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Abstract

An advanced “kinetic- MHD” simulation method and its applications to plasma physics
are given in this lecture. This method is quite suitable for studying strong nonlinear, kinetic
processes associated with large space-scale, low-frequency electromagnetic phenomena of
plasmas. A full set of the Maxwell equations, and the Newton-Lorentz equations of motion
for particle ions and guiding-center electrons are adopted. In order to retain only the
low-frequency waves and instabilities, implicit particle-field equations are derived. The
present implicit-particle method is proved to reproduce the MHD eigenmodes such as
Alfven, magnetosonic and kinetic Alfven waves in a thermally near-equilibrium plasma.
In the second part of the lecture, severa! physics applications are shown. These include
not only the growth of the instabilities of beam ions against the background plasmas and
helical kink of the current, but they also demonstrate nonlinear results such as pitch-angle
scattering of the ions. Recent progress in the simulation of the Kelvin-Helmholtz instability
is also presented with a special emphasis on the mixing of plasma particles.
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1. Introduction

1.1 Necessity of Kinetic-MHD Simulations

In contrast to a general belief, kinetic processes do play important toles even in MHD-scale
phenomena. That is, a nonlinear evolution of low-frequency, kinetic instabilities may be
responsible for transport of energy and particles in plasmas. These problems have remained
an important but unresolved issue of plasma physics for more than two decades. Meanwhile,
as an origin of these instabilities and transport, a certain realm of the high-temperature
plasmas has attracted our attention in which the microscopic, kinetic processes strongly
affect the macroscopic plasma processes of magnetohydrodynamic (MAD) time-and-space
scales.

In fact, many significant phenomena of space and fusion plasmas are known to take place
in this kinetic and macroscopic regime. For example, ion kinetic effects on the m=1 kink
mode [1] and fusion-produced energetic alpha particles [2] in ignited tokamaks are just a few
of important low-frequency, kinetic problems of the magnetically confined fusion studies.
In space and astrophysics, we can list more varieties of kinetic and macroscopic plasma
phenomena. To name only a few, these are magnetic reconnection whose dissipation layer
has a thickness comparable to gyroradius or inertia length of ions [3], and the kinetic Alfven
wave which induces substantial wave-particle interactions with its longitudinal (non-MHD)

clectric field [4].

Since the aforementioned plasma phenomena are frequently accompanied by strong non-
linear processes, a numerical simulation is virt ually the only reliable approach in theoretical
studies. However, in the past it was difficult to study these nonlinear plasma processes
using either the conventional time-explicit / hybrid particle codes or the MHD fluid code.
This was precisely attributed to both a kinetic nature of such plasmas and a disparity of
their time-and-space scales with currently uninteresting high-frequency, short-wavelength
plasma cigenmodes or light waves.

In order to overcome the difficulties to study kinetic- MHD plasma phenomena, several
types of epoch-making and advanced simulation methods were devised during the entire
1980’s. These methods, which include the electron kinetic effects in clear contrast to the
“hybrid particle” code, are well-documented in References [5-8]. As will be reviewed briefly
In Section 1.2, the new simulation methods were successfuily applied to various nonlinear
phenomena in high-temperature plasmas.

To summarize, what has been required to the new type of the kinetic, large (MHD)-
scales simulation methods is an ability to treat (1) various kinetic (particle) effects such
as the Landau, cyclotron and bounce resonances with low-frequency waves, and those due
to finite Larmor radius and complicated particle trajectories, (2) a spacecharge electric
field and a finite-speed plasma relaxation arising from non-zero electron inertia, and (3)
nonlinear plasma processes under the non-microscopic time-and-space scales, § .€., [duration




time] > w;',w ;' and [spatial scale] > ., p.. Here, wp., .. are the plasma and cyclotron

frequencies, respectively, and A., p. the Debye and gyroradius of the electrons. Moreover,
it should be emphasized that magnetically confined plasmas are often strongly magnetized
(wee > wpe) and quite inhomogeneous; the strength and orientation of the magnetic field
changes in space and time. The electron diamagnetic drift and magnetization currents
are important in the finite-beta (temperature) plasmas. In fact, these {equivalent) drift
velocities are given by vp ~ (cTe/eBY/ Ao = 2eBe(weef/wpe)(c/ Aowpe) Where B, = 87wnT,.[/B*
is the electron beta value and 1} is the gradient scale length of density or the ambient
magnetic field.

The new particle simulation methods that were developed in early 1980’s have realized
kinetic simulations of the low-frequency, electromagnetic phenomena including kinetic ef-
fects such as orbit effects and Landau damping. In this regard, these new particle methods
are qualitatively higher than the so-called "hybrid-particle” method. However, a difficulty
with these methods was a small time step weAt < 0(0.1) when one wishes to reproduce
the diamagnetic and magnetization effects of the electrons in high magnetic field, high-
beta plasmas. By contrast, the uniqueness of the present simulation method is its ability
to treat these diamagnetic drift and magnetization effects under a much larger time step
we At > 1. This permits us more efficient and accurate simulations of strongly magne-
tized, high-beta plasmas with much less time steps. (It is also possible for the present
method to choose the full-kinetic electrons where the ambient magnetic field is weak or

absent (cf. Section 2.1)). In the following paragraphs, several large time-and-space scale,
kinetic simulation methods are briefly reviewed.

1.2 Various Methods for Kinetic-MHD Simulations

The first successful implicit simulation method might be the moment implicit method
which derives the implicit moment equations to obtain the future electromagnetic field
[9-11]. The moment equations involve a divergence of the pressure tensor which, by relying
on the fluid concept, is related to the particle velocity moments to achieve a closure of
the moment equations. The velocity moments are calculated once in each time step by
summations over the particles. This class of the particle code known as the VENUS”
code was developed at Los Alamos National Laboratory in early 1980°s and was applied
to laser irradiation and various beam-plasma processes [12]. However, the assumptions
used in relating the pressure tensor with the particle moments restricted the time step to
a moderate value wy At < 10 in warm kinetic plasma simulations. An improved method
recently outgrew from the moment implicit method to treat the warm plasmas with a large
time step, and several demonstrations were made for one-dimensional plasmas (CELEST)

13].

The closely-coupled implicit method, which this lecture is going to present, was devised
in early 1984 as an electromagnetic simulation method for multi-dimensional plasmas by




following the intuition that the futureward time-shifted electromagnetic field might act
to preferentially suppress high frequency oscillations in the plasma [7]. Now this method
satisfies the aforementioned three points and additional one that are required to the large-
scales kinetic simulation methods [14]. The technically most characteristic feature of this
mmplicit method, which is implemented in the HIDENEK code! is a direct determination
of the future electromagnetic field using completely implicit, coupled kinetic equations.
Here, a predictor-corrector particle push is not used to obtain unknown current and charge
densities which act as driving forces in the field equations. Hence, these coupled kinetic
equations are named ”closely-coupled field-particle (CCFP) equations.”

