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Abstract

A cylindrical energy analyzer with drift spaces is shown to have a second order
focusing for beam incident angle when the deflection angle is properly chosen.
The analyzer has a possibility to be applied to MeV range heavy ion beam
probes, and will be also available for accurate particle energy measurements

in many other fields.
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I. Introduction

The 30° paralle] plate analyzers of the Proca and Green type!'””), which
posses a desirable feature of second order focus for beam incident angle, have
been traditionally used for potential measurement of magpetically confined
plasma with heavy ion beam probes (HIBP)*~®). The advancement of plasma
confinement devices in size and magnetic field strength has compelled the
probing beam energy to reach the MeV region™. It follows that the operation
voltage has been approaching the practical limit of the Proca and Green type
analyzer.

The cylindrical energy analyzer, whose focusing property is of first order,
has a favorable characteristic that the operation voltage could be smaller than
that of the 30° parallel plate analyzers. A prototype whose design was based
on the widely known 127.3° cylindrical analyzer was built to investigate its
applicability to the energy analyzer for HIBPs®»®), In these experiments the
first order focusing was achieved and had a good agreement with a simulation
result.

If drift spaces are added to both ends of the cylindrical deflector, as in the
Proca and Green type analyzer, the focusing property may be improved to
more than first order. The focusing property should be so excellent as to allow
the spread in incident angles of the probing beams to observe different points
in the target plasma. However, an essential difference between the cylindrical
and the Proca and Green analyzers exists; in the cylindrical one the analyzed
particles enter into the cylinder electrodes where the fringing field effects are
significant. In this article, we will pursue a possibility to improve the focusing

property of cylindrical energy analyzers with drift spaces, and will describe the
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importance of the fringing field at the ends of the cylinder.

II. Mathematical Basis of Charged Particle Motion in Cylindrical
Deflector
1) First Order Equation

The equatiém describing a precise beam trajectory in a centrifugal electric

field {E,(R) < 1/R) is
2 2 3 2

where Ry, 2(= Ry$), ¢ are the curvature of the mean trajectory, the path
length, and the azimuthal coordinate, respectively, and My = R(0)V}(0) corre-
sponds to the angular momentum. The derivation is described in the appendix.

By substituting R(z) = Ro + RoSr1(¢) + Robra(¢) (6ra(¢) < 6ri(8) < 1)
and Vj(¢) = Vi + Vodv into the above equation, the first and second order

equations of ér1(¢), éra(@) are
57{(4) + 26r1(¢) — 26my(0) =0, (2)

br5(¢) + 26ro(g) + K(9) = 0, (3)

where (@) represents the second order derivative, and

K(8) = 36r3(8) — 267,*(¢) — 65my (0)6ry + 386my(0)* — 26m,(0) ,  (4)

5ma(0) = Ar(0) + Av(0) (5)
5ma(0) = Ar(0)Av(0) . (6)

The first order solution of Eq. (1) is easily obtained as
§ruld) = Ar(0) + Si“f¢ar’(o) + (1= cos V2¢)Av(0) (7)
578 (¢) = cos V2¢Ar'(0) + vZsin v2¢Au(0) | (8)
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where Ar(0), Ar'(0), Av{0) represent the initial radial displacement, the initial
slope of the beam dr /dz(0) and the initial parallel velocity along the standard

trajectory, respectively.

11) Second Order Equation
The second order equation described by Eq. (3) is solved by finding the

particular solution. The insertion of the first order solutions expressed by Eqs

(7), (8) into Eq. (4) yields

7 7 V2
K(¢) = (—4—Ar""‘ + §Av2) cos 2v/2¢ — %AT'AU sin 2v'2¢
A2 A 12
——-2U—-—--:;——2ArAv. (9)

Therefore, the particular solution of Eq. {3) is a linear combination of sin 2/2¢
and cos 2v/2¢, and it is obtained as

7 Tv2
bri{g) = (—157"2 + —AUZ) cos 224 — iAr'Av sin 2v/2¢
24 12 12
Ar? /2
+TU+ATT+A7"AU. (10)

With the initial conditions of 6r;(0) = 0, 64(0) = 0, the solution of Eq. (1)

to second order is explicitly written as

57(4) = 6ri() + 6ra() = Ar+ Sm\/‘? Ar' + (1 - cos V24) Av

+ %(TCOS V26 +5)(1 — cos vV2¢)Ar” — %(7 cos V2 + 2)(1 — cos V2¢) Av?

