Weber fype equation as
d2e/dn? + (ednq?/2)(1-(1/2+e-s)n) e
- anBeBc1+3s29%)0 - 0. (83)
This equation gives the marginal stability condition, which then
vields the constraint between the plasma pressure gradient and
the fluctuation induced transport coefficients, as
o3/ 25373/ 27T g (i) (84
£, = N7 200071 /28e ) +854N %) (65)
The normalized mode number N is defined as
N-ng(ia/a) /4. (66)
This analytic result is confirmed by the numerical computation as
is shown in Fig.3.

From Eq.(83). the eigenmode structure of the Gaussian form

is expressed as
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#(n) = exp(-(n/ny)2) (87)
with
2mg 8 - aB/23873/ 2571/ 252 () w4y, (68)

Figure 4 compares the analytic solution Eq. (68) with that of the
numerical solution of Eq.(51). For the parameter of the
calculation, (%) is given as exp(-2.3372). The existence of
the localized eigenmode solution with the marginal stability
condition (7=0) is confirmed.

The growth rate of the mode is decreased by the further
enhancement of the transport coefficient # and ¥ as is shown from
Bqs. (64) and (65). The stabilization occurs for the finite
values of % and i. By obtaining the minimum of RHS of Eq. (85),
the upper bound of &« for the stability is calculated. For the
analytic estimate, we assume that N4<<1, and Eq. (65) is

simplified as
B ON) = (1/2+tas) N 2424852/ (1704 0-5) )82 T, (69)

The function fl(N) takes the minimum value f(s) at N=N*, where

£(s) = (1+20-28)/12+3s2/(1 /005 o

and
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Ne 2 = (2+3s2/(1/2+a-8)) 172, (71)

(The solution Eq.(71) satisfies the assumption that N4<<1_) It

we neglect a-s, for the simplicity, the minimum f{(s) is estimated

as J%+6$2. In the 1limit s=0, f reduces to /2. {(More exact
value is given from Eq.(65). The minimum is given as 25/5/32.
The value of /2 is a good approximation for our interest.) Ve

have the stability limit of & for the least stable mode as
o372 - £¢s)/523/2x°1, (72)
where f is given by Eq. (70). If |&-si<<! holds,

£{s) =~ /2+Bs2 _ (78)

When shear is strong znd the mode is driven by the geodesic
curvature, stability boundary is obtained, and f is given as
(Yagi et al. 1693)

£f(s) ~ 1.25s2, (74)

3.4 Modes Not Localized at m=0

The potential V(9)=cosm+s®wsin® has many minima in addition
to m=0, 411 mocdes are mnot localized at #»=0, and the strong
localized appreoximatiion may not always hold. We here discuss the

mode which has maximum amplitude at n=nj.
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The minimum of the potential V is given at n=nj* which

satisfies the condition
s = (1-s)tanmn. (75)

The solution is approximately given by Wj*z(2j+1/2)n (j=1,2,+--+)

for the case of s=I. Expanding the potential near n:nj*, we have
_ (e 2
V(m=sn;,t1-(n-7n;4)°/2}. (76)

The marginal stability equation is approximated as

Y ainzqzsnj* u2 6 8. 3
A {(I-—}& - BAn°q’F,°¢ = 0 (77)
au 3 2

where U=m-7;y and F*=F(nj*). The dispersion relation is given as

/21 /3
/ST d = - t f——=— + s%9. Barntqd (78)
¥ /3dng  / 83nq? ’

The least stable mode satisfiss

1
A ]

For this mode number, the pressure gradient satisfies
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25 32,1/3% 1/3
(80)

oo (G5 s

Compared to Eq.{(72), these modes (j=1,2,<+«++) have higher
stabiliiy boundary compared tc the mode which is localized near

=0 for the parameter of s=l.
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4 Transport Coefficient and Fluctuations im Tokamaks

Based on the stability analysis, we derive the formula for
the anomalous transport coefficient. When the mode amplitude and
accordingly the associated transport coefficients are small, the
mode is unstable (Eq.(613). The mode continues to grow until
£q. (72) is satisfied, In the self-sustained turbulent state, the
enhanced transport coefficients has the relation to the given
pressure gradient « (Eq.(72)). This state is thersodynamically
stabie, namely, the excess growth of the mode and enhanced

transport coefficients lead to the damping of the mode.

4.1 Formula of the Transport Coefficient

From Eq. {(72), i1 is expressed in terms of the Prandtl numbers
a/1 and i/%. (Note that A comes from the electron viscosity Bes
Schmidt et al. 1871, Kaw et al. 1979.) ¥We have

1

= £(s) el 20a/0)/3 8, (81)

Use of the Prandtl numbers to notify the state is convenient,
because the fluctuation amplitude less affects the ratic of
transport coefficients, /% and a/%, compared to the transport
coefficients themselves, {u, A, ). To obtain the explicit
expression for the transport coefficient, the Prandtl numbers are

set to be constant. From Egs. (43)-(45), we have the ion Prandtl
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number as

B/ o~ | (82)

and the relations between the ion viscosity and the electron

viscosity as

Box gy (83-1)

for electrostatic perturbations. The electron Prandtl number,

pe/x, nearly equals to unity, or the relation

3/% = §2/a% (83-2)

holds., Substituting these relations Egs. (82) and (83) into the

expression of 2., 2q.(81), the formula of 1 is reduced to

i= £(s) ted 2(s/a)8, (84-1)

or to an explicit forme of

g2

f(s)

»d
n

ge— (84-2)

3/2
R BB} 2VA
R

r afr
It is noted that fhe estimation of 2, by use of T/k2 for the most

unstable mode, gives the same results as In aglz(ﬁ/a)z.

Thig result is compared to the Ohkawa formula (Ohkawa 1878)
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12 v
A e
Yohkawa = 80 — {—} (85)
q

which has shown that the typical scale length is the collision-
less skin depth, 6, and the time scale of vy/qR with finite
pressure correction of /m.g/m,. By performing the
renornalization of the nonlinear dynamics, we demonstrate his
original idea, concerning on the scale length and the unit of the
time. In addition, our theory is constructed to inciude the
profile and geometrical factors of the plasma. The contribution
from the pressure gradient and the magnetic shear are correctly
incorporated in the formula Eq. (84).

The formula Bq.(84) quantifies the effect of the magnetic
shear, which is favourable on the confinement. The contribution
of the magnetic well, (which has also been considered to be
favourable for the confinmement,) does not appear in Eg.(84). It
is a straightforward manipulation %o include the effect of the
well as a x-term in the formula of the thermal conductivity. The
correction of the form of (1+Clx) appears 1n Eq.(84), where Cl is
a numerical coefficient of the order of umity, and the correction
is of the order of the inverse aspect ratioc, &. The main
features are unaltered. However, the existence of a small but
finite magnetic well is essential to constrain the most unstable
rode to be the ballooning mode. The case of the magnetic hill is
treated later in §6. In such a case, the interchange mode can be

unstable, leading to the anomalous transport coefficient which is
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a strong increasing function of the magnetic hill.