Another type of the implicit electromagnetic particle simulation method which is called
the direct implicit method was developed at Livermore National Laboratory and the Uni-

versity of Texas [15,16]. This method constructs a high-accuracy low-pass time filter by
combining the electric acceleration of a few time levels in the equations of motion to control
numerical damping of high-frequency waves in the plasma. The future current density is
explicitly predicted by pushing particles and is implicitly corrected later in the field equa-
tions. A recent progress in the filtering technique is found in Reference [17]. Basically, the
direct implicit method has the second-order (or more) accuracy in time, however, it suf-
fered from substantial and monotonic loss of the particle kinetic energy during the course
of the two-dimensional simulation [16].

The gyrokinetic particle simulation method [8] which was motivated at the Princeton

Plasma Physics Laboratory is conceptually different from the implicit particle methods in
that it derives reduced field equations by gyro-averaging the ion response under assump-
tions of smallness on the wavelength and frequency ky/k; < 1, w/w,; < 1 and those on
the amplitude of the electromagnetic field. Many insignificant terms are removed from
the original kinetic equations. Efficiency and accuracy of the simulation are therefore
quite reasonable when the ordering assumptions are satisfied. However, when the as-
sumptions become marginally satisfied which occurs with large electrostatic disturbances
eép/T. ~ O(1) at the plasma edge, for example, or magnetic perturbations § B/ By ~ O(1)
at the magnetic reconnection, many correction terms are required to make the simulation
physically meaningful.

As possibly a comparable kinetic simulation method with the implicit particle methods,
the hybrid particle code with particle ions and massless electrons is sometimes used for

the study of low-frequency electromagnetic phenomena [18]. The hybrid code is quite
efficient since the electron kinetic effects are excluded; it is considered to be valid when
the electron inertia effects are completely ignorable. This is the case with a simulation of
the perpendicular magnetosonic shock where the plasma is strongly magnetized with the
magnetic field lying perpendicularly to the simulation plane [19]. However, the hybrid code
becomes increasingly unjustifiable as the magnetic field becomes more oblique or parallel to

'HIDENEK was named after a Japanese god. Also, a word "HIDEN” means magic and secret skills.




the simulation plane so that the electrons are allowed to move along the ambient magnetic
field through an inhomogeneous medium.

1.3 Characteristics of the Closely-Coupled Implicit Method

The essense of the closely-coupled impliéit method is qualitatively described in some depth.
There was a preliminary {"semi-implicit”) version which was first developed and apphed
to variety of large space-scale simulations such as an excitation of the kinetic Alfven wave
and associated plasma heating [20], and current-beam injection and kink instability [21].
However, the time step was limited to w,. At < 1. Qualitatively much improved version
that can deal with “homogeneous” kinetic plasmas in large time-and-space scales was then
developed [7]. The characteristics of the algorithm were extensively studied and its validity
was proved both analytically and numerically in the literature. Recently the latter version
of the code has greatly been upgraded so that it can efficiently deal with high magnetic
field, high-beta kinetic plasmas in large(MHD)-scales {14]. Specifically, the guiding-center
approximation with the magnetic effects has been introduced to the electron motion. The
parallel motion along the magnetic field line is traced as particles in a drift-kinetic fashion
with — VB force included. This enables us the treatment of the diamagnetic and magne-
tization currents while eliminating both the high-frequency electron cyclotron and plasma
oscillations. These time scales are of the same orders of magnitude in the magnetically
confined plasmas.

e Large time-and-space scales: wp At 3> 1, weAt > 1, and Az > cfwp..
¢ Electromagnetic.
e Multi-dimensions in any geometry (Cartesian, cylinder, torus).
¢ Inhomogeneous plasma density and magnetic field.
o, Kinetic:
Tons: Full particle dynamics in 3-D.
Electrons: Parallel direction — 1-D motion with (—uVyB) force.
Perpendicular direction — Guiding-center drift motion.
( E x B, VB, curvature drifts )
[ Resonance effects (Landau, cyclotron, bounce resonances)
Orbit effects: Finite Larmor radius effects
— 4 Diamagnetic and magnetization effects included.
Complicated particle orbits
| Finite speed relaxation due to electron inertia

Table 1. Characteristics of the HIDENEK Simulation.




In a word, the key of the closely-coupled implicit method consists in the complete time-
implicitness. By combining the Maxwell equations with the equations of motion of particles,
the closely-coupled field-particle equations are derived which directly determine the future
electromagnetic field without an auxiliary prediction of the current and charge densities.
These equations are solved in the real {configuration) space because the implicitly-expressed
current and charge densities, which are the major driving terms of the equations, vary con-
siderably in space for inhomogeneous plasmas. This makes the solution in the Fourier-space
difficult and inefficient. The characteristic features of the closely-coupled implicit method
are summarized in Table 1. The fundamentally important feature here is that the low-
frequency electromagnetic waves and structures with wyAt < 1 are properly reproduced,
where wp is their characteristic frequency and At the time step of the simulation. Since
the ions and electrons are handled as the particle species, various particle orbit effects
are well simulated by this method. Moreover, the method works numerically well both
in the linear and nonlinear stages of the plasma processes by virtue of the slightly back-
ward time-decentered scheme. These advanced features make the closely-coupled implicit
method quite suitable for studies of the nonlinear, kinetic plasma phenomena occurring in
large time-and-space scales.

2. Algorithm for Low-Frequency Kinetic Plasma Simulation

This section gives the fundamental equations governing the electromagnetic field and parti-
cle motion in the closely-coupled implicit method. These equations are discretized in time
using the finite-difference scheme. Then, the Courant-condition-free, implicit equations are
derived which determine the future electromagnetic field in a large time step compared to
the electron time scales. Finally, the necessity of an implicit correction to the longitudinal
(curl-free) part of the electric field is discussed.

2.1 Fundamental Equations of Field and Particles

In order to realize a kinetic simulation of plasmas in large time-and-space scales, we in-
troduce a slightly backward time-decentered scheme. The Maxwell equations are used to
describe the electromagnetic field which with time level suffices are written

n+lf2
%(%E) = UxBre = 2 e (1)
c
n+1f2
: (%?) = “VxET (2)
V-E* = gt (3)
vV-B*™* = 0. (4)

Here, E and B are the electric and magnetic fields, respectively, c is the speed of light, and
a is a decentering (implicitness) parameter to be specified later. The current density j and




the charge density g are implicit quantities which are to be expressed as the functions of
unknown electromagnetic fields in Section 2.3.

The equations of motion for the ions are the standard Newton-Lorentz equations except
the time level of the electromagnetic field which are given by

va n+1/2 & nta n+1f2 nta 1

) = Zme) + 6 B 5
dx nil2 nt1/2

(—de) = V] . (6)

The choice of the same time level ¢ = " for the electric and magnetic fields, which is
required to propesly reproduce the Ponderomotive force of the electromagnetic and Aliven
waves (See Section 7.3 of [14]), differs from other implicit algorithms {11-13,15,16]. By
contrast, the velocity in the Lorentz term must be exactly time-centered to preserve the
cyclotron motion.