+ 7—gsin V26(1 — cos V28)Ar'Av + (1 — cos V2¢)ArAv . |

(11)




Differentiating the above solution, we obtain
§7'(¢) = 6r,(6) + 674(d) = cos V2¢Ar' + V2sin V2¢Av
+ \/Ti sin v2¢(7 cos V24 — 1)Ar"” - %sin V2¢(14cos vV2¢ — 5)Av?

+ g(Z cos V24 + 1)(1 — cos V29)Ar'Av + V2sin V2¢ArAv .
(12)
According to the conservation law of angular momentum, the difference be-

tween the parallel velocities before and after the cylindrical deflector is given
by

1+6
bu(9) = ( 11 67:) 1
= {1+ Ar+ Av + ArAv)(1 = ér(¢) + 6r2(¢) + -+ -} = 1
- _sin\/\?—qﬁ Ar' + cos vV2¢Av + %2—(1 — cos V24P Ar?
+ %(3 cos V29 + 1)(1 — cos V26) Av? + Sinf;éArAr'
- gsin V24(4 — cos V24)Ar'Av .

(13)
The above expression gives all the information necessary to examine the fo-

cusing property to second order.

i) 127.%° Cylindrical Energy Analyzer
When z/R; = ¢o = 7/+/2 = 127.3°, Eq. (11) gives the radial displacerent

as follows,

Areyi = 67(127.3°) = Ar + 2Av — %Ar’z + g—sz +2ArAv+--- . (14)

The substitution of the conditions of Ar = 0, Ar' ~ 68, Av ~ —§§%/2, into



Eq. (14) yields
Aro(66) = —§592+--- . (15)

The displacement is independent of the beam incident angle §¢ to first order.
Suppose that Ar = Ar' = 0, Av = v # 0, the velocity dependence is obtained
as

5
Areis(60) = 2.060 + 55# e (16)

Hence, the velocity resolution is known to be 2.

II. Fringing Field Effects
i) Model of Fringing Field

Beam particles entering into the drift space with a finite incident angle will
obtain a potential energy at the entrance end of the cylinder, then the beam
velocity will change by the potential according to the radial displacement.
The velocity change will have a significant effect on the trajectories. Thus, an
appropriate model of the fringing field is necessary to investigate the focusing
property and the resolution power of the cylindrical energy analyzers.

In the vicinity of the cylinder entrance along the standard beam trajectory

identical with R = Ry, the potential is expanded in Taylor series
¢(z, y) = Az + By + Ce® + Dry+ By’ + -+, (17)

where z, y are associated with r, r¢, respectively. If the entrance plane is
assumed to coincide with y = 0, the following restraints are imposed on the

fringing field,

(1) On the entrance boundary, ¢(z, 0) = —¢(—=z, 0), E.(z, 0) = —Fy,
Efz, 0)=0.



(2) Fringing field is confined within the region of —6 < y < 0, and on the
boundary E.(z,—-6) = 0.

(3) On the standard trajectory identical with z = 0, the electric field points

to the radial direction, that is, E,(0, y) =0.

(4) In the vicinity under consideration, the effect of the cylinder curvature
is neglected, thus, the potential satisfies the Laplace’s equation in the

Euclid coordinate,
_¥ P

Ap=o—+ o = 0. (18)

The fringing electric field satisfying these restraints is given by

E
¢ent(ma y) = Egﬂ: + ?Oﬁy 3
E
(e, 9)=—Bo- 2y, (-5<y<0)
E
E;m(:t:, y)= —-TO..": .

(19)

ii) Charged Particle Motion in Fringing Field

The equation of the charged particle motion in the above electric field is

described as 2 5 £
T
m—z=—q-=—qE—q—y,
&y gk
a5

By introducing new variables £ = z 4y, 7 = z — y, the equations are trans-

formed into

{ é: _a"—ﬁz‘f 3
(21)

ﬁ=_a+ﬁ2n)
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where o = ¢Eo/m, f = \/¢Ey/mé, and ¢, 7 mean the second order derivatives

with respect to £.

For the charged particle with the initial conditions of ., {0) = €, &, (0) =

Uz, Yeut(0) = —8, Jens(0) = v, the motion in the field is expressed as

Zent(£) = €B7F (BE) + %@:‘(ﬁt) - %@:(ﬁt} ,
Yem(t) = —e7(81) — %‘*’@:(ﬁﬂ + %‘I’?(ﬁt) -5,
Tems(t) = PP (B) + v DT (Bt) — v, (1) ,

gent(t) = —Eﬂq’j(ﬂt) - szb:(ﬂt) + vﬁ@:(ﬁt) 3

where

2 2

¥%(z) = (Sﬂi_) o) = (@ML_) .

