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Abstract

The ion heat pulse after sawtooth crash is studied with the
time-of-flight neutral measurement on the JFT-2M tokamak. The rapid
change of the bulk ion energy distribution near the edge 1s observed
after sawtocth crash. The delay time i1s measured and the effective
measuring position is estimated by a neutral transport code, then
the thermal ~conductivity, xiﬁP, of about 15+10m2/sec is evaluated
for the L-mode plasma. The simple diffusive model with constant

x;m, however, does not explain the amplitude cf the pulse in the

ion energy distribution.

Keywords: Heat Pulse Propagation, Ion Erergy Loss, Sawtooih,
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Understanding the transport process in a toroidal plasma is one
of the most urgent tasks in magnetic fusion research. After the
measurement of density and temperature with good spatial resolution,
the effective heat diffusion coefficient, X e=-qa/(nVT), is
evaluated and it is found to be anomalous!. The transient response
of a plasma shows an interesting transport behavior, for example the
decay time of the plasma energy after switching off the ICRF heating
power 1is different from the energy confinement time2. The
difference between a transient respomse and an evaluated Xere 2L &
stationary phase seems to be the property of a torocidal plasma.
After first being observed on the Princeton ST tockamak?, the
electron heat pulse propagation after sawtooth crash is a tool ko
measure an electron heat diffusivity from the transient response?.

It is well known that the electron heat diffusion coefficient from
the heat pulse propagation, X, ¥, can be much larger than the y SOPS
The density pulse’ after sawtooth crash was also found and its
mutual interaction® is discussed recently. The heat diffusion
coefficient of ion in a stationary phase is sometimes larger than
that of electrons’r? and plays a key role in the high power heating
experiments. The ion heat pulse propagation, however, has not been
investigated in spite of its importance of the understanding of
confinement. The resonant loss of energetic ions at the fishbone
instability® is reported as a fast transient behavior of ions. But
the transient response of the bulk ions has not been studied well.

This letter reports the transient response of main ions after
sawtooth crash and shows the existence of ion heat pulse for the
first time. A time-of-flight (TOF) measurementl9,11,12 jis made of the
low energy (E<lkeV) hydrogen neutrals with fast time resolution
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(~200psec) . It is found that the average energy of the neutral
flux, <E>, responses after a sawtooth crash. This response is
faster than the energy exchange time between electrons and ions and
than the change of H, intensity as well. The contribution to the
change of TOF signal comes from near edge. Therefore, it is shown
clearly that there exists an ion heat pulse after a sawtooth crash.
1;%F of about 15t10m?/sec is evaluated. The change of <E> is found
to be mainly contributed by particles which have energy higher than
about 200eV, which coincides with the ceollisionless condition of
hydrogen ion, V.Sl near edge. However, the comparison between a
calculated and the measured neutral energy distribution shows that
the simple diffusive model with constant X, does not completely
explain the ion heat pulse behavior.

The JET-2M is a medium size tokamak (major radius R=1.31im,
minor radius a=0.35m, elongation kK<1.7, toroidal magnetic field
B;<1.5T). The following experimental study of sawtooth effects on
an ion energy distribution was performed with a hydrogen NB power of
1.3MW (co-injection of 0.74MW, counter-iniection of 0.59MW, and
primary energy of 32keV). The plasma current I, is 230kA with an
upper single null divertor configuration. We study the sawtooth
during the L-mode phase before the L/H-transition. The central line
average density is about 2.5x10%%m™3 during L-mode.

The TOF diagnostic system is installed on the top of JFT-2M
tokamak as shown in Fig.l schematically. The hydrogen neutral
energy distribution, dI'/dEAQ [number/(ev-sr-mz-sec)], is measured
vertically at R=1.24m. The line of sight measurement does only
include the outside sawtooth inversion radius, which is measured by