For the motion of the electrons, there are two options. The first one is to use the
Newton-Lorentz equations, Eqs.(5) and (6), as for the ions, which allows us a fully-kinetic
simulation of the plasma. However, to retain the cyclotron orbit effects such as diamagnetic
drift and magnetization currents, a rather small time step we.Af ~ O(0.1) is required. On
the contrary, we choose the second option of introducing the guiding-center approximation
in order to eliminate the electron cyclotron time-scale w.!. The equations of motion
are decomposed into the parallel and perpendicular components with respect to the local
magnetic field, which are given by

d'U"] mHl _— (—6) 4a (“J a n+ta
( dt ) = )b ) 5‘zuB 2
E x B\"™ mec t ob
nt+a __ e Hi 2 77 Jyn+ta
VJ'J - C( B? ) + {(—GB) b X (meVB+ U"J 3.’1:") ’ (8)
dx. n+1f2 .
(3 = e ©

In Eq. (7) vy, is a scalar velocity (sign included) along the magnetic field and p; =
( SV, ; /B(XJ)) (= const.) is the magnetic moment of the j-th electron with v ;
being its thermal veloc1ty The unit vector along the magnetic field line b = (B/B) is
defined locally at each particle position. The three terms of Eq.(8) represent the £ x B,
gradient-B and curvature drifts, respectively.

It is important to note that the time indices of each term in Eqs.(7)~(9) must be
consistent with their counterparts in the Newton-Lorentz equation. For example, the time
level of the perpendicular velocity in Eq.(9) should be ¢ = t™**. Otherwise, the electrons



and ions would show different responses (£ x B drift, etc.) to the low-frequency component
of the electromagnetic field. The vector "parallel” velocity in Eq.(9) is defined by

n+lf2 n+1f2 1 nta
vl = o ey, (10)

The parallel electric field and the differential operator are defined, respectively, by E""“’ =
(b -E"*°) and 8/8zy = (b™**- V). (Refer to the paragraph in Section 2.2 contalm'ng
Eq.(13) for the proof)

The parameter o appearing in the Maxwell equations and the equations of motion
controls the degree of numerical damping of high- frequency oscillations. The parameter
a must be always larger than 1 and in the range ¥ < o < 1. As is shown in [14], the
decentering of the time level in the curl terms of Eqs.(1),(2) causes damping of high-
Irequency light waves. Attenuation of high-frequency electromagnetic and electrostatic
waves with wAt > O(1) which arise from the plasma responses is accomplished by the
decentering of the electric and magnetic fields in the equations of motion [7]. Since a
large time step wp.At 3> 1 is generally used, the Langmuir oscillations are eliminated.
A discussion is found in Reference [14] about how the numerical stability and energy
conservation of the simulation are affected by the choice of the parameter c.

2.2 The Field and Particle Equations in the Finite Difference Form

The field and particle equations given in Section 2.1 are time-discretized using the finite
difference scheme. The first equation of motion for the ions is written

vt = vy +At [E"+“+(v"+1"2/ ) x B**), (11)

i)

where At is a time step and the veloc1ty is defined on the integer time level as well as
the position of the particles to be mentioned later. The tilde quantily stands for the
field that is evaluated at the predicted particle position %, using the linear interpolation
(area-weighting) of the field value which is defined on the neighborhood grids Xg,

xJ) Z E{x,)$ X,). (12)

Here, S(x) is the weight function satisfying [ S(x)dx = 1 which acts to connect the particle
(Lagrange) and field (Eulerian) quantities. The "predicted” position to evaluate the electric

and magnetlc fields is the mid-point of orbits which is defined by % '”“/ e X7+ 34 vn(;)l 2

where v, (0) ? is the velocity calculated by means of only the known field values at ¢ = =,
The choice of the mid-point is particularly important for the magpetic field in the Lorentz
term of Eq.(11) to avoid fictious drifts of particles. For the trapped particles, a special care
might be required to predict their future positions accurately around the turning points.

We solve Eq.(11) in terms of vi*! using the interpolation v*+1/2 = v+ vt o
obtain

Vn+1 = V?-{-—Ati {(En+a+ x Bﬂ+ﬁ) +92ET+Q
m;



+0 (En+a + VTJ % ﬁn-l-a) * 'Bn+n:}/(1 + 92)’ (13)

nt+l __ n ntlf2
T o= xf+Aatv, (14)

where EE*“ = (Erte.prte) hrie 9(x) = %At(e;/m,-c)|~B|"+°. It is mentioned in passing
that the first term in the right-hand side of Eq.(13), v/, has been intentionally separated
out of the denominator (1 + ©?) which includes the future magnetic field B™**. In the
16| > 1limit which corresponds to the guiding-center approximation, the first-order terms
yield

n ~ n € fan 1 nnta vy Rn+a i nte
o vJ+At;niJj{EH+°‘+6(E* +TJxB+)xb+}. (15)

Decomposition of the parallel and perpendicular components in terms of the direction of
the magnetic field b gives

vﬂ&_—}—l o CEn+a XBn-}a/Bn+a (16)
2 a4 AL (BB, (17)

)

These are the leading terms of the guiding-center equations of motion Eqs.(7)—(8).

The equations of motion for the electrons Eqs.{7)-(9} are similarly discretized in time
and are given by

ntl _ ,m AN AN
U"j = 'c’)|h~ -+ At ((-TYZ) EiT - (r_n:) E"B a) ) (18)
= x4 AL et (19)

The perpendicular velocity is a function of the future electromagnetic field as specified by
Eq.{8), and the direction of the parallel velocity is defined with respect to b™* by Eq.(10).

The Maxwell equations are discretized with respect to time and are written

E*t — E® = AtV x B*® — 4xAt jtHe, (20)
B _ B" = —cAlV x E™*, (21)

In order to avoid the Courant condition which severely restricts magnitude of the time step
against the given space grid intervals, we eliminate B"*! from Eqs.(20)(21) to derive an
implicit equation for E***, During this algebra, we use for E*** the linear interpolation
of the field quantity to the non-integer time level

E*t® = oE™ 4 (1-o)E%, (22)

and a similar interpolation for B**. This procedure yields the equation to determine the
future electric field E"*,

[14 (acALPV x Vx B = [1- ol — a)(cAt)?V x Vx] E*

23
4 cALV x B® — 4xAt jrte. (23)



Here, the ¥V x B™* term has been split to the V x B” term and the V x V x E terms
which appear on the both sides of Eq.(23). The functional form of the current density in
the right-hand side of the equation is to be specified in Section 2.3. The future magnetic
field is obtained using Eq.(21) once E**! has been known.