4 2 Characteristics of the Thermal Conductivity

First, the dimensional dependence of 2 is given

(2] ~ [T11-9/7a10B12, (86)

representing that the global thermal transport [x] becomes larger
when the average plasma temperature [T] increases, The
dimensional dependence is similar to that obtained from the
quasilinear estimates of drift wave fluctuations and of iom-
temperature-gradient modes (for a review, see Callen 1892),
Secondly, the formula Eq.(84-2) clarifies that the anomalous

transport is driven by the gradient of 3, not by the pressure
itself. The essential feature of the anomalous transport, that
the gradient genmerates the enhancement of x, is predicted. As
the pressure gradient increases, the heat flux increases
nonlinearly. Figure 5 shows the dependence of the heat flux on
VT for the fixed value of the density profile. ¥hen the
temperature gradient is weak, 1 is independent on VI. As the
temperature gradient scale length becomes shorter thanm the
density scale length, the heat flux nonlinearly increases with
respect to VT.

- Thirdly, the radial profile of x is governed by the density
and g profiles as well. The transport coefficient 1 has the

dependence on 62, and the collisionless skin depth 6 is larger
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near edge. (Note that the density is lower near edge). The g
value is usually larger near edge. Our result of x, Eq.(84),
shows that % increases towards the edge. This result agrees with
the %-profiles observed in the L-mode. Figure 6 illustrates the
radial profile of the thermal transport coefficient predicted by
our theory. Parameters are chosen from JFT-2¥ experiments (Ida
et al. 1892} as B=1.2T, q(a)=1.2, T(0)=lkel, n(0}=3x10'%5"3
a=0.35p and R-1.8m. Profiles are chosen as B(F)=a(0)(1-72),

25 (£)/05€0) = T(F)/TCO), a(f) = q(0)+{ala)-q(0)}F2. The
conductivity % takes the value in the range of | to 10 n2/s. The

radial shape, that 1 is increasing towards the edge, is shown,

4.3 Typical Mode Structure

Characteristics of the self-sustained turbulence is
evaluated from the nature of the most uastable node,

The scale length is estimated from the mode nunber 1u. The
normalized mode number N=nq(iﬁ/m}l/4 for the most unstable mode,
Ny. is given as of the order of unity.

Fhen the shear is small but finite (i.e., the mode is driven
by the normal curvature), an approximate value is given as Ny =

f(s)_l/z. Therefore the mode number n is given as

ng = (a/3p) /%8sy /2 (87)

Empleying the relation a=%, the typical perpendicular wave number

of the most unsiable mode satisfies
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k 6 = 1//a (88)

It should be noticed that k, does not scale with the local
gyroradius though the dimensional relation k; e [B1/[/T] nolds.
The collisionless skin depth, &, is the more relevant lemgth.
When the geodesic curvature drives the mode, the shear
dependeace of the mode number for the least stable mode is
studied numerically (VYagi et al. 18983). The result shows that

N*=1//§, and the approximate relatiocn
D o« § (89)

holds. This indicates that the longer wave length mode is
expected to appear for the high shear case. For the typical
parameters of p=%, A=2/1000, =3 and &=0.432, n is close to 10.
The correlation time 7, 1s estimated as 1/v. From the
expression of the growth rate, Bq.(61) and (87), and using

Eq. (81), we have
% o otl/zf(s)-'l/53‘2/5_ (86-1)

An approximate form of 7. 1s given as

C

T, = JSs/arAp. (80-2)

This expression also shows that the pressure gradient, not the
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local pressure itself, is the key parameter to determine the
correlation time. When the pressure gradient increases, the
correlation time becomes shorter.

Hode amplitude can be estimated from Eq. (84). By the

definition of u, the order estimate
moo Jky e /827 (91)
holds. Writing kIL¢1 as E, this relation can be written as

E a2
B qR

Substituting the expressions of ¥, 1 and %, we have

E 5
—~ —als 55(5)78/57 4, (93)
B gR

The mode amplitude is larger for the higher pressure gradient
(i.e., for the higher heating power). The shear dependence is
favourable (E/B " s'4/5). The normalized velocity E/BVTi is

approximately rewritten as (1/Lp = |vp/o|)

) oy

~ (94)
4/5
BVTl RLPS
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where Vs is the ion thermal velocity, and the approximate

2

relation 5=VT12/VA is used. The turbulence velocity 1s much

smaller than the thermal velocity. The fluctuation level, ¢ =

~

E/k, 1is estimated as

ed me Fi] q
—_= [ S (95)
T o Lp 34/5

where the relation %ﬁ n |//x is used. The normalized level of

turbulence is shown to depend on the plasma profile and
geometrical factor. The bigger the plasma is, the smaller the

relative amplitude beconmes.
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5 Comparison with L-Hode Discharge of Tokamak

The form of 2 is consistent with experimental results kpown
for the L-mode. 1In the following, we compare the theoretical

prediction to observations by choosing a;=1n, and Ti=Te'

c rmal Conductivit

Two characteristic features of the local thermal
conductivity in experiments are that (1) the value of 2 is larger
when the pressure gradient is larger, and that (2) the radial
form of x is increasing toward the edge. These are the commonly
observed on the L-mode plasma. Figure 6 shows the theoretical
prediction and also illustrates the range of the experimental
observation for the JFT-2M¥ tokamak plasma (Ida et al. 1992). The
theoretical prediction (solid lime) is slightly smaller than the
experimental observation (shaded region) by the factor of 2 or
s0, but the radial shapes agree with each other,

The experiments to study the parameter dependence of 1 have
recently been performed. The dependences on the magnitude of the
magnetic field and the strength of the magnetic shear are
reported as

owp'ys'Z (96-1)

1<y<2 and 0<z (56-2)
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from JET tokamak (Challis et al. 1992). The important role of
the poloidal magnetic field, not the toroidal magnetic field,
which is predicted in Eg. (84), is confirmed. The result Eaq. (§8§)
is consistent with Eq.(84). Analysis on the JT-60 experiment was

reported in a fora of

p: T
1 = qd/2/5 L (87)
a eB
{Takizuka 19982). This result 1s gqualitatively consistent witk

the theoretical prediction.
The preliminary conclusion on the «-dependence of 1 has been
given on the JET experiment (Thomas 1987), which suggests the

fornm
1 o= o/, (98)

where o is the critical pressure gradient against the ideal
MHD instability. The theoretical formula is written, apart from

the slow shear dependence, as
1 = (a/a)t (99)

The qualitative agreement is found. In deriving Egq. (99), the
approximate relation (Connor, et al. 1979) o, /8 18 used.

The gradual increase of the thermal conductivity with
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respect to the increment of VT is reported (Alikaev et al.
1987). This fact is also reported from JET (Keilhacker et
al., 1892). These observations are consistent with the

theoretical prediction Ea. (84).
Stu
The energy balance argument based on the point model,
rp=2?/x (100-1)
and
2r?a?Rn T=7gP, (100-2)

provides the scaling law. Using BEg. (84) and (I00) amd

eliminating the averaged femperature T, we have
TE = C aO.4R1ZIpU.SP'O6&0.2f'0.4n80.6Lp0.6’ (101}

wvhere C is a numerical coefficient, A is the iom mass number, and
Lo, is the gradient scale lemgth of the pressure, (aT)/|v(aT)]|.
This result is consistent with the L-mode scaling law,
including the dependences on a, R, Ip, P and also the favourable
dependences on the ion mass A and magnetic shear f (Yushmanov et

al. 1980, Zarnstorff, et al. 1991). Slight difference is seen in

the density dependence inm Eq. (10!), which reguires some
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consideration. Since % of Eq.(84) is dimensionally independent
of the density, Tp of Eq.(101) includes the density dependence
(see, e.g.. Lackner et al. 1990).