(22)
(23)
(24)

(25)

(26)

Similaly, if the fringing field at the exit of the cylinder is assumed to be

E
¢exit(zr y) = EU‘T - Tozy 3

. E
E::Mt(zz y)=_E0+_0y, (0<y<6)
&

exi Eo
Ey t("“;1 y)=—c.

&

the beam motion is described as

zes(t) = £B2(00) = 63 (1) + Z (1) + S8 (61)

Yexit(£) = 6B (B) — 53} (Bt) + =87 (1) + 20} (Bt) + 6 ,

g g

dext(t) = €B®; () — 66D (Bt) + v: 07 (Pt) + v, B (B) ,

Yexit(t) = AT (B) — 58P (Bt) + v, BI(Bt) + v, BF(B) ,

(27)

(28)
(29)
(30)
(31)

with the initial conditions of 2¢4{0) = &, Zext(0) = vz, Yexit(0) = 0, Fexst(0) =

Uy-




i11) Changes of Beam Parameters due to Fringing Field

The changes of beam parameters are estimated as

- , _ #{(8/v) _
Areny = z(6fv), Arl, = 36/ Aven = y(6/v) — v, (32)

where Arey, A7l ,, Aven are the radial displacement from the standard tra-

jectory, the slope dr/dz, and the parallel velocity just after the fringing field
in the entrance side of the cylinder, respectively. Replacing ¢, v,, v, with Ar,

Ay, vg+ Av, these relations are reduced into

Are = Ar 4 0AT (33)
! 6 ' é
Arl, = —§Ar + Ar' + 6Av — 5 (34)
6
Al = —-Ar— -2—Ar' + Av, (35)

where we neglect higher terms than the first order of é by assuming ¢ < 1,

and we use the following formula;

Pty =Pt+---, B (Bt)~ @34
r(Bt) =14, @;(m):@...

(36)
Similarly, the changes of the beam parameters in the exit side of the cylinder

due to the fringing field are given by

Ao = Ar + SAY (37)
26 )
Ar;xit = gAT' -+ Ar' + Ay — 5 s (38)
)
Avl . =Ar+ EAT' + Av (39)

where Ares, Arl ., Aty are the radial displacement from the standard tra-
jectory, the slope and the parallel velocity just after the fringing field in the

exit side of the cylinder, respectively.



IV. Analysis of Focusing Property
i) Focusing Property without Fringing Field

In order to demonstrate the importance of the fringing field effects, first we
neglect its effects completely. The boundary conditions at the entrance side of

the cylinder are

2
Ar = hian 66 ~ héf , Ar' =tanéf ~ 66 szcosé&—l:—%—-, (40)

where h is the length of the drift space in the entrance side of the cylinder. By
substituting these relations into Eqs. (11), (12), the radial displacement and

the slope on the exit boundary of the cylinder are

67(40) = (h ; Sm\‘g"s") 5 + (1—_-%—‘/%) (7 cos V3o — 1)667 , (41)

57'(po) = cos V2,66 + gsin V244(7 cos V2o — 4)66% (42)
where ¢y is the angle length of the cylindrical deflector. The radial displace-

ment on the exit plane of the analyzer is

Arexit(fo, 60) = r(go) + 167'(¢o) = (h + Sin://g% + lcos \/§¢’o) 56

2 1
+ %l sin V26 (cos v2¢o — 4) + -1-2~(1 — c08 V2¢0)(7 cos V2 — l)} 66% |
(43)
where [ is the length of the drift space in the exit side of the cylinder. The

second order focusing is realized when
sinv/2¢q

V2
_\/5(1 — cos -\/fqﬁo)(?cosz V20 + 7 cos /2y — 8)
- 4sin \/§¢0( 7 cos \/5(}50 — 4) ’
(o) z_\/z(cosﬁcﬁo - 1)(7(:05\/5450 -1

"4 sin \/59150(7 cos v2¢; ~ 4)

h{po) = — lcos V2o —

(44)

(45)
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The solutions to satisfy 1 > A, [ > 0 exist in the two regions of ¢y;
i) 153.73° < ¢p < 196.73°, i) 221.22° < ¢y < 254.56°.