It is noted that, since the inequality {cAf/3)? 3> 1 holds (Vx =~ 1/X), Eq.(23) is
essentlally decomposed intc the magnetic component V x B"+* = (4z/c) 757 and the
electrostatic component E}*' = E} — 4w At j2*, where (T) and {L) denote the transverse
{solenoidal) and longitudinal (curl-free) parts, tespectively. The latter equation is equiva-
lently transformed into (p™*' ~ p*) /At + V- j2*% = 0 by using Eq.(3). A deviation of the
longitudinal electric field B}t from the true electric field obtained by V - E**! = 45p™#!
needs to be adjusted later. As has been instructed here, the unity terms in the square
brackets make a significant contribution to the electrostatic part and cannot be ignored.
Despite of simplicity of the decomposed equations, however, we do not use them in the
simulation. The reason against them is that the above magnetoinductive (Darwin) algo-
rithm requires a complete separation of the transverse current Jr (V- jr = 0) from the
longitudinal current jz {V x j. = 0). This is a non-trivial operation in the real-space and
for the implicit current density given in the next subsection; an incomplete decomposition
of the current components leads to poor accuracy and numerical instability.

2.3 The Closely-Coupled Field-Particle Equations
2.3(a) The Time-Implicit Equations for the Electromagnetic Field

To obtain the future electromagnetic field by Eq.(23), the current density must be specified
to have a closure of the equation. A prediction of the current density in the Maxwell
equations is the key of the implicit algorithm which must be nonlinearly stable against a
large time step. (A prediction without suppression of the high-frequency plasma oscillations
may fail for wy.At > 2.) In the present algorithm, the current density is directly expressed
m terms of the future electromagnetic field with the aid of the equations of motion:

jn+a(x) E ejv;z-l-as(x — )—(;H-a)
3

= Z e [VP+ aAt—— {(ﬁ}’”" + Y X ﬁ”’“"‘) + QZE"““’
c

7=t m

I v; n N snta
+9(E+ +?JxB+ ) x b"*°}/(1+ 0%)] S{x — x1**)

+ Z( {U"J + alt ((;—j) EI’I“M - (“J ) a‘zIEBuw)} prta

M

. v"*a(_nﬂ"z)] S(x—%*) — ¢V x ¥ pbrres(x %), (24)

i=e
where ©(x) = L A¢(e; /mic)|B|"** and v1i7* is given by Eq.(8). The last term of Eq.(24)
accounts for the magnetization current jy = —cV x (pff)b/ B) of the electrons under the

10




guiding-center approximation. The symbols ¥ _; and 3° ., denote summations over the
ion and electron species, respectively. As before, the electromagnetic field with the tilde
is evaluated with the weighting scheme Eq.(12). The time level of ¥, should be again
t = #"*® to be consistent with the ion cross-field response. The basic unknown quantities
in the right-hand side of Eq.(24) are E**! and B™*.

Substitution of the implicitly-expressed current density Eq.(24) into Eq.(23) yields the
matrix equation to determine the future electric field E**?,

A, B = S (Er BY EM BT, (25)
The matrix A, on the left-hand side represents a vacuum response which is defined by
A, = 1 + (acAt(VV —1V?), (26)
and the source vector S, on the right-hand side is given by
S, = [1-a(l-a)(cAt)’(VV - V*)] E" +cAt V x B

— 4mAL e [v) + alife,/m,) (E’”" + V?J X f’n’”’“)

1=t

J(1+0%)] S(x—-x7t) + ----- }- (27)

The symbol VV denotes a dyadic operator and 1 the unit tensor. (Refer to Section
2.4 for further modifications of the above equations.) The equations (25)-(27) and (21)
constitute a closed set of the Courant-condition-free, implicit equations to determine the
future electromagnetic field. These equations are named ”closely-coupled field-particle
(CCFP) equations” after their nature of nonlinear coupling of the fields and particles.

2.3(b) A Correction to the Longitudinal Electric Field

The third and fourth Maxwell equations, Eqs.(3) and (4), are the conditions to determine
the initial value of the electromagnetic field, and they need not be used mathematically for
t > 0. However, it must be noted that the time-decentered current density in the Ampere’s
law, which was used to eliminate high-frequency electromagnetic modes, does not satisfy
the continuity of charge density. In fact, a net correction to the electric field is required
which is done in the following manner. We put the true electric field E**! as a sum of
the electric field before the correction E™*! (the solution of Eq.(25)) and the longitudinal
(curl-free) correction which is a gradient of the scalar function 6¢,

En+1 — i:ﬂ'f'l _ V&(p‘ (28)

Then, after combining the continuity equation and the Ampere’s law, a finite-order cor-
rection equation for &y is given by

Ve = 4mAt V- (I _grtey, (29)
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The magnitude of the correction is estimated to be

Vip o —dr(a- 1)(m)ﬁv - Jriz
2 ot
1
= dn(a— )AL (i At)V = bl (30)
k

Remember that the right-hand side is a function of p. Although wyAf in Eq.(30) is a
small quantity for the resolved modes in the implicit simulation, it is inevitable for a > 1 /2
to make the "divergence correction” to the electric field that has been obtained by solving
the coupled field-particle equations of Section 2.2.

Actual correction is made by substituting Eq.(28) into the Gauss’s law (3) which in-
cludes the charge density p"*!. This yields the equation to determine b,

—V¥p = 4np*t! — V. EH (31)

Again, the charge density p"*! which is not known at this moment needs to be obtained in
an implicit fashion to realize a large time step simulation. For the purpose of separating
out the correction part, the following expansion formula is utilized [23]. The charge density
is expanded in terms of a small displacement due to the correction electric field Ve,

) = ) e Sx-xpt)
7
2 7
The displacement is defined by éx, = x;‘+1 —x_';‘('{)l with x;’” betng the true particle position

at £ = "1 and x;‘(*{)l the position calculated using the already known electromagnetic field

E**! and B!, The displacement of the ions, for example, is calculated to be

5 = _la(my‘%{vaw Vspx 06" + 0°Visol/(14 0,  (33)

2

Where the vector operator is defined by Vj = b™* (b***. V). Since the final magnetic
field has already been determined at this step together with f)"“, the displacement éx,,
hence the charge density g"*!, is solely a function of . By substituting Eq.{32) into
Eq.(31) and shifting the 6¢-dependent terms to the left-hand side, we obtain the equation
to determine the correction scalar potential §yp,

Vise + éa(At)QV - (w;-(x){Vc?go—i— 0°V)6p + OVép x b}/(1 + 6?)
+ w2, (x) V"é(p) + dn(—ejealri V- (Vép x (b/B) n,(x))
= —4rp"t 4V B (34)

Here, p"*'(x) = ¥, ¢,S(x — X)) and o,(x) = dmn,(x)el /m;. In Eq.(34) the vacuum
response 1s mostly shielded by the plasma dielectric response. It is mentioned in pass~
ing that, in a two-dimensional plasma with an ambient magnetic field perpendicular to
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the simulation plane, the major terms on the left-hand side are Ja(At)?V - (w2, Vig) +
4m{—e)calrt V- (Vép x (b/B} n.). The ion term, which is (1/2)wA¢ times that of the
electron term, must be numerically resolved in order to make the right correction to the
electric field.