There are two possible reasons to explain the demsity
dependence of 7y in the L-mode plasmas. Firstly, the denmsity
dependence can be offset by the gradient scale length., In the L-
mode plasmas, the high density plasma has more steeper edge
density gradient; Tsuji found that n_ (0)/3,-1 is a decreasing
function of n, and Lnﬁé is an weak function of the density (Tsuji
1892). (Since the density gradient profile is often steeper than
the temperature near edge, Lp in Bq. (101) would be replaced by
Ly=|n;/V¥n;[.) The other reason is that the formula Eq.(101) is
for the thermal component of the plasma energy. The usual L-mode
scaling is often taken for the total energy which includes the
energefic 1ons generated by the neutral beam injection. This
energetic component is larger for the lower density plasma, and
makes the density dependence of the total plasma energy less
apparent. [For some dataset of JT-60, Takizuka reported the
dependence as 7p(thermal) aﬁég‘5 (Takizuka 1992).]1 These results
suggest that the classification of the dataset by the profile is

necessary.

h.3 Profile Resilience axnd lk dependence
The strong dependence of % on the pressure gradiect and on

the magnetic shear can explain the experimental observations on the

"profile resilience’ (Coppi 1680, Furth 1886) and the improvement
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of the confinement time by the current pesking (Zarnstorff et al.
1991, Simonen et al, 1982, JT-80 Teanm 1892).

The temperature profile T, (r) is predicted from Eq.(84). To
illustrate the effect of the plasma profile on ¥ (through the g’

g and s dependences), we solve the energy transport equation,
Upegt - ~*BVIL (102)

A simple form of the power absorptian Pabs is chosen as

PabS(X) = PoeXP{_(X'Xheat)Z/AZ} (103)

where x is the radius measured along the pencil beam of NBI, and
parameters Xhaat and A characterize the location of the power
absorption. For the simplicity, we assume |[Vn/n|<<|VI/T| and

chocse the g-profile
a(r) = qp + {a(a)-qp}(r/a)? (104)

The boundary condition is chosen as T(a)=0, and 9p is set to
satisfy the condition g=1 at r/a=1/q(a).

Figure 7 shows the total plasma energy, i.e., the volume
averaged plasma temperature <T> in this case, and the peaking
parameter T(at g=1)/<T> as a function of the location of the peak
heat absorption or the edge q-value. The total stored emergy
weakly depends on the location of the heat depositiocn, Xheat-

The peaking parameter, T(at q=1)/<(T>, is alsoc found to be weakly
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dependent con the location of the peak of the power deposition.
This explains the experimental observation on the weak dependence
of T profile on the heating profile (See, e.g., Cordey et al.
1987).

The peaking parameter depends strongly on gq(a). (See

Fig.8.) The result is fitted as

T(q=1)/<T> ~ q(a)0- & (105)

These results may explain the "profile resilience’. (Experimental
data was fitted to T(O)/(T)mq(a)z/B in Waltz et al. (1986).
Equation (105) is consistent with the data.) The strong
dependence of the thermal conductivity on the temperature
gradient resists against the change of the tempsrature gradient.

The dependences on shear and on the poloidal magnetic field
cause the 1; dependence of 7y (Ri: internal inductance). The
solution of Egs. (102)-(104) for the fixed value of q(a) are
summarized in Fig.9. (In drawing Fig.8, the internal inductance
is varied by changing q(0).) It is shown that, higher the
internal inductance is, larger the energy confinement time
becomes. This result is consistent with experimental
observations (Zarnstorff et al. 1991, Simonen et al. 1992, JT-60
Team 1992),

Tp = L. (1086)

1

The s- and g-dependences of the thermal transport coefficient is

47



confirmed at least gqualitatively from the experimental

observations.

The nature that the transport coefficient is a strong
function of the gradient can also be tested by studying the
pulsative response of the plasma. From the relation
1{V(aT)/n}!*®, the thermal diffusion coefficient deduced from
the heat pulse propagation, igp. 1s larger than that evaluated by
the power balance 1.

The variation of the heat flux associated with the
perturbation of the temperature is calculated from the formula of
Eq. (84). We assume that the perturbation is limited to the
temperature, and the density, current and velocity are assumed to

be unchanged. Writing T = TO + T1 and heat = Theat, 0 t Qpeat 1

we have
TUVHO
qheat,l = ’Z.SHIPBVTI + ISHIPBI_’"“IVTI
where pp is defined as
qheat,O = - HXPBVTG (108)
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If the density gradient is weak, i.e., the relation |Vn/n|
<< |VI/T]| holds, we have the effective thermal diffusivity

associated with the heat pulse,

‘1HP = qheat,l/(niVTI)’ (109)

as

IHP=2.51. (110)

[f the equilibrium temperature profile is flatter,

|[Va/ni{ >> |VT/T|, then we have

XHP = X, (111)
For the case of comparable temperature and density gradients,
[Vn/n| ~ |VI/T|, the heat convection term (the last term in

Eq. (107)) appears.

B. b Characteristics of Fluctuations

The typical perpendicular wave number of the most unstable
mode satisfies k & =~ I//« as in Eq.(88). The dimensiomnal
relation ky= [B1/[/T] holds. Experimental observations have been
performed (Mazzukato 1976, Surko and Slusher 1983, Surko 1687,

Crowley and Mazzucato 1985). An experimental relation was given
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Ak o B (112)

by Surko (1987). The linear B dependence is consistent with
Eq. (88).

The mcde amplitude is predicted as Eq.(85). It is shown
theoretically that the bigger the plasma is, the smaller the
relative amplitude becomes. The dimensional dependence which is

derived from Eq. {95) is

ed/T = [YT1[a] t[B1° L (113)

Experimental data was summarized ino Liewer (1983) as, apart from

dimensionless parameters,

T/n ~ 3p;/Ly. (114)

This result is consistent with the theoretical prediction,
Eq. (95).

It is also shown in Eg, (85) that the mode amplitude becomes
larger for the higher pressure gradieat (i.e., for the higher
heating power)., The enhancement of the flucfuation level
associated with the increased heating power was reported (For
instance, TFR Group 1984).

The result Eq. (893) shows that the mode amplitude is large near
plasma edge (6v, dependence). The radial form of the fluctuation

level shows the increase towards the edge (Durst et al. 18§2).
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These comparison shows that the experimental result on
fluctuations are, at least qualitatively, consistent with our

theoretical predictions.
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6. Study for the System with Hagmnetic Hill

The theory can alsc be applied to the system with magnetic
hill, such as torsatron/heliotron plasmas. In this case, the
average magnetic hill allows a perturbation of interchange

type (Rosenbluth and Longmire 1957).