the second harmenic electron cyclotron emission (ECE). The
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measurable minimum energy is about 10eV and the maximum one is
lkeV/amu, which is determined by the required energy resolution of
AE/E<20%. The mass of neutral particles cannot be discriminated,
We study the case of hydrogen plasmas heated by hydrogen neutral
beams. The temporal evolution of the integrated neutral flux,
T{=[(d[/dE)dE}, the power flux, P{=/E{d/dE)dE} and the averaged
energy, <E>{=[E(dT/dE)dE/[(d[/dE)dE}, are calculated from the energy
spectrum. In order to increase the signal-to-noise ratio (S/N), the
technique of a diagnostic gas puff just in front of the TOF measured
position has been utilized sometimes. This technique allows us to
evaluate the dI/dEAQ) (and hence I', P and <E>) with good $/N and the
fastest time resolution of about 200{s, which is limited by the
rotation velocity of the chopper wheel in TOF neutral spectrometer.
The gas puff of about 10 Torrel/sec increases the TOF measured
neutral out flux by more than one order of magnitude. The time
history of T' is almost unchanged in time in this case. The
digitizing time of the measurements on TOF and Hg is carefully
calibrated. The line of sight of Hy measurement is almost the same
viewing angle as TOF measurement, which does not cover the divertor
region. The digitizing time of the measurements on TOF and ECE is
not calibrated. We have used the same trigger for those two
digitizers, but there might have ambiguity of one sampling time of
the digitizer (100us). In this report, the coincidence can be
studied with the time resolution of *100us.

The temporal evoluticon of ECE electron temperatures, the
averaged energy <E>, the power flux P and H, Intensity are shown in
Fig.2. NB heating is started form 800msec. The diagnostic puff is
not applied in this case. The rapid jump of the averaged energy and
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rather slow increase c¢f the power flux are observed. In this
discharge, the L/H transition takes place at B45msec triggered by a
gawtooth. The delay time of peak ECE electron temperature at
r/a=0.94 is about 0.7msec. The delay time of peak <E> is about 0.5-
0.7msec and that of P is about 1.5-2msec after the crash. The
change of <E> is clearly faster than the electron ion energy
exchange time which is larger than about 1-2msec at the edge plasma
parameter (ng=(0.5-1)x10°m~3, T,=50eV, 2z, ;=2 ). Since the jump of
<E> occurs earlier than the increase of the H, intensity, then the
jump of <E> 1s not the effects from the increase of the neutrals,
which is normally observed after sawtooth crash. But the integrated
neutral flux and power flux behave like an H, intensity. The
neutral power flux includes the increase of the neutral density
itself. Then we can concludes that the bulk ions are directly
affected by a sawtooth and there exists an ion heat pulse after
sawtooth crash. The increase of the average energy of the bulk ions
is due to the particles, with energies greater than 200-250eV. 1In
Fig.3, the energy distributicns just before (averaged 8 spectra,
819<t<821msec) and after (averaged 6 spectra, 821.5<t<823msec)
sawtooth crash are compared. There is a large increase of the high
energy neutral out flux. The collisionality parameter
V*izviiqR/V€3/2 for protons cf 200eV is about unity for the plasma
parameters just inside separatrix.

In oxder to interpret the time delay in <E> in terms of the
thermal conductivity, the analysis on the birth point of the
observed neutral is necessary. This line of sight TOF measurement
is a measurement of main ion energy distribution which is weighted

by a neutral density in each position. Though we can not know the
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origin of its neutral flux exactly, we can estimate a position of
the main contribution to the measured out flux by a Monte Calro
neutral transport code!?, Figure 4 shows the calculated total
neutral out flux and the contributicn from each position. In this
calculation the energy of neutrals from the wall is monochromatic to
be 5S5eV. The ion temperature profile from CXRS measurement, and the
electron temperature and density procfile from Thomson scattering are
used as a typical L-mode one. The position at p=1 (p=r/a)
corresponds to the separatrix and that at p=1.45 corresponds to the
divertor plate. The calculated total out flux is reproduced the
measured out flux within the error. The neutral out flux inside
separatrix shows the strong attenuation in the low energy part.
Considering the poloidal gyro radius of about 2cm for 300eV proton,
the estimated origin of the measured out flux ({(200eV<EL500keV) is
around the separatrix and the contribution from the core (p<0.93) is
small. TIf the change in <E> is the response of the arrival of heat
pulse propagating to the edge, then this assumption allows us to
evaluate the ion diffusivity, ¥;%f, from the delay time of <E>
after a sawtcoth crash. We also assume that the crash time of ion
is the same as that of the electron. If the ion temperature
perturbation by a sawtooth is described by a diffusive model, which
is usually used for the evaluation of an electron heat pulse
diffusivity!®, then the ion temperature perturbation is written