The procedures of the implicit-particle simulation described in this section are sum-
marized in the Appendix. The particles are first generated in the Cartesian (X, V) space.
After collecting the current and charge densities, 3 and {9, the initial eleciromagnetic
field is determined. Using this magnetic field, the electron velocity is converted from the
Cartesian to (u, v, v)) representation. Then, a time cycle of the simulation begins, which
is divided into two steps. Step I: For the future E/M field, solve the coupled field-particle
equations in an implicit fashion. These equations are derived by combining the Maxwell
and Newton-Lorentz equations. Step II: Push particles explicitly using the E/M fields
calculated in Step I, and update particle informations.

In Step I, the current density j and the number densities n;, n. of the ions and electrons
are summed up. The electromagnetic field E**! and B**! are solved using the CCFP
equation Eq.(25) and (21). Next, the charge density 7 and the particle number densities
at the time ¢ = t"*! are summed and the correction to the longitudinal part of the electric
field is made using Eq.(34). Then, in Step II the velocity and position of all the particles
are advanced by a full time step to proceed to the new time cycle.

2.4 Brief Notes on Numerical Techniques

Before closing this section, it is mentioned that advanced numerical techniques are required
for solving the elliptic-type implicit equations. Also, it is essential to decouple the unknown
electromagnetic field from the summations in the coupled field equation in order to make
the whole scheme practical in actual simulations. The following accuracy-preserving for-
mula is applied to the coupled equation,

Z fJEn+a(xj)S(x —x,) = z fj{a(ﬁ}n"'l(xj) - EI(XJ)) + l330(){_7)]’ S(x —x,) (35)
F 2
& aF()(E(x) - Bi(x) + X fBo(x,) S(x - x;) (36)
7
where E; is a quantity which is expected to well approximate E**! and Eq = oE; + {1 ~
«)E". Using the above formula, Egs.(25)-(27) given in Section 2.3(a) are rewritten
A(n;,ne; B**Y) E*T! = S(E,B";B ). (37)
Here, the matrix A includes both the plasma and vacuum terms as defined by

A = 14 (@eAP(VY-1V?) + D
D = (aAt)? (wfu-(x){l — 8b™*° x 1 + ©%(bb)***}/(1 + ©7?) (38)
+ wﬁe(x)(bb)"‘**“) — 47(—e)cadt (n.(x)}/B) b*** x 1,
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where (bb) is a dyadic tensor and 2, (x) = 47n,(x)e/m,. The future electric field E**!

is removed from S, to obtain the new source vector
S = [1—-oa(l—a)(cAt)’(VV — V)] E* + cAt V x B*
+ DE; — 4nAt {d e, [vI + abt(e;/m,) (EO + ﬁ“*“)
‘ c

1=t

[(1+0%)] S(x—x7*2) + .- } (39)

When E; is chosen independently of the iteration which is executed to solve the coupled
field-particle equations, the summations in Eq.(39) need to be calculated only once before
the commencement of the iteration.

A large set of algebraic equations thus derived is solved with aid of a bi-conjugate
gradient (BCG) method [25]. In the BCG matrix solver, a recursive solution converges
steadily to the final solution which is to be obtained in a finite number of iterations.
Practically, a convergence of the BCG solver depends or the method of preconditioning
the original matrix. A block-type BCG solver prescribes the 3 x 3 core matriz elements
simultanecusly as a block; the core matrix corresponds to the diagonal element ¥, =
(B, Ey, E;)yyk. On the other hand, a scalar-type solver preconditions each tow of the
matrix separately. The block-type solver converges much better than the scalar-type one
when the skewed symmetric elements of the core matrix, which arise from the E x B drift,
are predominant over the diagonal elements. The accuracy of the solution obtained by the
BCG method is quite satisfactory, and, therefore, the reliability of the nonlinear ¥-iteration
and the simulation itself have improved dramatically (Section 4).

Finally, for the choice of the time-decentering parameter o and its consequence on the
energy conservation, refer to Reference [14].

2.5 Measurement of MHD Eigenmodes in 2-D Plasmas

The implicit particle code HIDENEK described in Section 2 is examined by measuring
the MHD eigenmodes in a two-dimensional homogeneous plasma [7]. Initially, the ions
and electrons are loaded randomly in space; in the velocity space they follow the Maxwell
distributions of given temperatures. The simulation system is periodic both in the z and
z-directions with an ambient magnetic field applied in the z-direction. The parameters
are Weefwp. = 1, f. = 0.04, T;/T. = 1 and m;/m. = 100. A simulation run is performed
during which the electric and magnetic field data are sampled. After the run, those data
are Fourier analyzed to obtain the dispersion diagram in the w — k space.

Figure 1 shows the dispersion relation for (a) parallel propagation, and (b),(c) perpen-
dicular propagation. The magnetic perturbations are used for panels (a) and (b), and the
electric perturbation for (¢). The ordinates in the figures are the frequency w/wpe and
the abscissas are either the parallel wavenumber cky /w,. or the perpendicular wavenumber
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cky/wpe. The power amplitude of the measured electromagnetic perturbations for given
(k,w) are plotted to the right of each baseline (fixed % value) in a logarithmic scale.

In Figure 1{a) of the parallel propagation, we can see two series of power spectrum
peaks. One goes up to the higher end of the frequency in the diagram and the other
levels off to the ion cyclotron frequency at wyi/wy = 1072, An MHD-theory for the Alfven
and whistler waves are shown with the sclid and dashed lines in the figure. Agreement
between the measurement and the theory is quite excellent. The dispersion relation for the
perpendicular propagation is shown in Figure 1(b). This time, we have only one eigenmode
which is the fast magnetosonic wave. The theoretical value is shown with the solid line.
The agreement is again excellent. Shown in Figure 1(c) is the case of oblique propagation.
The upper eigenmode corresponds to the fast magnetosonic wave, and the lower one to
the kinetic Alfven wave [4]. The eigenmode branch of the kinetic-Alfven wave looks faint
because this is a damped wave due to electron Landau damping.

3. The Electromagnetic Ion Beam-Plasma Instability

The first application of the closely-coupled implicit method to the low-frequency nonlinear
plasma phenomena is a one-dimensional simulation of the electromagnetic ion beam-plasma
instability. When a tenuous ion beam propagates along the ambient magnetic field through
a dense background plasma in a velocity faster than the Alfven speed v4, the electromag-
netic ion-ion beam-plasma instability is excited [26]. The instability was investigated in
connection with the diffused solar wind ions reflected from the earth’s bow shock. A
hybrid-particle simulation with particle ions and massless electrons was performed to find
the origin of these ions [27)].