6. 1 Hgggiel

Fe use a model equation based on the reduced set of
egquations for stellarators (Strauss 1980). The cylindrical
geometry is employed, and the case of zero equilibrium current is
considered, to look for the analytical insight. The model
equations consist of the Dho's law, equation of motion and the
ensrgy balance equation. Replacing V(rcos@) in Eq.(47) by the

average hill term, we have

8 o 4 2 2
mini{—VJ_¢-uV, ¢'} = B V//] + BQY — P, {115}
at - rag
av/at = V6 - I/6 taVEL, (116)
dp[J a )
ap/at = — ¢ + 1V°p, (117)
Bdr rae L

where @' is the effective curvature of the vacuum field and is
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defined as

dn m d 4
- —— —rtn (118)
dr R2@r® dr

where m is the tcroidal pitch of the system, & is the
nultipolarity and 7/ is the rotational transform, Z=1/q. Since
the mode is treated as the interchange mode (i.e., the variation
in the envelope of the mode structure along the field line is

reglected), the ocperator Vy is defined as
Rvy = (8/ak-cta/as). (119)

We solve the eigenvalue eguation by the Fourier
transformatiion. The normalization is the same as in the previous
sections. The variable is changed fronm x=f—f1 to k (rl being the

pode rational surface) as
#(x) = exp[Ft+im0-inz] J¢(k)exp(ikx)dk (120)
where m and n are poloidal aand toroidal mode numbers, respective-

ly. Eliminating J and p, we have the eigenvalue equation in the

k space as

1 2 1 3 b 9 .4
— - — %+ —— & - (¥k2+aktde - 0, (121)
L2 ak 1/8+ik2 ak F+ik2
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2 2 N 2 — -
where k ke + ke, kg—m/ry

1/L = kes, (122-1)
D = Dpkg2 (122-2)
0*a
RZ dg dn
Dp = - — — — (122-3>
0 9r2 df df
and D0 denotes the driving by the pressure gradient. In the

following ke denotes the normalized poloidal wave nuamber, m/F.
ren iffusive Instabilit

Firstly, we confire the large growth rate of the current

diffusive mode by the ¥KB method. New coefficients G and v as
G = 1/& + ikg? (123-1)
v = i/G (123-2)
and new variable K as
dk/dk = 1 + vk?, (124)

are introduced. The WKB soluticn of the most unstable mode

satisfies the eigenvalue egquation, i.e.,
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T RC
— = dk gq, (123)
4

and

D
- (rklsprh | (126-1)

/
Q L
(lluk )

(k) - 0. (126-2)

(7+3k2)

The asymptotic form of the mode growth rate is studied in

the limit of large growth rate, i.e.,
¥ ik2, pk2, (127)

In this limit, Eq.(125) reduces to

i RC 1
— = L/G ak
4 0 1 +vk?

The turning point RC is given by the relation k¥ = /D/%¥. Taking

D
— - %kz]. (128)
,‘i.

the lipit w >> ?Z/D, the dispersion relation is approximated

as (Itoh et al. (1892¢))

L/303/2478/2 _ gp/4. (129)
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This relation vyields the growth rate of the current-diffusivity

driven mode as

o= (4/3m)%/8572/551/5g /5y 3/5 (130)

The growth rate of the mode is proportional to k1/5, as is the

case of the ballooning mode i1n tokamaks,.

To obtain the most unstable mode structure, Eg. (121) is
solved by Rayleigh-Ritz method. Writing Eq.(121) as L u=0, the
functional Alu] is defined as

R [ul- Ju[udk/Juzdk_ (181)
Test fuanction of

_ 22,2

u=exp(-4°k=“/2) (132)
is employed. Equations

E[ul=0 (133-1)

aR [ul/aL=0 (133-2)
determine the growth rate T and the typical structure of the

mode, )., The value & denotes the radial extent of the mode. The

Rayleigh quotient R 1s obtained as
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R= -s2a 1?52 25%exn 5P)Brtc(y)) + 2Dk 2iexp(22)Erfe(D)
kg2 i141/2y2) Rkt 17y 248704 (134)

where y=1%k .2, E=ﬂ2(?/i+k92), and Erfc(y)= jyexp(-vz)dv.
[Resistivity contribution is small if 1/& < ikez. This condition
is satisfied, as shown a posterieri, and I1/6 is neglected.] 1In
order to obtain the physics insight, we obtain the analytic
expression, and assume that ¥ = p. (It is straightforward to
study the general case of arbitrary ratio of p/x (Prandtl
number), but this does not change the result gualitatively,)

In the large bky limit, the asymptotic limit of the function
Erfc is used. Taking the leading term in ike (note ¥ = 0 = ?ﬂz),
the eigenvalue equation 2 [ul=3R [u)/a4=0 gives the growth rate and
the radial extent & of the fast interchange mode (Greene and

Johnson 1961) as

t=/Dg/ (k)2 (135)
12-/acr2ak ) /s, (136)

For the small lke limit, the Taylor expansion of 2 is used. The

first order tern is written as

t ~ (/8/5)2k /By, (137)
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From these results, the largest growth rate is given for the

poloidal mode number satisfying

kgl ~ L. {138)

For such mode, we have the estimate

T~ /0 (139-1)
12 & s_l/}‘\/]%_ (139-2)

This result has been confirmed by Miller by numerical
calculation. The maximum value of ¥ was obtained as 0.25/36

(Miller 1992).

6.3 Transport Coefficient

The stability boundary is calculated for the current
diffusive interchange mode, and the transport coefficient is
derived, as in the case of the ballooning mode,.

Following the analysis of §3.3, the marginal stability
condition (Eq.(12!) with 7=0) is simplified by neglecting the &'

term as

al DGR iﬁkpﬁ
*“é¢ + 5 ¢ - 9 2¢ = 0, (140)
ak s s ke
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where kp2 =k92+k2. Introducing the normalization
b = kgZ(aa/s?yl/3 (141-1)
2

z% = kZ(aa/s2)1/3 (141-2)

and the notation

D 3 SZ 1/3
H = _2_ - s (141'3)
g% ni
Eq. (140) is rewrittien as
ae/dz? + [(8-2) - 622 -6zt - 6y2806 - 0 (142)

where G1 = 3b, G2=3, and G3=1/b. Neglecting G1 and G2 as in
Yagi et al., 1993, we have the stability boundary, by use of the

WKB method, as

1 T
(H-b52)2/3p1/6 J (1-x81/2g4¢ - — (143)
9 4
H is a function of b as
H =12+ cpl/4 (144-1)

where C is a constant defined by
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¢ o= |—  (1-x8)1/244 | . (144-2)

7 40

The eigenvalue H has a minimum H, of
B, = (9/88/9)c8/8 (145)
at

- (c/8)t/e, (148)

(=
b

By combining the results of Bg.(141) and (145), we obfain

the transport coefficient

(1472

The same argument, that the ratios ne/x and u/% are order of
unity, is applied as in the case of the ballooning mode in
tokamaks, Equation (145) is rewritten as H*_3/2 ~ (.8. Noting
the normalization, and the explicit form of ¥ 1s finally

obtained as,
1 = F(F) (da/df}3/262y,R71 (148)

where F(r) is the geometry-dependent numerical coefficient
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Y ‘—(tr4)
2 0 r* dr

n 1 d 3/2
(149)

The form of the thermal transport cosfficient has the sane
8" dependence as that obtained for the tokamaks. The geometrical

dependence is explicitly given in Eq. (148).

Comparison with Exper] ts

We discuss what is predicted from this model, comparing to the
experimental results. Couple of similarity is found in the
predictions on the torsatron/heliotron with those for tokamaks,

Firstly, the dimensional dependence of 1 is

[21«[T]1-2/RI[BI2 (150)

and is independent of the density, [n].

Secondly. the formula ¥ includes the radial dependence
(8 /23372, not T%/2, and predicts a large transport near edge.
¥ith this radial dependence and that of F(F), x is larger near
the edge (Itoh et al. 19%2a). The theoretical predictien of 1,
tkat ¥ is larger for the high temperature or near the edge, is
consistent with the result of experimental observations (Sano et
al. 1990).