By solving Eq. (1) numerically with the conditions of Eq. (40), the focusing

property of higher than second order is obtained in a power series of 66

Arogi (o, 68) = 6r(do, 50) + 1 5+ (o, 66)

= ¢1(¢h0)68 + ca(bo)66° + c3(do)68° + -+ |
(46)

where ¢1{do) = c2(dp) = 0 is met here since the second order focusing is
fulfilled. Figures 2, 3 demonstrate the results in the regions of 150° < ¢y <
200°, 220° < ¢y < 260°, respectively; (a)the focal lengths [(), h(do), (b) the
third order coefficient ¢3(¢) and the resolution power estimated by

6Arexit
v

(do) = 1 — cos v2¢y + V2 sin V24 . (47)

For simplicity, the velocity resolution is denoted as dr/dv in figures. The
resolution power of the analyzers around ¢y =~ 170° is about one (dr/civ ~ 1),
while that around ¢y = 240° is nearly zero. In the range from 150° to about
180°, the coefficient c3(¢p) decreases monotonically, and changes its sign at
¢o = 169.40°. At this deflection angle, the corresponding cylindrical analyzer
{h = 0.80, { = 0.37) seems to have a third order focusing for incident angle.
However, this condition can not be realized, as we will show later, if the fringing

field effect is taken into account.

i1) Focusing Properiy in the case of 6 =0
If we assume that the size of the fringing field region can be neglected, Eqs.

(33-35), (37-39) show that only the potential effect remains in the entrance and
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exit boundaries of the cylinder. From Eqs. (33-35) with § = 0, the boundary

conditions at the entrance of the cylinder are

Ar = htan 68 ~ hé6, Ar' = tansf «~ &6,

2
Ay = —htanéf + (cos6f — 1) ~ —héf — % .
(48)
Substituting these conditions into Egs. (11), (12) we have
Sr(g) = a1(fo)80 + az(Po) 667 + -+, (49)
6r'(go) = 2 (60)66 + a5y ($0)66° + -+, (50)

then the radial displacement on the exit plane of the analyzer is given by
Arexit(qs()} 66) = 6T(¢0) + 16T’(¢0)

= 01($0)60 + ca($a)66° + 1 [ (90)86 + oy (0)867]

(51)
where -
(g = heos(E) + S22 )
o (o) = —V/2hsin V24 + cos V2 (53)
(o) = {1:_‘52152_@’32} (14 cos V240 + 16)1?
— 14v2sin v2¢oh +7cos V2o — 1] (54)

ay(do) = %—5- [—(14 sin 2v/2¢q + 2sin v249)h?

+141/§(cos 2v24, — cos \/5950):’& +7sin 2v/24, — 8sin \/59{)0] , {55}
The identical equation Arei(do, 66) = 0 yields,
__ld) _ _0a(do)

di(do)  oh(do)
The relation | = —a;{¢g)/a(do) gives the first order focusing condition as

= hcos V2o + (1/v/2) sin /24y
B V2hsin \/idtg —cos \/§¢0 '

12

(56)

(57)




The second order focusing condition is achieved when the following equation
is satisfied;
12(cfjoy — oaly) = 2v'2 sin v2¢o(7 cos® V24, + 8)R

— (14cos® v/2¢y — 28 sin V24 cos® V2o + 16 cos V2, — 30)h2

+ v/2sin v2¢,(14sin? V2o — Tcos? V2 + 1R

— 7cos® \/5450 — 145in® V24 cos \/§¢0 — cos \/5(;50 +8

2¢9 — 1
=sin v2¢, [h cos V4o } [V2(14cos® V24, + 16)A°

- \/2-Si11 \/5950
+145in v240(2 cos V2o + 1)h —v2(7 cos® V2o + 7 cos V2¢o — 8)] =0.

(8)
This equation is divided into two factors,
1 2¢9 — 1
h——(“’s—.‘@L—)ﬂ, (59)
V2 \ sinv2¢

\/5( 14 cos® /2y + 16)R% + 14sin \/2_¢0(2 cos vV2¢o + 1)h
—V2(Tcos® V2o + Tcos Vg —8) = 0.  (60)
The first equation has a positive solution when the deflection angle g, is larger
than 127.3°. The substitution of 2 in Eq. (59) into Eq. (57) yields the relation
I = h= (cos v/2¢o — 1)/+/2sinv/2¢q, then the velocity resolution power is

8Arexit

(o, Bu) =1 cos V2o + V2sinv2¢o = 0 . (61)

Thus, the solution is not available for an energy analyzer. On the other hand,
the second quadratic equation has solutions in the range of 0 < ¢ < 45.70°,
208.86° < ¢ < 300.25°, and the solutions have an interesting feature; if  is
a solution of Eq. (60), the counterpart [ given by Eq. (57) is also the other
solution of Eq. (60). The solutions of Egs. (57), (60) are found to be positive

in the region of 208.86° < ¢y < 221.23°, thus, we need not to investigate
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the solution in the angle range of 0 < ¢ < 45.70° further. Hence, the three
branches of solutions of Eq. (58) are distinguished as follows; i) A = [, ii)
h>1 i) A<,