The dispersion equation for the electromagnetic ion beam-plasma instability is given
by [26,27)

2 212 E : 2 “ v & & 4 I ¢l
_ + . = 0

2m, )12, w,, = ¢,B/m;c are the plasma and cyclotron frequencies of
the j-th species, respectively. Z(£) is the plasma dispersion function, v; = (2T, /m,)'/? the
thermal speed and Vj; is the drift velocity along the ambient magnetic field. There are two
unstable roots to Eq.(40) which are either resonant (kV; > 0) or nonresonant (kV; < 0).
The resonant mode has a larger growth rate and its typical frequency, growth rate and
wavenumber in the Vz/v4 3> 1 and mp/np < 1 limit are w, fwg ~ 0.2, w;/wg ~ (ny/2ne) /3

and kV;fws ~ 1, respectively, where n, is the density of the beam ions.

where wp, = (4wn,e

Formerly, the hybrid simulation with particle ions and massless electrons used to be
a major tool of simulating the low-frequency electromagnetic waves and instabilities. Im-
plicit assumptions behind the hybrid simulations are (1) the quasi charge-neutrality of the
plasma, (2) no electron orbit effects, and (3) instantaneous relaxation (adjustment) of the
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electrons. Since the electron inertia and orbit motions are ignored, particle and energy
transport of the electrons along the magnetic field is beyond the scope of the hybrid sim-
ulation. This situation occurs, for example, in the parallel shocks where the electrons are
allowed to move freely along the magnetic field. By contrast, in the closely-coupled implicit
method, the electrons are treated as independent particle species so that their relaxation
along the magnetic field is naturally taken into account.

The parameters chosen in the HIDENEK simulation are the ion beam speed V; = 10u,,
the beam density n;/ng = 0.015, the ambient magnetic field strength Weefpe = 1073, and
the electron plasma beta 8, = 87n.T./B? = 1 [28]. The electron and ion temperatures are
the same, 7,/T, = 1. The system is periodic along the ambient magnetic field {z-direction)
with the length L. = 2560c/w,. and 128 space grids. The mass ratio is m,/m, = 100 and
the number of particles for each species is 16,384. The time step is w,.At = 2500. The
decentering parameter is &« = 0.6. A numerical filter is not applied. These parameters
correspond to wuAt = 2.5 x 102, v, At/Az = 0.13, and Az/X, & 3 x 10* with X, =
ve/v2w,e being ihe Debye length.

Figure 2 shows the time histories of the perturbed magnetic field energy, the kinetic
energies of the beam and background ions, and the parallel kinetic energy of the electrons.
The instability grows exponentially and the magnetic field energy peaks around w,,t ~ 70.
The electric field energy is roughly (u4/c)® times that of the magnetic field energy. Later
the magnetic energy decays to a quarter level compared to the primary peak, and small
peaks follow the primary one periodically. Large decrease in the beam kinetic energy occurs
in coincidence with the growth of the instability. The background ions are heated roughly
by 20 percents, but the electrons are hardly affected. As is found by comparing Figure
2(a}-{c), the beam kinetic energy is mainly converted to the magnetic energy and to some
extent to the background ions at the growth of the instability and vice versa during the
relaxation oscillations.

The large decrease in the kinetic energy of the beam ions is attributed to the decrease
in the drift speed (Figure 3(a)). Except for a temporary recovery of the beam speed at
wet ~ 90, the beam speed continues to decrease. This teveals that a part of the drift
energy irreversibly goes to the thermal energy of both the beam and background ions.
Conservation of the total energy slightly degrades at the growth of the instability. However,
the total energy deviates by 5% during the saturation of the instability and it recovers to
within 2% in the later times.

The electromagnetic field at the saturation time of the instability wt = 80 is shown in
Figure 4. The observed wave that is excited by the instability is circularly polarized and
is consistent with the linearly most unstable mode (m =4 ~ 5) of the electromagnetic ion
beam-plasma instability. The electric field looks somewhat jagged because the numerical
filter has not been applied. But, the phase relation between the corresponding pairs of the
electromagnetic field looks fine, i.e., B, ~ ~E,, B, ~ E,. The frequency and the growth
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rate are measured to be w/wy 2 0.22 + 0.15: for the mode m = 5 which are in reasonable
agreement with the theoretical value w® fwy = 0.23 + 0.19%i.

The nonlinear behavior of the beam ions is shown in the particle scatter plots of Figure
5. The ions sitting initially around V3 = 10u, (Figure 5(a)) are significantly affected by the
instability as shown in Figure 5(b) for wat = 80. Obviously, the average beam speed has
drastically decreased. When viewed in the (v,, v, ) space, the beam ions are scattered in the
pitch-angle; they finally become equally distributed along the arc whose center is located
on the v; = 0 axis at (v4,0). Formation of the equally distribuied arc is clearly seen at
wet = 200 in Figure 5(c). As noted previously, the electrons behave almost adiabatically.
Although the electrons carry substantial £ x B current in the perpendicular direction, they
are hardly affected and heated by the instability simply because the wave frequency is by
orders of magnitude smaller than the electron cyclotron frequency, w/fw.. < 1.

Before closing this section, a comparison of the present results with those of other
implicit and hybrid particle codes is briefly made. The difference between the HIDENEK
and CELEST codes is that the former chooses the magnetic field B*** in the equations
of motion and optionally the guiding-center approximation to the electrons, whereas the
fully kinetic electrons and B" are used in the latter [13]. The hybrid simulation requires
artificial viscosity to control (damp out) spiky oscillations in the perturbed magnetic field,
especially when the ambient magnetic field lies close to the simulation plane [27), which
makes the simulation results somewhat artificial. Despite these differences, the growth
and saturation of the instability and associated nonlinear results such as scatiering of the
beam ions and decrease in the beam drift speed have agreed generally well among the three
simulations of the electromagnetic ion beam-plasma instability. The detailed comparison
will be made elsewhere.

4, The Kink Instability in the Three-Dimensional Space

The most challenging and stringent test of the HIDENEK code will be a simulation of low-
frequency instabilities which occur in the finite-beta, inhomogeneous plasmas of the three-
dimensions. The diamagnetic particle drift and magnetization currents are important to
maintain the pressure-balanced plasma profile. Moreover, in the three-dimensional space,
the E x B drift works in a subtle way so that it causes a motion of charged particles across

the magnetic field leading to a coupling of electrostatic and electromagnetic components
of the electric field.

A three-dimensional simulation of the Alfven critical current [29] for the relativistic
electron beam was carried out previously by using the semi-tmplicit version of the closely-
coupled implicit method; the kink instability was observed there [21]. In this section, the
closely-coupled implicit method described in Section 2 is applied to the kink instability of
the current-carrying beam which has an inhomogeneous peaked-density profile.