Third, the heat pulse prcpagation time is the same as in §4.

For the case where |VI/T{>>|¥n/n| holds, igp satisfies the
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relation
XHP =2.5 xeff' (151)

The larger thermzl conductivity for the heat pulse, than the
eguilibrium thermal conductivity, was observed in Heliotron E
plasma (Zushi [891).
There are differences from the case of tckamaks. Namely,
these are due to the geometrical and configurational dependence.
The point model analysis gives the energy tramsport scaling

law as
TE = AO.QBO.SHO.SaZRP‘0.6<F>0.4 (152)

where <(F> is the average of F near the boundary. (The reason to
choose the edge value is discussed in Itoh and Itch 1981.) The
weak but positive dependence on the mass ratio is obtained, Ve
find that the improvement of the confinement by the increase of
the shear (3_2 terem in F) is almost offset by the ipcrement of
the magnetic hill ([m(r4l}’}3/2r46 ters in F). The coefficient
<F>G-4 weakly depends on geometrical parameters. The energy
confinement time depends mainly on the toroidal magnetic field,
not on the poloidal magnetic filed., This resulf may explain the
fact from the comparison study of experimental data in different
devices, that Tp seems to depend conly weakly oz the rotational

transforam or on the magnetic shear {(Sudo et al., 15§0). The

predicted indices to B, a, a, R, and P, as a wheole, are
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consistent with the experimental scaling law {(Sudo et al. 19890).
The nature of fluctuations are predicted by the theory.
Since the mode is an interchange type, not a ballooaing type, the

features are different from those in tokamaks,
The ratio between the relative amplitude of density and
potential fluctuations, #/n and e4/T, is derived. The convective

change dominates in I, and we have the relation
ﬁ/n=(m*/f)e¢/T, (153)

where Wy is the drift frequency, TkB/LneB (we assume that Te=Ti).
Using the condition keﬁzl and the expressions for ¥ and L, we

have
/2 = [3.1sDy !8(a)R/L ] e/T. (154)

From this relation we see that the density fluctuation is usually
smaller than the potential fliuctuation. For the case of

Heliotron-E plasma, DO a 5035(0)/Lp and s~4, that gives
1/a ~ [20L,/L,)%8(a)/8(0)1ed/T. (153)

The value in bracket [ ] is order of 1867 ). Fluctuation meas-
urements in high power heating experiments have shown that #/n is
smaller than e¢/T (Zushi, et al. 1988, Ritz et al. 1991), which
confirms our model theory. This relation, Eg.(155), also

suggests that (#/2)/(ed/T) increases as the pressure profile
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becomes broader. This predicticn is alsc consistent with

experimental results (Zushi et al 1988).

64




§7 Transport Coefficient in Stellarators

We here discuss the confinement of stellarator plasmas based
on our theoretical model, The conventicnal stellarators such as
the §=2 stellarator are characterized by the magnetic well and
the weak shear (Solov’'ev and Shafranov 1870). Not an interchange
node but a ballooning mode must be analysed in this configuration
(Cooper et al. 1989). We therefore apply the result of g3,
taking the limit of s-0.

The thermal transport coefficient is obtained as
x = 0.8¢%(Ra /1) 252y /R, (156)

The similarity is prominent with tokamaks rather than torsatron/
Heliotron configurations.

We compare the prediction of the transport theory with
observaticns. ¥We choose the simplification n;=n, and Ti=Tg, as
in the case of tokamaks and torsatron/Heliotron.

(i) The dimensional dependence of 1 is

[x] ~ [T11-9/1208)2. (157)

(ii) The gradient of 8 generates i so that the density and g
profiles govern the radial profile of x. GEquation (158)

indicates that ¥ increases towards the edge for the usual plasma

profiles in the L-mods. The increment of the thermal
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conductivity mear the edge was also confirmed in Yendelstein
stellarators (Grieger et al. 1988).
(iii) The estimate, tE=a2/x and 2n2328n8T=rEP, provide the

scaling law
7g = C afp 480-8,0-8p70.640.2¢, 4 0.6, (158)

where Cg 18 a numerical coefficient. This result predicts the
positive 4 dependence of Tg.

(iv) The T,(r) profile shows the difference from tokamaks.
The peaking parameter, T(0)/<T>, only weakly depends on the
safety factor 2t edge, q{a). This is because the safety factor g
1s almost unifore in stellarators and the change of the edge
rotational transform does not cause the modification of the shape
of x(r) through qz and s. This is in contrast to the case of
tokamaks. This explains the observations that the "profile
resilience’ is not prominent in stellarators (Wagner 1982). The
radial shape of 1 can be different from that in tokamaks due to
the same reascn: The radial incremeat of x in tokamaks is partly
owing to the radial shape of g(r). The flat g(r) profile in
stellarators leads to a flatter shape of 2(r) in stellarators, if
profiles of density and pressure are common.

(v) The similar argument to those in previous sections
applies to xpp. This value can be larger than that evaluated by
the power balance 2.

(vi) The typical perpendicular wave number of the most

unstable mode satisfies
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k|8 = 1/Ya. (159)

The correlation time 7, is estimated as 1/72/?7&%Ap.

(vii) The estimate P/p shows that the mode amplitude beconmes
large towards the edge and is larger for high heating power.

In our present theory, the toroidal mode is treated as 2
continuous variable. This implies that the rotztional transfornm
is not the low-order ratiomnal number (i.e., when / is ratiomnal
number and is written using the two integers as ml/nl, n; is not
a small integer.) Therefore the theory may not be applicable to
the case where 7 is very close to the rational nuzmbers such as
1/3, 1/2 and so on. The corrugations were found in the ¢
dependence of 7y (See e.g. Grieger 1886). This is not included
in the present theory. (The role of the magnetic island, for

instance, 1is discussed in Wobig ef al. 1987).
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€8 Summary and Discussion

In this article we developed the theory for the self-
sustained turbulence zad the associated ancmalous transport in
toroidal plasmas. The geometrical effects such as the
toroidicity, magnetic shear and magnetic well are incorporated.
The mode is driven by the pressure gradient. The ExB
nonlinearity is taken into account. Nonlinear interactions are
rencrmalized in a form of diffusion effects on the microscopic
mode. By use of the mean field approximation, the set of
transport coefficients {pk,ak.xk} are represented by a single set
of scalar diffusion coefficients (g, A,2}. The stability amalysis
of the microscopic ballooning mode in torcidal plasmas are done
under the influence of the ancmalous transport coefficients 1, A
and n. It is found that this mode becomes unstable when the
transport is small and finite, by the effect of self-induced
current diffusivity, A, The modes can be stabilized by the
exhanced anomalous tramspert, i.e,, the thermal transport, 1, and
the ion viscosity, m. The marginal stability condition is
obtained, and the condition for the stationary state of the self-
sustained turbulence is obtained. The transport coefficients are
rewritten in terms of the Prandt]l nuzbers., The Prandtl numbers
are little affected by the fluctuation amplitude, so that they
are assumed to be constant. The forpula of the ancmalous
transport coefficient is thus derived. The important role of the
collisionless skin depth, which was first pointed out in Ohkawa's

model, is theoretically demonstrated: The consistent calculation
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for stability gives wmcre explicit dependence on B and on the
geometrical factor.