Figure 4 shows the focal length in the branch of 2 = [, and the third order
coefficient ¢;(¢o) defined in Eq. (46). Note that in this branch the third order
focusing is realized at ¢y = 200.43°. Figuze 5 shows the properties of the other
branches in the region of 200° < ¢ < 230°; (a)the focal lengths [ and &, and
(b)the third order coefficients c3(¢o) and (c) the resolution power dr/du(¢;) in
both cases of 4 > [, h < [. The dashed lines in these figures mean the region
where the focal length is negative. In the 4 > ! branch, the third order focusing
condition c3(¢) = 01s accomplished at ¢ = 210.37° with the resolution power
of 0.18, when h = 0.60, [ = 0.29. On the other hand, the third order coefficient
in the h < [ branch becomes zero at ¢y = 222.60°, however, the corresponding
h is less than zero.

The analysis kere containing the potential effect of the fringing field presents
completely different properties from those with no fringing field effect. The
potential effect plays a significant role on even the first order focusing property

of the cylindrical analyzer.

i1) Focusing Property of Fringing Field with § #0

If we take into account a small but finite size of the fringing field region,
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the boundary conditions are
Ar = (h+68)tanéf ~ (h + 6)66 ,

] §h ) oh 6

(__° _sh el _O0RY oy Ocn2
Ar' = 2+(1 3)tan53+5(cos59 1)~ 2+(1 3)59 250,
2
Av:-—(h+g)tan55+(cost?9~1):—-(h+%)59—%.
(62)

The substitution of the conditions into Eqs.(11-13) gives the functions ér(¢),
61'(do), 6v(¢p) in the following form;

6r(d0) = (o} + a1(¢o)66 + a($0)86° + - -+, (63)
6r'(do) = b (o) + o (F0)66 + (o )66 + -+ -, (64)
5v(go) = Bo(do) + Bi($0)38 + Ba($0)66° + - . (65)

By taking Eq. (37-39) into consideration, the radial displacement on the exit
plane is described as

Areit(go, 66) = (1 + ?f;—l) 6r(go) + (1 + 8)6r'(go) + 8 L6v(0) — %

= To(do) — 62—l+ T1(d9)é6 + 1‘2(¢0)562 ST

(66)

where

T.{¢o) = cti(do) + E0i(do) + L [e(0) + 8(Bi(dh) +20:(d0)/3)] . (67)

Thus, the finite size of the fringing field region should give rise to the offset of
the beam exit position which is given by

&l
A?"oﬁset(%; 5) = r0(¢0) - 3

= ap(do) + 8 (o) + U ag + 8 (o +(2/3)exa — 1/2)] . "
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From Arg = 0, we have the second order focusing condition

__ (g} +boilde) _ oaldo) +505(do) (69)
of +6(Bi(do) +20u(0)/3) oz +6(Baldo) + 20(0)/3)

The explicit {forms of the functions a(¢s), '(do), B(do), can not be obtained

from the second order solution of Eqs. (11-13) since higher order terms Ar®,
Ar?Av, ete. contribute to these functions. To the extent of our approxima-

tion, the functions are described as
ao(do) = —ﬂ sin V2 + —( ~7 cos® V2¢g + 2 cos v2¢p + 5)
+o(8%) +--- (70)
/3 2
ar (o) = A [cos V2¢y + —— sin v2¢(5 — Tcos V20) + o(82) + -+ ]

sm V2 qbo (
V2 T3

a;(do) = h? [é(ﬂ:os \/5450 + 8)(cos \/5450 — 1)+ o(6) + - ]

0s? V26 + dcos V2o + 1) + 0(6%) + -+ , (71)

+h [Z\_@Sin \/5@50((:05 \/§¢0 - 1)+ o{6) +-- ]

E(l — cos \/_¢a)(7COS V240 — 1) +o(8) +- (72)

ag(¢o) = —5 cos V24 + géz sin \/§¢0(7cos V24, — D408+, (73)
ay{de) = h [—\/Qsin V24, - %(14&)52 V245 — 5 cos V2o — ) + 0(6) + - - }

+ cos V2o — ﬁ sin v2¢o(7 cos v26q + 2) + 0(8%) + - - (74)

(o) = K [_ ?(7 sin 2200 + sin v2¢p) + o(6) + -+ }

+h[z-‘/_—(cosz\/_¢o—cosw/_¢o ) +o(8) + ]

+ ‘1/_2_(75111 2V2¢y — 8sin v20) + o{6) + -+, (75)
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Fulo) = Y2 sin B + 201 = cos VG + %) -0 (76)

Bi(gpo) = h [—- cos \/5';50 + —]:‘/—52_6 sin \/§¢0(cos \/5450 —5)+ o(6%) + -~ ]