The simulation is performed in the Cartesian space (2,9, 2, ¥s, vy, %;). The size of the
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simulation box is L, = L, = 100¢/wpe and L, = 2000¢/wy, with 27 x 27 x 32 grids. The
z and y-directions are limited by conducting walls and the both ends of the z-direction
are periodically connected to each other. The average number of super-particles per cell is
sixteen for each of the electron and ion species, which amounts to 320,000 electrons and ions,
respectively. The initial plasma has a bell-shaped density profile, ng(r) ~ exp[—(r/L.)?],
with L, = 37¢/w,, where r is the radia} distance from the center of the poloidal {z, y} plane.
There is a vacuum region between the plasma and the wall. The constant magnetic field
is applied in the z-direction along which a drift velocity is given to the ions to maintain
the peaked, inhomogeneous plasma profile by the magnetic pressure. The drift speed
and the plasma temperatures must be consistently chosen so that the pressure balance
n(T. + T:) + B?/8r = const. be satisfied radially. Otherwise, a rapid pinch (or expansion)
of the initially-loaded plasma results in the finite-beta plasma simulation.

Other parameters are the ambient magnetic field strength w{® /w,. = 1, the temperature
ratio T,/7, = 1 and the electron beta value B = 8=, 1. /B? = 0.04. The mass ratio is
m,/m. = 400 and the time step is wpeAt = 100 (t.e., wuAl ~ 0.25). The implicitness
parameter is o = 0.6. The safety factor of the plasma, which is the ratio of the number
of toroidal rotation of the magnetic field line to that of its poloidal rotation, becomes
¢”(r) ~ 0.6 at the radial distance r = Ly. Thus, a helical rotation is initially present in the
magnetic field structure (not in the current). By contrast to one-dimensional simulations in
Section 3, a digital filter is introduced to smooth the source terms of the CCFP equations.
The digital filter helps to reduce the fluctuating electric field level arising from a grid-to-
grid scale charge separation of plasma particles for which the finite spatial-differencing does
not have a correct resolution. The weight of sampling for the consecutive five points along
one direction is (—1/16,4/16,10/16,4/16,-1/16) (cf. Appendix of [5]) and the digital
filter is applied once to each direction in a tri-linear fashion .

The simulation run has been continued up to wWpet = 2.6 x 10* or ¢ = 3.574. Here, the
poloidal Alfven time is defined by 74 = 21,/ Vap ~ T4 x 10%0;} with v, = B, /(4xm;n)!/?
being the poloidal Alfven speed. The time history of the magnetic field energy is shown in
Figure 6(a) (the constant part (By)? has been omitted). A sudden increase in the magnetic
field energy takes place at the beginning of the simulation. This is a self-adjustment of
the beam-plasma system because the initial current flows in the z-direction which is not
exactly along the helical magnetic field. The magnetic field energy increases gradually to
¢ = 3.574. The electric field energy is dominated by the component due to the radial
electric field which appears to be almost independent of the instability. The ion kinetic
energy in Figure 6(b) increases slightly during the simulation which is attributed to an
increase in the perpendicular temperature. On the other hand, the electron kinetic encrgy
decreases monotonically which arises from a decrease in the parallel temperature. This
is considered to be an artificial cooling caused by incomplete Debye shielding. The total
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energy of the system deviates about 5% during the simulation as shown in Figure 6(d).

The cross-sectional plots of the current and charge densities of the ions at the mid-plane
(y = L,/2) are shown in Figure 7 for (a} ¢ = 0.2774 and (b) ¢t = 3.274. The left-hand side
panels correspond to the early state after the initial transient motions have subsided. In the
right-hand side panels, we can see a deformation of the beam current which is projected to
the toroidal mid-plane. The dominant mode number of the deformation in the z-direction
is found to be n=1. The whole aspect of the deformation of the beam current is better
observed in the bird’s-eye-view scatter plots of ions and electrons in Figure 8. The top
panel is the plot for the ions at ¢ = 0.2774 and the middle and bottom panels show the
ion and electron species at t = 3.274, respectively. Almost the same spatial distortions
are observed both in the electrons and ions. Here, it is found that the aforementioned
deformation is a helical perturbation which is occurring in the three-dimensional space.

Figure 9 is a hodogram plot of the location of the beam center. The toroidal direction
is divided to eight bins and the positions of the ions (z,,y,} in each bin are averaged. The
number i in the figure is the bin number corresponding to the z-position z = iL,/8. The
center of the circle in the figure coincides with that of the poloidal cross section and its
radius is 3.5¢/w,.. It is seen that, except a strayed and slow movement around 8-1-2, the
beam axis rotates in the clockwise direction toward the positive z-direction. This helical
pitch is the same as that of the initial magnetic field. The mode number of the helical
distortion of the beam axis is determined to be m/n=1/1.

The poloidal component of the magnetic field is shown in the consecutive poloidal cross-
sectional plots at ¢ = 3.274 (Figure 10). The torocidal separation between the two adjacent
cross-sections is ;L.. The center of the magnetic axis (null point of the poloidal magnetic
field) is seen to shift in the poloidal cross-sections. Plotting the locations of the magnetic
axis, as we did for the beam axis, again shows a clockwise rotation of the magnetic axis
toward the z-direction. By considering the plasma geometry used in the simulation and
the fact that the helical deformation of the beam and magnetic field has occurred in a few
poloidal Alfven times, we can conclude that the present instability is the ideal {external)
kink instability [30].

5. The Kelvin-Helmholtz Instability and Plasma Mixing

It has been suggested that the Kelvin-Helmholtz (KH) instability plays an important role in
the boundary layer of the planetary magnetosphere [31,32] and edge plasmas of a tokamak
[33]. Recent calculations using a hybrid-particle simulation code (particle ions and massless
electron medium) suggest that the KH instability is responsible for anomalously fast ion
mixing {34,35]. In this section, early simulation results of the KH instability using an
implicit particle simulation method [13,14] are described, where a special emphasis will be
placed on the kinetic effects to the saturation of the instability and associated particle /
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energy transport across the magnetic field.

The implicit-particle model, in contrast to the hybrid-particle model, includes particle
electrons as well as particle ions. The implicit formulation allows us to simulate a plasma
with large time-and-space scales, At > ;! and Az > c/w,. (3> Ap.), while keeping
electron kinetic effects. The guiding center approximation to the perpendicular motion of
the electrons, as shown in section 2, further permits At >> w! [14].

The simulation is performed for a two-dimensional magnetized plasma [36]. The plasma
is nearly homogeneous, and is bound by conducting walls in the z-direction and periodic in
the z-direction. There is an initial sheared plasma flow in the z-direction, Vo(z), which is
sustained by a Eq{z) x By drift. This electric field, Eo#, is due to a slight difference in the
charge densities between the ions and electrons. The following simulation results are for
the MHD-like parameter p;/a = 0.1, with p; the ion Larmor radius and a the width of the
velocity-shear layer. The ambient magnetic field points the y-direction unless otherwise
specified.