The formula of the ancmalous transport which is caused by
the pressure-gradient-driven instabilities can be summarized in a

form as

50 —=2 (160)

wnere the gecmetrical factor Fis given as

a2 (r/r)l Besy! (tokazak)

F(F) =4 0.6q2(R/r)!0 (Stellarator) (161)

F(F) (torsatron/Heliotron)

Approximate form of f(s) is given in Eqs.(70) and (74), and that
of F is given in Eq.(149). The result clarifies the role of the
pressure gradient as the origin of the anomalous transport in
toroidal plasmas., Simulianeously, the effects of the magnetic
shear and the magnetic well, both of which have been known as
favourable for improving the stability of the torocidzl plasnas,
are clarified. The magnetic well has clearly improved the plasma
confinement, as was demonstrated in literatures (see e.g. Ohkawa
and Xerst 1861 and Yoshikawa 1873). The result in this article

clearly shows the positive effect of the average magnetic well on

69



the anomalous transport.
The fluctuation level of the self-sustained turbulence is
also given. For the balloorning mode turbulence in tokamaks, the

formula

edp/T =~ Jame/mi ﬁq/(Lps4/5) (182)

1s obtained. This result suggests the importance of the toroidal
curvature and the pressure gradient for the driving source of
instabilities in tokamaks. The geometrical factor, such as the
safety factor, is included, confirming that the conmection length
is the key parameter for the stabilization of the ballooning
mode. It is also noted that the level eé/T depends, on the
magnitude of the main magnetic field and plasma temperature
through «. The plasma size has an important factor:; the bigger
the plasma, the lower the relative fluctuation level. The
density is also influential; the level decreases if the density
is increased. The typical wavenumber is also given., The
collisionless skin depth, 8, is shown to be a relevant length to
characterize the modenumber. The result k& o 1//e« shows that the
typical wmode number increases in proportion tec B when the
pressure and other parameters are kept constant. The
characteristics of the fluctuations from our nmodel theory are
also consistent with those in experimental observations.

The results on % are compared with experimental
observations. Major part of the cbservations on L-mode in

tokamak plasmas can be explained by this model, sipultaneously.
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In particular, this model explains not only the enhancement of
the thermal conductivity due to the increase of temperature, but
also the radial profile of %, namely the larger value of 2
towards the edge. The point model estimate of the energy
confinement time, 7y, is dome. The empirical dependence of 7z on
the plasma current, ion mass number, plasma size and weak
dependence on the toroidal magnetic field seems to be consistent
with theoretical prediction, The dependences of 2 on the
pressure gradient and g(r) can explain so-calied 'profile
resilience’ (Coppi 1980, Furth 1986). The recent observation,
that the energy confinement time is improved by the increase of
the internal inductance {Zarastorff et al., 1991, Simonen et al,
1992, JT-60 Team 1962), is explained in the framework of this
theory.

The theory also explains the various features, {(which are
common to tokamaks,) observed ia experiments on stellarators
(helical devices). Namely, the power degradatiocn of zp, the
increment of the thermal conductivity by the pressure gradient
and the radial profile of the thermal conductivity, especially,
are explained by this unified theory. The different features
from tokamak plasmas have also been explaired. For instance, the
torsatron/Heliotron experiments have shown that 7, depends on the
main magnetic Tfield, not on the poloidal magnetic field, High
shear and high rotational transform not necessarily improve the
energy coanfinement time., This observation 1s explained by this
theory. The most unstable mode in these plasmas is the

interchange sode, so that the poloidal magnetic field plays
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little role. It is found that the increment of the shear, by the
increase of the toroidal pitch number of the device, is offset
by the increment of the magnetic hill., The hill has an
unfavourable effects on confinement. It is also noticed that,
among helical systems, the anomalous transport in the
conventional stellarators and that in the torsatron/ Heliotron
devices are different in many aspects. The confinement time in
the conventicnal stellarator can depend on the rotational
transform. It must be misleading if the regressiona analysis on
the confinement time is performed on the mixed data from the
conventional stellarator and torsatron/Heliotron devices.

Compared tc the previous theories, this model provides a
better understanding on the L-mode plasma. Only few theories
have beern successful in sirultaneous explanation of the large 1
value near the edge aund the power degradation: one was the Chkawa
model (Ohkawa 1978) and the other is the critical-temperature
gradient model (Rebut et al, 1987). The relation of this model
with the Ohkawa nodel was explaired. The expression of 7 from
the critical temperature gradient model is given as an inductive
forpula, and the thecretical derivation was not given.

Im this article, the resistivity is neglected. The analysis

is done for the resistive plasma to have the instability boundary

o = $6/9. {1683)

The resistive rmodes (Carreras and Diznmond 1988) give higher

stability limit of o than the current diffusive nodes if
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ax!l/3y (373273 (164)

holds. Equaticn (164) is usually satisfied supporting the simpli-
fication in this analysis. The thermal conductivity of Eg. (163)
is rewritten as x = (4q2R/Lp)pezyei, where p, is the electron
gyroradius and Vai is the electireon-ion collision frequency. The
Pseudo-classical diffusion coefficient (Yoshikawa 1870) is
derived in the framework of this self-sustained turbulence. The
takeover from Pseudo-classical confinement to the neo-Bohm (L-
node) confinement will be reported in a separate article.

The role of resistivity is important when the background
fluctuation amplitude is small. In the limit of the zero
agmplitude of turbulence, the transport coefficient is given by
the classiceal values, In such a case, the mode in unstable. The
instability continues until the turbulence level grows and the
marginal stability condition becomes to be satisfied. This is in
contrast fo the case of the drift wave turbulence discussed in
Hirshman and Molvig (1879), where a fairly large threshold
amplitude was required fo excite the nonlinear instability.

The present theory gives the (approximatie) formula
1 o (a/ac)1'5 {165)

whers o is the critical stability limit of the ideal MHD
instability. This result provides a picture that the efforts to
loock for the configuration with high MHD-beta limit may also

allow the better energy confinement. The role of the current

profile is analyzed im this article and confirmed this
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conjecture, The effect of the plasma shaping must be studied to
get the final conclusion. It is also worthwhile te investigate
the case of the second stability (Coppi et al. 1979). Part of
the analysis was performed in Vagi et al. 1993,

The other aspect to improve the confinement is the influence
of the radial electric field (Itoh et al. 1989, Ttoh and Itoh
1890, Shaing et al. 1989, Bigrali et al. 1988, Hassam 1991,
Sugama and Wakatani 1981). The impact of the radial electric
field on the self-sustained turbulence has been performed as an
extension of the present theory. The result confirmed the
previous theories that the electric field anisotropy reduces the
transport. The details of the analysis will be reported in a
forthcoming paper. It has alsc beer pointed out that the off-
diagonal elements in the transport matrix can lead important
effects in the L-mode plasma (Itch 1990, 1992, Ida et al 1992).
In particular, the physics of the pinch phenomena requires the
analysis on the off-diagonal elements. The off-diagonal term is
also calculated in the framework of this theory. Application of
this theory to the pinch phencmena will be discussed in future.