1

NG}
Ba{gpo) = A® [%(1 — COS \/5(}50)(3 cos \/§¢0 + 1)+ o(8) + -- ]

sin v/2¢o — i‘%(cos2 V2o +4cos V2o + 1)+ 0(62) + -+ . (77

+h [? sin v/2¢o(7 — cos V2¢o) + 0(6) + - - ]

+ %(cosz V2¢o — 8cos V2¢ + 1) + o(8) + -+ , (78)
Although the exact expression of Eq. (69}, or the explicit second order focusing
condition, can not be given, it is possible to find the focal lengths A, ! at a given
¢o. By solving Eq. {1) numerically with the boundary conditions indicated
by Eq. (62), the dependence of the radial displacement on the beam incident
angle can be obtained at a given pair of k, [ in a power series as expressed by
Eq. (47). Several iterations at a fixed ¢¢ yield the focal lengths h, ! consistent
with ¢1(¢¢) = c2(¢z) = 0. The initial values of h, { are chosen to satisfy Eq.
(59) since the solutions should exist in the vicinity of them when é € 0. After
finding a pair of the lengths A, [ to accomplish the second order focusing, the
resolution power should be also numerically calculated by solving Eq. (1) with
the boundary conditions of Ar = 0, Ar’ = —§/2, Av = §v. From Eqs. (37-39),
the radial displacement on the exit plane is written in a similar form to Eq.

(66), and is expanded in a power series of v

Araste, 80) = (1457 dr(do) + (1+5)57(60) + 8 153(00) ~ 5

= cyoldn) + cor{do)bv + Cuz(‘f/’o)éﬂz .., (79)

hence, the resolution power is dArqy:/dv = cy1(o)-
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We will deal with the case of § = 0.05 first. Equation (69) has at least a
real solution at a given ¢, since it is a cubic equation of h. The solution is
defined here as h,, [;. Figure 6 shows a positive pair of Ay, /) in the region
of 180° < ¢p < 220°, and the corresponding third order coefficient c3(¢) and
the resolution power dr/dv. In the deflection angle bellow ¢¢ ~ 205° the focal
lengths h; and {; are associated with the & = [ branch of the previous case
with é = 0, and in the region above this angle the solution seems to connect to
the A < { branch. The focal length A, is positive in ¢ < 218.00°, and the third
order focusing c3{¢e) = 0 is realized at ¢g = 200.80°, 218.79°. Neither of the
angles is, however favorable for an energy analyzer since the resolution power
at ¢9 = 200.80° is nearly zero, similarly to the h = [ branch of § = 0, and the
focal length h; at ¢ = 218.79° is negative. Thus, in this branch, the analyzer
with ¢g =~ 210° will be suitable owing to smaller third order coefficient c3(dq)
and larger velocity resolution dr/dwv.

The other branches of solutions are found in the region larger than ¢y =~
210°. Figure 7 shows pairs of the focal lengths (hy, [3) and (h3, l3), and
their third order coefficients and the resolution powers. The pairs of (ha, L),
(hs3, I3) are associated with the & = I, h > [ branches of § = 0, respectively.
The branch of A, [; is not desirable since the resolution power is nearly zero.
In the other branch the focal lengths hj, I3 are positive when ¢y < 218.03°,
and the third order focusing is achieved at ¢y = 211.22° with the resolution
power of 0.18.

As for the case of § = 0.10, there will be three branches of the solutions. The
focal lengths of the hj-branch are also indicated in Fig. 8, together with the

third order coefficient c3(¢q) and the resolution power dr/dv. The dependences
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of hy, Iy, c3, dr/dv on the deflection angle ¢y are very similar to the case of
6 = 0.05. The third order focusing is fulfilled at ¢ = 201.04° (in the previous
two cases, ¢ = 200.43°, 200.80° when ¢ = 0.0, 0.05, respectively), and hy
becomes zero at ¢p = 215.47° {¢p = 221.23°, 218.03° when § = 0.0, 0.05,
respectively). The other branches of (hy, L), (hs, 3), as shown in Fig. 9,
also have the qﬁalitatively similar tendency as the corresponding branches of
6 = 0.05. In the hy-branch which corresponds to the h = I branch of 6 = 0, the
resolution power is so small for an energy analyzer. In the hs-branch, the focal
length A3 is positive when ¢ < 215.20° (¢ = 221.23°, 218.00° when 6 = 0.0,
0.05, respectively), and the third order focusing is achieved at ¢y = 211.17°
with the resolution power of 0.17 (¢ = 210.37°, 211.22°, when ¢ = 0.0, 0.05,
respectively).

