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Abstract

The transition of a radial electric field from a negative to a positive value is ob-
served in Compact Helical System when the electron loss is sufficiently enhanced by the
superposition of the off-axis second harmonic electron cyclotron heating on the neutral
beam heated plasmas. The observed threshold for the enhanced particle flux required

to cause the transition is compared with a theoretical prediction.
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A radial electric field near the plasma periphery has been found to play an impor-
tant role on the improved confinement such as in the H-mode plasmas{1-3]. Theoretical
models of the L/H transition in tokamaks have been proposed. It is predicted that the
change in the radial eléectric field or in the plasma rotation has a strong influence on
the transition[4-8]. In stellarator devices, the neoclassical theory suggests that the
electric field reduces the helical ripple loss, and consequently improves the plasma
confinement{9-11]. Multiple solutions of the electric field that satisfy the ambipolar
constraint often arise when particle fluxes have a nonlinear dependence on the electric
field. There are generally two stable states in the stellarator plasmas which are called
the ion and the electron roots[11]. In a stellarator reactor, it is an important scenario to
attain the electron root with higher energy confinement time through heating electrons
in the startup phase[9]. In Heliotron-E device, the radial electric field at r~0.7-0.9a is
found to be positive (the electron root) for the low density plasma(r, <1 X 108cm™3),
and negative (the ion root} for the high demsity plasma(n, >2 x 103cm™3)[12]. In
Wendelstein VII-A stellarator, the observed electric field in the plasma with electron
cyclotron heating(ECH) (n.~5 x 10" cm~2) is consistent with a theoretical predic-
tion[13]. In Compact Helical System(CHS)[14], the observed radial electric field is
negative in the typical neutral beam(NB) heated plasmas[15]. The electric field be-

comes more negative near the plasma edge for the higher electron density.



It is generally observed that ECH has an effect of density pump-out both in toka-
maks[16] and stellarators[17,18]. In CHS, it is observed that the particle confinement
becomes worse in the plasma with second harmonic ECH at low field side resonance
than at high field side one[19]. One of the candidates to explain the mechanism of the
density pump-out is the outward flux due to the poor confinement of perpendicularly
accelerated electrons by ECH[20]. In this letier, we present the transition of the radial
electric field from the ion root to the electron root triggered by enhancing the electron
pariicle flux with ECH.

CHS is a heliotron/torsatron device with a pole number of an (=2, a toroidal pe-
riod number m==8 and an aspect ratio of 5. The major radius R is 92cm and the
averaged minor radius a is 19cm. The second harmonic ECH is carried out with the
53.2GHz gyrotron of the maximum pulse width of 100ms. Here, the more than 60
% of the injection power is focused into a beam with a 2.5cm 1/e spot size on the
mid-plane of CHS vacuum vessel with a desired extraordinary mode. The focusing
system is composed of a stair cut Vlasov antenna, an improved reflecting mirror, a
reflecting corrugated polarizer and a steerable focusing mirror[18]. The 7.5MHz ion
cyclotron range of frequency(ICRF) is used for the pre-ionization of plasmas in this
study[21]. The neutral beam is tangentially injected to sustain the plasmas and to

utilize a charge exchange spectroscopy(CXS). Poloidal rotation and ion temperature



are measured with CXS with a time resolution Atcxs = 16.7ms[22]. The radial electric
field is evaluated from the observed poloidal rotation and the ion pressure gradient
using a radial momentum balance equation for a fully ionized carbon. In the momen-
tum balance equation, a toroidal rotation has a little contribution to the radial electric
field, because the toroidal rotation damps due to a viscous damping force caused by
the helical ripple[23].

The second harmonic ECH is superposed tc an NB heated target plasma in order
to enhance the electron particle flux. The density in the NB heated target plasma
is controlled to stay below the cut-off density. The focus point of ECH is located at
r=0.5a in the low field side region, since the enhanced electron flux at the low field
side resonance heating is expected to be larger than at the high field side resonance
heating. A line-averaged electron density decreases with the superposition of ECH. The
enhanced electron flux is controlled by changing the ECH injection power(Prop=85,105
and 140kW). Figure 1 shows radial profiles of electron density n.(o) and temperature
Te{p), measured with Thomson scattering(TS), ion temperature Ti(p) and pcloidal
rotation velocity vg(p), measured with CXS at 15ms after the ECH is turned on for the
plasmas with Pgcp = 85 and 140kW, where p is a normalized radius calculated with
finite 7 equibrium code, VMEC[24]. The experiments for the plasmas with Pgop=85,

105 and 140kW are carried out for the target plasma with a fixed density(~9.5 x



10%cm™3). As a reference plasma, we choose the plasma such that the line-averaged
density is adjusted to be as low as that for the plasma with Prcg=140kW to eliminate
the density dependence of the radial electric field. Radial profiles n.(p}, 72(s), Ti(p)
and v(p) for the reference plasma, and n.(p) for the target plasma are also shown in
Fig.1. The plasmas with Pgey=105 and 140kW rotate in the ion-diamagnetic direction
which means the positive electric field, while the smali rotation velocity is observed for
the target plasma, the reference plasma and that with Pyog=85kW.

Figure 2 (a) shows time evolutions of the line-averaged densities for the target
plasma 12,**(t), the reference plasma 71."*(¢) and the plasma superposed by ECH r,(t).