¥e assume the isotropy of the background turbulence, i.e.,
<lag/ar [>> =~ << |ae/ra8[>>.  The generalization to the case of
the anisctropic fluctuation <<|as/ar [>> # < |ag/ras|>> is
possible. The Appendix B describes the generalization. It is
concluded, a posteriori, that the anisotropy of the background
turbulence does not change the conclusion of this article. Also
necessary is the improvement of the evaluation of the Prandtl

nunhers pe/x and @/%. A better estimate would be possible if the
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values of k_L and kﬂ’ evaluated for the most unstable modes, zare
to be substituted in the expressions of {g A, 1}.

Nonlinear stationary solution is obtained in this letter by
taking the ansatz for 1, i.e., the transport coefficients
affecting the nmicroscopic mode is equated to that for the global
quantity. Recently, Connor has succeeded tc reproduce ocur
results by use of the scale invariance techrique, supporting our
model (Connor 1963). It is also pointed out that the other fora
of the Ohn’s law gives the higher thermal conductivity. Ia
giving an alternate derivation of the Ohkawa's formula, the
extension of the Ohm's law was discussed in (Kadomtsev and
Pogutse 1985, Horton et al., 1887). The resistive term J/¢ is
replaced by the electron pressure fern Vp/ene. By this
correction, the increment of the thermal conductivity was pointed
out (Connor 1993). ZBven in this case, however, the fundamental

feature of fhe anomalous transport, that

1. () e 2t/ e (166)

is feund unaltered.

This correction in Ohm’s law is considered to be one of the
finite gyreradius correction. The result of the typical wave
number, %ka ~ 1/2/« suggests that k can be of the order of the
ion gyroradius, when the pressure increases. The fimite
gyroradius effect on ions, ceafrary fo that on electromns, can
reduce the transport coefficient. The role of magnetic

perturbation was also discussed (Lichtenberg et al. 1582, Connor



1993). The extension of this theory to such cases requires future
analysis,

The precise numerical factor cannot be obtained from the
present analysis. Though the fundamental structure of ¥ is
unaltered, the coefficients can be enhanced by the change of the
electron parallel conductivity aad by the magnetic perturbations.
The detailed explanation of the absolute value requires future
study. Nonlinear simulation would give this coefficient and can
examine the validity of the ansatz. (Qther simplifications such
as the neglect of the spatial inhomogeneity of the background
turbulence must be examined in detail, The important rcle of the
advection of fluctuation in the transition between L- and H-modes
was theoretically predicted (Itoh and Itoh !1988). It has been
pointed out (Yoshizawa 1984) that the incoherent convection of
the background turbulence affects the level of turbulence in the
stationary state., The method ¢f two-scale direct renorpalization
approach can be applied to this problem, and may clarify the
lmportance of the incoherent convectiorn on this problem, It is
also necessary to investigate the effects such as the kimetic
corrections, parallel flow or perpendicular compressibility.

These researches are open for future study.
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Apvendix A Transport Hatrix

Bxplicit form of the transport matrix,

ExB nonlinearity of the back-ground turbulence,

this appendix.
The nonlinear terms

form,

p2] are given in the form of the combination of {NI' N2’

which is given by the

is presented 1in

(23)-(25) can be expressed in the matrix

As is shown in Egs.{(13)-{15), the driven terms {UZ, J2,

Substituting Egs. (18)-(15) in Egs. (23)-(25), we write

N | i
N |- Eéz iy,
N g

where summation is taken

back-ground turbulence.)

Ngl.
By Hyg £¢,1,£¢1,U}]]
Hoo Hog [¢ﬁ1,[¢1,11}J (A1)
Hog Hgg Lo ;. Lo, 7]
over k;. (The notation k, denotes the

Using the expressions for {Uz, 12. 921,

the matrix elements Hij are given as

K9
B = —
.
1k9ﬂgk2L2
Hyg =
Ly Ty9
Aoks
2kg 1
By
KZTpB

(42)

(43)

{44)
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2739
- 1 T ihAnksy nVp
Hyp = Poﬁz'__ _Eg'kzl? + TT27287°0 (48)
K2 732 Tu2Tp2B
- ik, EA
foq = nqs2 —20 "2 (A7)
28 0 ¥
27i27p2
-ikg 4Vp
Ko 7.58
2 'p2
koaVoagk
gy - - 20Y708%g) (49)
Ko T597p9B
and
2
1 T gEky y
gg - gy 2 2 (410)
Ky 7o TuaTio/

The suffix 2 deanotes the mode k2 which is given as kz =k + ok
and the symbol Azpz indicates Ap({for kz). {The notation k is
for the test wave.) Egs.(A2) to {Al0) represent the explicit
form of {H;;) in Egs.(28) and (32} ia the main text,

The transport matrix for the background plasma profile is
also obfained by taking the limit of k-C. The conventional

quasilinear treatment is used to obtain the diffusion operator
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caused by the background perturbations. We write in the matrix

form as
3 32 B 9rcosd
-1 - Viij - Voxv <L =
at mini mini R
2 . 27 . 2
DII?LU ] D12VLJ . DISYLP (At 1)

1
21 - 22 2 2 2
- E - vxB + =] = & f-\o{DziV_LU + D22VLJ + DQSVLP} (4123

[+
8 ! 2 2 2
—p * _[4’, P] = D3IV_LU + D32V_LI + DSSV_LP (Aig)
at B
and
U= vig (414)
Lo,

The matrizx elements {Dij} is given by taking the limit k-0 into

the expressions {Hij} as

Dyy Dyg Dig o iy iy g
g o |
Doy Dgg Dgg R g Hgg Hyg (413)
1
D31 D3z D33 A3y Hyp Hyg koo

The matrix elements Hij(kao) in (A15) are explicitly given as
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and

- 9
ikyyekyy

ST

L

Kl Tpl

Lkyy &4,

KlleTpl

ik 4Vpg

K1 TplB

by gVpgekyy,

Ky 75178

TulTpl

2¢iA1k18VPO

B

81

(A16)

(A1T)

(A18)

(419)

(A20)

(A21)

(A22)

(A23)



2
gEklﬂ/

(A24)

figg =

Ty Tj1

The syabol Alp1 denotes Ap(for ki)' ¥e write diagonal terms le

52"0D22 and D33 by u, A and 2, respectively,

g2



Appendix B Effect of Anisotropy of Turbulence

A set of renormalized equations are derived in 82 with an

assumption of the isotropic turbulence,
lae/ax |2 = Jagy/ay|% ~ [k, %o, |2/2. (B1)

The generalization to the case of anisotropic turbulence,
la¢l/ax|2 # |a¢1/ay[2 is possible. (The x- and y-directions are
taken in the radial and poloidal directions, respectively.) We
introduce the parameter W which demotes the anisotropy of the

turbulence as

<K |a¢1/ay12>>

¥ = 5 (B2)
<Clagy /ax |*>>

The bracket <<>> indicates the average. TWe determine the
anisoiropy parameter W along the spirit of ithe mean field
approximation. Namely, the ratio of the radial derivative of the
test wave to the poloidal derivative equals to those of the back-
ground waves, /T,

By use of W, the nonlinear terms are rewritten as

26, 2, a? a2 _
— + ¥ Y (B3)

(o . [4,.¥1] = |—=]
=M ax ayl ax?

and Bq. (80) is rewritten in the form of
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=

N, g By Hyy Hyg
Ky pey | ~
A, Hay Hyg Hgg P
where the operator b, is defined as
32 32
A, = — + §T—— (B5)
2 ay2 aXZ