Finite sizes of the fringing field region alter the focal lengths and the res-
olution power, however, the basic dependence of the focusing property on the
deflection angle is not changed. The most important effect of the fringing
field, therefore, is the radially directed potential difference which changes the
entering particle velocity according to the radial deviation from the standard

trajectory on the entrance boundary of the cylinder.

V. Discussion

The analysis including the fringing field shows that the second order focus-
ing for beam incident angle, even the third order focusing, can be realized at
the proper deflection angle. However, the cylindrical analyzer with a deflection
angle smaller than about 180°, which may be convenient to be designed and

constructed, is of no use for an energy analyzer since their focal length rela-

19



tion A ~ [ leads to nearly zero velocity resolution. We suppose here that the
deflection angle ¢ =~ 210° should the minimum appropriate value providing a
smaller third order coefficient a larger resolution power.

The characteristics of 210.0° cylindrical analyzers for three examples with
the different fringing field region sizes of § = 0, § = 0.05, § = 0.1 are numer-
ically calculated. In the case of § = 0, the second order {ocusing condition is

realized when h = 0.306, { = 0.585, the focusing and resolution properties are

Areyii(86) = 0.2066° — 0.4156* + 0.7666° + - - (80)

Arexit(é'u) = —0.19v — 031(5?)2 b SRR (81)
In the second case of 6 = 0.05, when the focal lengths h = 0.217, ] = 0.592,
the properties are

Ar i, (66) = —0.0064 + 0.1766° — 0.3656* + 0.6666° + - - -, (82)

Areis(§v) = —0.0064 — 0.286v — 0.286v% + - -- | (83)
In the third case of 6 = 0.1 when the focal lengths A = 0.160, [ = 0.552, the
properties are

Are:(66) = —0.0113 + 0.1566° — 0.3666* + 0.6666° + -+ -, (84)

Areit(6v) = —0.0113 — 0.316v — 0.278¢% + - - . (85)

Figure 10 shows these focusing property for the beam incident angle and the

velocity dependence of the exit position. Both focusing property and the res-
olution power become better with an increase of 4.

Sufficiently wide acceptance angle is an essential factor required for the

energy analyzer of HIBPs since the incident angle of the probing beam into

the analyzer varies with observation points unless the beam trajectories are

10)

controlled actively by some means'®. If the beam enters into the analyzer
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with a finite incident angle 68, the apparent energy shift AK is estimated by

25V 3
AK = Koo = 2Ky Ateris(60) = Aroes) (86)
Vo or

where Kj is the initial beam energy. In the case of the 210° analyzer with
& = 0.1, the insertion of 8r/8v = —0.31, (Areg — Aregser) = 0.1556° into the
above formula gives the expression of the apparent energy shift as |AK| =
0.97Ky66°. If the potential is needed to be measured with precision of 10eV
using 1MeV beam, the incident angle is accepted to be less than 1.2°. As for
the 127.3° analyzer, the apparent energy shift is |[AK| = 2 x 0.5 x 4/3K,566*
from Eqs. (15), (16), (86) then the maximum acceptance angle is 0.16° under
the same condition. The 210° analyzer is more excellent to the 127.3° one in
the acceptance angle property.

There remains a problem to examine the operation voltage of the cylindrical
analyzers. The displacement of the beam with maximum acceptance angles

restricts the gap width, that is,
ARgyp > 267 max(60accept) - (87)

The voltages should satisfy

KoOARyp  2Ko 57 ma(8aceopt)
Vo~ ——E2 5 B 88
°T ¢ R q Ry (88)

where Ky, g, ARg,, the beam energy in eV units, the charge of the beam,

and the gap width between electrodes, respectively. When the beam has an
incident angle of 60,ccept; Eqs. (49), (52) yields the description of the maximum

displacement to first order as

_ sin v/2¢
8T nax(Baccept) = Mmax [Rg (hcos V2 + 7 ) 59mpt]
1

= RO h? + iéea.ccept s (89)
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where é = 0 is assumed for simplicity. Equations (87-89) are combined into

the following relation,

Vo > Vain = 2;K"(l-R{) h? +% 59a.ocept . (90)
q

Hence, the operation voltage is reduced to a practical level if the acceptance
angle is taken to be small. For the 210° cylindrical analyzer with § = 0.0, whose
focal lengths are A = 0.31, [ = 0.59, presumed that the acceptance of incident
angle is £1.5° and the charge of beam ¢ = 2, Eq. (90) gives Vi, ~ 0.020K,.
The voltage can be reduced to 1/40 of the beam energy, while the voltage of
the 30° parallel plate analyzer is reduced to only 1/8.