approximately as

Ty (r,t) =Ty %2/%3t3) exp (-3r%/8%t) (1),

and the time at which T, (r, T4, reaches its maximum is

T¢ajy=r2/8x . The estimated xiHP is about 15i10m2/sec from Tgeray ©F



0.7+0.3msec with using the estimated neutral origin from r=0.2%m and
with assuming that ion temperature crash occurs at the same time of
the electron temperature crash. The %,%F value of 15+10m2/sec is
almost the same as the electron one, erP, in this case. The line
of sight measurement has a disadvantage in identifying the origin of
the observed neutrals. But the energy distribution measurement with
fast time resolution allows a test to examine the wvalidity of the
simple diffusive model to describe the ion heat pulse propagation.
With the help of Eq.(l) and constant value of xiHP, the expected
neutral spectra is calculated. In this calculation, a density
perturbation by sawtooth is neglected. The perturbaticn of the form
of Eg. (1) shows a rapid reduction of amplitude as ATeer %, The
theoretical formula (1) predicts a very small amplitude near edge.
Since the effective origin of the neutrals of our interest (100-
500eV) are near edge, as is shown in Fig.4, the predicted variation
of dI'/dE in this range is too small to explain the observation in
Fig.2. (Even if we choose Ty=3T, (r=r;,,), which would be
unrealistic, the observed pulse amplitude in dI'/dE was not
reproduced.) [We note the similar discrepancy is also found in the
response of the electron temperature. For electrons, a similar
value of erP coempared to ions is obtained. The experimental data
on Te(r), however, shows the behavior like r™3. This has much
slower radial decay in comparison with theoretical prediction.)

This means that the simple diffusive model with constant ¥*¥ does
not explain the ion heat pulse behavior. The clear difference in
dI'/dE is observed only for collisionless ions. The different

effects on the different energy particles should be studied further.



In summary, we have observed the ion heat pulse after sawtooth
crash with a good time resolution of the neutral measurement. By
using the Monte Calro calculation for the neutral transport, the
origin of the neutral out flux is evaluated. The rapid change of
the averaged energy occurs faster than the energy exchange time
between the electron and ion, and also faster than the change of He
intensity after sawtooth crash. It shows that it is not the effects
of the change of neutral itself, but the direct effect from the
sawtooth &érash. In the energy distribution, the change is observed
as a large increase of the high energy neutral cut flux, from which
ions have collisionless condition V,;<1 just inside the separatrix.
The heat diffusivity of ion is evaluated as 15%10m?/sec from the
time delay of the peak of <E> assuming that the change of <E> is the
direct response from the arrival of the ion heat pulse propagation.
However, the calculated energy spectra by the neutral transport code
with assuming the change of ion temperature by the simple diffusive
model do not reproduce the measured energy spectra. The observed
change of the energy distribution is too large compared with the
neutral calculation result. The rapid ion change is c¢clearly the
direct effect by the sawtooth, but now there is no evidence of the
propagating behavicor of ion heat pulse. It should be studied
further by some ion measurements with good time and spatial
resolution.

The rapid change of ions which have collisionless condition
just after sawtooth crash plays also animportant role for the L/H-
transition. Almost all H-mode are triggered by a sawtooth in JFT-2M
experiment and our previous reportl!® shows the important role of ion

at the L/H-transition. This observation of the ion behavior during
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an L-mode sawtooth crash i1s the same as that at L/H~transition. This
may be the reason why most of H-mode are triggered by a sawtooth.
Some theories predict an important role of ion losslé/ 1?7 for the L/H-
transition. The neutral transport calculation shows that the origin
cf the measured neutrals are around separatrix even in the line of
sight measurement. However, in the present experiment, the origin
cannot be identified so precisely as to distinguish inside or
outside of the separdtrix. This should be examined further and is
left for the future work.
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authors (K.I, 5.I.I) acknowledge the partial support from Grant-in-
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Figure

Fig.1l

Fig.2

Fig.4

Captions
TOF diagnostic system installed on the top of JFT-2M. The
line of sight only includes the outside sawtooth inversicn

in this experiment.

Temporal evolution of (a) the ECE-measured electron
temperature at five different radial positions, (b) the

average energy and power flux, and (¢) the H, intensity.

The neutral energy distributions Jjust before (open circles,
averaged 8 spectra and 819<t<82lmsec) and after (closed
square, averaged & spectra and 821.5<t<823msec) sawtoocth

crash are compared.

The calculated neutral energy distribution and its
contributions form each position. p=1 is the pesition of
the separatrix. Open circles show the measured neutral out

flux.
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