¥e only keep the diagonal terms in the matrix {Hij} in the

following, The set of model equatiocns are rewritten as
2 _ 2 _ n? : .
nimi[a(YL¢)/at Hﬁa?L¢} = B E/I + BYpxV(2rcosa/R)«& (B§)

1

B+vxB = —J - aa,] (B7)
G
and
3 1
—p + —[é,pyl = 2A 0, (B8)
3t B

The coefficients (g, A, 2} are given as

kb, 12k,
p ==z i; 1 1= (B9)
B KI
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A= ﬁzpe.ue (B1o-1)
[k, o121 7 4,k oVp
Hg - T — 1Tk Lol ] (B10-2)
B K1 Ti1 TuITpIB
and
lk ) l I T gEk,
xnx——lg—l———”i[ku?+#~—1—~—-] (B11)
B Kl o1 a1 751
where
Ky = 7.,k + gk + (B12)
1 ul®1L B
Til Tp1

Tu1=T(1)+yk1i2, Tj1=7(1)+pekllz, Tpl=T(1)+xk1L2,and aYllat =
T(I)Yi.
The ballconing formalism is alsc employed. Following the

same procedure, we have

d F dé alxtcosn+(sm-wasin®)single
————— -
dn ?+EF+AFFa dn ?+XFa

- (?+MFa)F¢ =0 (B13)

Comparing Eq.(B13) to Eq.(51) in the main text, 2 new geometrical
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parameter Fa appears, which is defined as
Fa=1+W(sn-aSinn)2, (B14)
The operator V? is transformed zs -nzqu.

Equation (B13) coantains the parameter W, which is determined

by the selfconsistent relation
ko®>/<k, 2> - ¥ (B15)
where the average <+++> is defined as

JX¢2dxdy
> = (318)
¢2dxdy

The ballooning transformation gives

<k,2> Jszn%(n)zdn
N 5 (B17)
<ke > f¢(n) dn

The stability boundary is derived. Setting ¥=0 in Eq.(B13),
we have the eigenvalue equation, which determinmes the relation
between %, X and B. As is in §3., we study the case that the
ballooning mode is destabilized by the normal curvature, not by
the geodesic curvature, i.e., 1/2+a>s. TFor the strongly
localized mode, 32n2<1 and n2<1, this eigenvalue equation is

approximated by the ¥eber type eguation, and Bq.(63) is modified
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as
d%9/dn? + (edn?a?/2)(1-(1/2+a-5)7%)
- atnbefririeamsia?y - g
The marginal stability condition is given as
H=1,(0)
where
He= od/23g78/2;5°1/2
and

£ = N 20-N T2 (/2 e s) e (1425204

where N is the normalized mode number N=nq(iﬁ/a)1/4

(B18)

(B19)

(B20-1)

(B20-2)

as in &3.

The eigenmode structure is obtained by the gaussian forn

4

o(m) = exp{-(9/7%)

where

IR0 SR VY

(B21)

(B22)



The integration Eq. (BI7) is performed by using the form of &(%n)

to have
9.9 s?
{s“m=> = ————5-“*"2— (823>
2HN“(1-N%)

The self-consistency relation Egs. (B15) and B(17) lead %io
s2§ = 2HN2(1-¥h) (B24)

Substituting Eq. (B24) into Eq. (B20), and neglecting higher order

terms of N4, we have

H- [—é—} [(1+za-2s)u*2+{6(1+2a-2s)+232}N2 (B25)

The minimum of the right hand side of Eq.(B25) is given as

J(1+2G‘ZS){6(1+2a"28)+282}. ¥hen the (et-s) terpr is small and

neglected, it reduces to /%+2sz_ The stability boundary for the

least stable mode is given as
o3/23378/2571/2 - fugs? (B26)
At this condition, the parameter ¥ is given as

5+232
R (B27)
82(3+sz)
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The typical mode number of the least stable mode is given as

kg 8 = 1/V¢e (B28)

which is the same result compared to that for the isotropic
turbulence. The anisotropy parameter ¥ becomes small and the
radial correlation length becomes shorter when the shear becomes
stronger.

Comparing Egs.(84) and (B26), we see that the assumption of
the isotropic turbulence in the main text gives a sufficiently
good approximaticn. The anisctropy of the spectrum gives rise to
a small difference in the marginal stability condition. The role
cf the plasma pressure gradient is not altered. The formula of 1
is affected on the s-dependence, and the shear dependence is

slightly weaker in Eq. (B26). Other dependences are not altered.
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Figure Captioms

Fig.1 Geometry of the analysis

Fig. 2 (a) Growth rate of the current-diffusive ballooning mode
as a function of B for various values of X. Dashed Iine
shows the ideal ¥HD limit. (b) Growth rate as a function of
A for p=0.8%. Parameters are: s=0.4, %/3=1000, A=%, q=3,

r/Lp=0.6, e=1/8, n=30, and 1/5=0.

Fig.3 ¥Yarginal stability condition as a function of the mode
number n. Solid line indicates the analytic formula (B5).
Dashed line is obtained by the numerical calculation.
Parameters are s=0.4, &=1.7x1072, 2/3-1000, =%, q=3,

r/Lp=0.6, e=1/8, and 1/8=0.

fig. 4 Eigennode profile of the marginally stable mode. Solid
line is the result of the numerical calculation aad the
dashed line 1s the analytical estimation.

Parameters are: s=0.4, %=10"°, %/A=1000, n=%, q=3,

r/Lp=0.6, e=1/8, 1/6=0, and n=78.

Fig.5 Heat flux q, igs shown as a function of the temperature
gradieat. The density gradient is fixed. At the location
denoted by the symbol %, the temperature gradient scale

length |T/VT]| is equal to that of the density |n/Vn].
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Fig.6

Fig. 7

Fig.8

Fig. 9

Radial profile of the thermal transport coefficient.
Example of the parameters are chosen from JFT-2M tokamak
plasma (Ida et al. 1892), Parameters are: 3=1.2T, R=1.3m,
a=. 351, 0(0)-3x10°%a73, T(0)=ikeV, q(a)=3.2 and g(0)-1.0.
The profiles are chosen 8(r/a)=(0)(1-(r/2)2) and
n(r)/a(0)=T(r)/T(0). The shaded area indicates the range of
the experimental observation quoted from Fig.2 of Ida et al,

1992.

Dependence of the energy confinement time (a) and the
peakedness of the temperature profile (b) en the location of
the power deposition. The peaking parameter of the power
deposition A is chosen as A/a =0. 3. Xpeat indicates the
position of the peak of the power deposition. Parapeters
are chosen q(2)=3 and r,/a=1/g(a) (r; is the location of the
q=1 surface). Density profile is assumed tc be flat and the

boundary condition of T(a)=0 is used.

Dependence of the peakedness of the temperature profile
on q{a). The peaking parameter of the power deposition
4 is chosen as A/a =0.3, and peak position of the power
deposition is given as Xheat/a=0'5' The location of the g=1
surface is given by rl/a =1/gq(a). Density profile is
assumed to be flat and the boundary condition of T(a)=0 is

used,

Dependence of the energy confinement time on the

&8



internal inductance &;. f(s) is podelled as f=1.7 (s<0.8)
and /B8s (s>0.6) for the simplicity. The internal inductance
is varied by changing the central g value with the form
q(r)=a(0)+{a(a)-q(0)}(r/a)? and q(a) is chosen as in Fig.s8.

The demsity profile is assumed to be constant. and T(a) =0.
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