Figure 11 shows the time history of the eleciromagnetic field energies. The electric field
energy F?, which corresponds to the growth of the KH instability perturbation, increases
during (vg/a)t = 0 — 15 (vo: shear velocity). When E? of an early time interval is plotted
in a logarithmic scale, a clear exponential growth of the instability is observed. The line
in the figure shows the linear theory for KH instability which very well fits the simulation
result. As will be shown later, the fact that the electric field perturbation energy is kept
in a comparatively high level during the entire nonlinear stage is important for plasma
mixing. On the other hand, the sum of the total electric field energy E? suddenly starts
to decrease at (vp/a)t = 20 when the instability gets saturated. Since this energy mainly
reflects the magnitude of the “radial” space-charge electric field E,, the decrease means a
relaxation of the velocity-shear layer in the z-directions.

‘Two-dimensional snapshots of the electric field (E,, E,) and the ion and electron current
densities are shown in Figure 12 for (ve/a)t = 0,19.2 and 30.0. The scalar potential ¥ in
the second panel is calculated from the electric field data of the top panel by E = -VV.
As the instability grows as was shown in Figure 11, a few vortex eyes of the KH instability
are seen to develop within the shear layer for the scalar potentials of Figure 12(b). An
inspection of the particle trajectories reveals that the plasma particles are pulled in, rotate
along the scalar potential equi-contours of the vortices to migrate to the other side of the
shear layer. In the late stage of the instability, the relaxation of the velocity-shear layer is
found where the layer expands outward to nearly four times that of the original width of
the layer (Figure 12(c)). This was observed as the decrease in the total electric field energy
E? in Figure 11.

Mixing of the plasma particles with different spatial origins is measured. The definition
of the mixing is the following: At ¢ = 0, particles residing in the upper region {z > a }
are marked red, while the other particles in the lower region {z < —a } are marked green.
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Then, we sample particles from a specific cell at a later time, and if the population of
both the red and green particles exceeds 25% of the total number of particles in that cell,
we define that cell "mixed.” Figure 13 shows a development of plasma mixing. As time
goes on in the nonlinear stage of the KH instability, the mixed cells occupy the regions
encircling the scalar potential vortices which have been formed by the instability.

The plasma mixing rate is quantitatively shown in Figure 14 for ions and electrons.
Here, the ordinate is the number of mixed cells divided by the number of cells in the shear
layer of thickness a. It is found that the plasma mixing develops in the same degree for the
jons and electrons, probably due to choice of the MHD-like parameter p;/a 2 0.1. Also, it
is found that the mixing goes linearly in time which continues during the entire period of
the nonlinear stage. At the beginning of the mixing, on the other hand, there appears a
t2-phase which smoothly turns into the linear (t-) phase due to excitation of multi-modes
in the present simulation.

A very striking discovery is that the (electrostatic) KH instability is confined to the
plane perpendicular to the ambient magnetic field. When a simulation is performed with
a slightly inclined ambient magnetic field (0, Bysinf, Bycos) with § = 10°, the growth
of the electric field perturbation is not observed during the simulation with the other
parameters remaining the same [36]. This pheromenon is considered to be due to the
electron dynamics parallel to the ambient magnetic field. In fact, the parallel wavenumber
is small but finite in this Tun, i.e., k- By # 0. A linear theory implies that the present

stabilization is due to the electron Landau damping when the parallel wavenumber is finite
[37].

Finally, it is mentioned that the present simulations were performed in a collisionless
plasma condition. Thus, the plasma mixing that was observed here does not lead to a
complete mixing in microscopic spatial scales. However, once the two plasma elements
with different origins come close enough and their orbits overlap with each other within
the resolution of the simulation, they are regarded to be mixed. Further mixing will be
caused by diffusion of their guiding centers owing to micro-turbulence which is expected
to prevail in thermally non-equilibrium plasmas. Rather, the mixing which is targetted in
the present simulations is a global phenomenon that occurs through finite Larmor radius
effects of plasma particles.
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Appendix: Procedures of the HIDENEK Simulation

The procedures that constitute one time cycle of the simulation are summarized. The upper
part of the chart shows the initial loading of the plasma particles and the electromagnetic
field. The lower part shows one time cycle of the simulation.

[Initial loading of particles and ﬁelds)

[ Generate particles in (z,y, z, v;, v,,v,) space. l
LAccumula.te J© and p(oﬂ
[ Calculate initial electromagnetic field. l

| Conversion of electron velocity: (v, vy, v,) — (i, v1, ). I

(Start of the time cy@

| Accumulate j, n; and n, of t = t’”"’j

[ Solve the CCFP equation Eq.(25) for E**+! and B"‘Hl_i

[ Accumulate p, n; and n, of £ = "+, ]

| Solve Eq.(34) for 8¢ and correct B+, |

Iikdvance particles to (x™*1, v"+1). i

LPIasma, diagnosis l

IF ¢ <{fyax, and (ctime) < (ctime),,, ,,
GOTO Start of the time cycle

| END |
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Measurement of eigenmodes in magnetized plasma
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Figure 1. The measured eigenmodes in a two-dimensional homogeneous plasma. The

panel (a) shows the eigenmodes for the parallel propagation, and (b)(c) for the

perpendicular propagation.
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Figure 2. The time histories of (a) the perturbed magnetic field energy, (b){c) the kinetic
energies of the beam and background ions, respectively, and (d) the parallel kinetic
energy of the electrons for the electromagnetic ion beam-plasma instability with

vgfva = 10 and ny/np = 1.5 x 1072,

x 1073
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Figure 3. The time histories of (a) the average drift speed of the beam ions, and (b) the
deviation of the system total energy in percent.
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Figure 5. The distribution of the beam ions in the (v,,v,) and (z,v,) spaces in the left
and right columns, respectively, for (a) wyt = 0, (b) wt = 80, and (¢} wxt = 200.
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(¢) the electron kinetic energy defined by W, = %meﬁﬁ + uB, and (d) the deviation of the
system total energy (the constant part (By)? is omitted in e,,).
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Figure 7. The cross-sections (at y = =L,) of the current and charge densities in the
upper and lower panels, respectively, at (a) ¢ = 0.277, and (b) t = 3.27,4.



Figure 8. The bird’s-eye-view scatter plots in the (z, y,z) space at (a) £ = 0.2774 and
(b)(c) t = 3.274. The plots are for the ions except for the electrons in the bottom panel.
The helical perturbation has the mode number m/n=1/1 (note the z-direction has been

squeezed).
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Figure 9. A hodogram plot of the beam axis locations at ¢ = 3.274. The number ¢ shows

the torcidal position z = L, /8.
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Figure 12. The snapshots of the electric field (E;, E.), the scalar potential ¥, the ion
and electron current densities for three different times of the run, (a) (v/a}t =0, 19.2
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Figure 13. Development of "mixed” cells in the (z,z) plane in the nonlinear stage of the
instability for {(vo/a)t = 30 — 60. The definition of the mixed cell is given in the text.
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instability.
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