The profile of the enhanced particle flux Tgcg(p) is deduced from the continuous equa-

tion using the density decay On.(p,t,)/8% after the ECH is turned on(t = t,),

_ e f tane(prntﬂ) !
Ieca(p) = pfo P4, (1)
ane(patﬂ) — Aﬁc(oo) ne(p:tl)_n:ar(p:tl) (2)
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Here, n(p,41) and n.(p, ;) are the electron density profiles measured with TS(t =
t1) for the target plasma and that superposed by ECH, respectively. A (oo} [y is
given by the fitting of An,(t)[= 7(t) — 7.'(t)] as An,(00)[ 1—exp[—(t —to)/7a] ).
Since the gas puffing tates are adjusted as same both for the target plasma and that
superposed by ECH, the difference of the source term AS(p,#)[= S(p,t} — §%(p,1)]

1s neglected. At ¢ = ¢}, H, intensity for the plasma superposed by ECH increases



by about 20% of that for the target plasma due to the degradation of the particle
confinement by ECH. The evaluated profiles T'gcn(p) are shown in Fig.2(c) for the
plasmas with Ppcg=85 and 140kW. The error bars in Fig.2(c) come from the fitted
Ari(co) and 7. Figure 2(c) shows also the profile of the neoclassical flux I'™¢(p)
for the target plasma, which is estimated from the connection formula of neoclassical
transport that covers the whole collisionality regime [ Egs.(6)-(11) in Ref.10 ] by using
the fitting curves for n.(p), T.(p) and Ti(p). For simplicity, we assume a single helicity
model in the theoretical calculations. Both ions and electrons for the reference and
the target plasma are in plateau regime in the whole plasma region. For the plasma
superposed by ECH, although ions are in plateau regime, electrons are in the 1/v
regime ( electron collisionality v, [= (gR/elvy)v] >0.5 ) at p~0.6-0.9. Here, v is the
pitch angle scattering frequency by the collisions, ¢ is a safty factor, ey, is the helical
ripple and v, is a thermal velocity.

Figure 3(a) shows the observed radial electric field profiles for the reference plasma
and that with Ppog=140kW. The large positive electric field is observed near the
plasma edge for the plasma with Pgoa=140kW(~44V cm™ at p=0.82). Figure 3(a)
also shows the radial electric field profiles evaluated theoretically from an ambipolarity
equation|25], TYC® + ['gocg = I'FC. Here, we assume that ECH enhances only electron

particle flux, not ion particle flux. It is noted that the ambipolarity equation gives



the upper limit of the radial electric field on each magnetic surface. The profile of
the calculated electric field is not in agreement with that of the observed electric field
for the plasma with Prcp=140kW. The calculated eleciric field is more positive at
the plasma edge(p >0.8), and is more negative at the core region than the observed
electric field. The ambipolarity equation may contain multiple solutions and causes
the discontinuities in the electric field profile, because it is given on the each magnetic
surface. If the transition of the radial electric field cccurs in the outer region, the electric
field diffuses into the inner region under the influence of the perpendicular viscosity.
Therefore, the theoretically evaluated electric field should become more smooth radial
profile such as that of the observed electric field by taking the diffusion process of the
electric field into consideration. To explain the transition phenomena qualitatively, we
restrict our results to the electric field at p=0.82. Figure 3(b) shows a dependence
of the radial electric field on the enhanced flux Tgcg for various Pgog at p=0.82.
The transition of the radial electric field from a negative(the ion root) to a positive
value(the electron root) is observed at the larger enhanced flux(~4 X 10¥cm=2%~1).
Although the enhanced flux becomes large when the plasma is heated with the higher
Pgcm, it does not change much even though the higher Ppom is injected after the
transition occurs. Since the obtained density and temperature profiles are different in

this power scan experiment, the neoclassical fluxes estimated from the profiles change a



little. The scattering of the theoretical predictions in Fig.3(b) is caused by the change
of the neoclassical fluxes. The ion neoclassical flux strongly depends on the radial
electric field £, and has a peak at E,~0 while the electron neoclassical flux has a weak
dependence on the radial electric field. If the additional electron loss flux T'gcg is small,
the ambipolarity constraint does not affect much the radial electric field. However, if
['gog is increased and becomes large enough to have multiple solutions, the transition
occurs.

Farther technical improvement is required to show experimentally clear transition
phenomena such that the electric field changes dramatically at a critical Ppcy during
ramping up Pgom- As for the theoretical model, we do not discuss the dependence
of the enhanced flux T'gor on the radial electric field. To understand the mechanism
causing the enhanced flux is extremely important but it is the future work.

In conclusion, the transition of the radial electric field is observed by enhancing
sufficiently the electron flux with the second harmonic ECH in CHS. The observed
transition is qualitatively explained by the theoretical model based on the ambipolarity
equation.
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Figure Captlions

Fig.1 : Radial profiles of (a) electron density, (b) electron temperature, (c)ion
temperature and (d)poloidal rotation velocity for the reference plasma and those with
the injection power Prcp=85 and 140kW. The electron density profile for the target

plasma is also shown in (a).

Fig.2 : Time evolutions of (a) line-averaged electron densities of the target plasma,
the reference plasma and that superposed by ECH, ni,t**(¢), ri.**!(¢) and 7.(t), and (b)
the difference, Arn (t)[= 7.(t)—7n"*(t)]. (c) Radial profiles of enhanced fluxes I'zcy
for the plasmas with the injection power Prcg=385 and 140kW, and a neoclassical flux

Y€ for the target plasma.

Fig.3 : (a) Radial electric field profiles for the reference plasma and that with the
injection power Pgocg=140kW. Open and closed circles show observed radial electric
fields. Broken and solid curves show calculated ones. (b) Radial electric fields E, versus
enhanced fluxes T'gog at p=0.82 for the plasmas with various Prcg. Closed circles show

the observed F; and hatched area represents the theoretical prediction.
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