The present analysis including a model of the fringing field shows that
the cylindrical type analyzer should be applicable to MeV range HIBPs. A
discrepancy between the model and the actual fringing fields, however, may
alter the focusing condition. Thus, the geometry and structure at the ends of
the cylinder should be most carefully designed to avoid unfavorable fringing
electric fields and to make beam trajectories closer to the ones in the presented
model. Before constructing a prototype, further analysis including numerically
calculated fringing electric fields® with more accuracy is an indispensable work
to realize the desired performance in the cylindrical energy analyzer equipped

with two drift regions.
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Appendix

The Lagrangian in the cylindrical coordinate is
M2, 232
P (41)

where m, g, ¢ are the mass, the charge of particle, the potential, respectively.

The equations of motion are

d (oL\ 9L _ . i, 0¥
d—t(g)——é)—;:mr—mrég%-qazﬂ, (A2)
QE =mr’é = M = const. , (A3)
¢
where M is angular momentum. Substitution of (A3) into (A2) gives
M? gF
mi— ALy Wkl (A4)
mr r
where
— 8’(,[) _ ErORO
E(r)=— -, (A5)

In the reference beam whose trajectory is denoted as r = Rp, the angular

momenturn M, satisfies

M2

Changing the independent variable from ¢ to z = Ry¢ by the use of the relation

dr _dr [d¢\ M dr
d—z"a'a(a) (47)

grre

we obtain the final expression
&r 2{dr\’ r Mg\?
ST - (2R =o.
iz’ r(dm) R§+R3(M) (48)
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Fig. 1:

Fig. 2:

Fig. 3:

Fig. 4:

Fig. 5:

Figure Captions

Cylindrical energy analyzer equipped with drift space at both ends.

Properties with no fringing field effects in the deflection angle of 150° <
$o < 200°. (a) Focal lengths h(¢y), I{¢g) to have a second order focus-
ing, (b) the third order coeflicient c3($o) in the power series of 68, and

resolution power dr/dv.

Properties with no fringing field effect in the deflection angle of 200° <
do < 260°. (a) Focal lengths I(¢), h(¢o) to have a second order focusing,

(b)the third order coefficient c3(¢y), and the resolution power dr/dv

Properties with the fringing field effect in the deflection angle of 170° <
¢o < 260°. The size of the fringing field region is assumed to be zero.
The open and close circles represent the focal lengths A(¢o), {(¢o) and
the third order coefficient ca(do), respectively. The focal lengths of this
case satisfy h = I=(cos v2¢y — 1)/ V/25sin v/2¢,, and this relation leads

to zero velocity resolution.

Properties with the fringing field effect in the deflection angle of 200° <
¢o < 230°. The size of the fringing field region is assumed to be zero. (a)
Focal lengths h(¢g), [{¢o) (b) third order coefficient c3(¢o) (c) velocity
resolution dr/dv(¢o). At a given ¢q, both combinations h > I, h < ! are
possible to realized a second order focusing. The dashed lines mean the

region where one of the focal lengths is negative.
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Fig. 6:

Fig. 7:

Fig. &

Fig. 9:

Fig. 10:

Properties with the fringing field effect in the deflection angle of 180° <
$do < 220°. the size of the fringing field region is assumed to be 0.05.
(a) Focal lengths £;(¢g), {1{dp) (b) the third order coefficient c3(¢) and
the resolution power dr/dv(¢o). The dashed lines mean the region where

one of the focal lengths is negative.

Properties with the fringing field effect in the deflection angle of 210° <
$o < 240°. The size of the fringing field region is assumed to be 0.05.
(a) Focal lengths (h2(¢o), l2(#s)), (hs(do), l3(¢o)), (b) the third order
coefficient c3(¢o) and the resolution power dr/dv(¢;). The dashed lines

mean the region where one of the focal lengths is negative,.

Properties with the fringing field effect in the deflection angle of 180° <
$o < 220°. The size of the fringing field region is assumed to be 0.1. (a)
Focal lengths A;(¢o), [1(¢o) (b) the third order coefficient ¢3(¢y) and the
resolution power dr/dv(¢g). The dashed lines mean the region where

one of the focal lengths is negative.

Properties with the fringing field effect in the deflection angle of 210° <

$o < 240°. The size of the fringing field region is assumed to be 0.1.

(a)Focal lengths (Aa(d0), l2{%0)), (Ps(de), I3(#0)) (b) the third order
coefficient ¢3(¢g) and the resolution power dr/dv(¢y). The dashed lines

mean the region where one of the focal lengths is negative.

Characteristics of a cylindrical energy analyzer whose deflection angle
is 210°; (a) dependence of exit position on incident angle, Are: (66} (b)

resolution power Arg,(6v).
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