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Abstract

After an exposition of its theoretical background, discriminant analysis is applied to the
H-mode confinement database to find the region in plasma parameter space in which H-mode
with small ELMs (Edge Localized Modes) is likely to occur.

The boundary of this region is determined by the condition that the probability of appear-
ance of such a type of H-mode, as a function of the plasma parameters, should be (1) larger
than some threshold value and (2) larger than the corresponding probability for other types
of H-mode (i.e., H-mode without ELMs or with giant ELMs).

In practice, the discrimination has been performed for the ASDEX, JET and JFT-2M toka-
maks (a) using four instantaneous plasma parameters (injected power Pinj, magnetic field
By, plasma current I, and line averaged electron density 7ie) and (b) taking also memory
effects of the plasma and the distance between the plasma and the wall into account, while
using variables that are normalised with respect to machine size.

Generally spesking, it is found that there is a substantial overlap between the region of
H-mode with small ELMs and the region of the two other types of H-mode. However, the
ELM-free and the giant ELM H-modes relatively rarely appear in the region, that, according
to the analysis, is allocated to small ELMs. A reliable production of H-mode with only small
ELMs seemns well possible by choosing this regime in parameter space.

In the present study, it was not attempted to arrive at a unified discrimination across the
machines. So, projection from one machine to another remains difficult, and a reliable de-
termination of the region where small ELMs occur still requires a training sample from the
device under consideration.



1 INTRODUCTION

Progress in tokamak physics led to the conceptual design of the international thermonu-
clear experimental reactor (ITER) [1]. Due to the improvement in energy confinement time
75 of the plasma in H-mode, see e.g. [2,3], with respect to what one expects from L-mode
scalings, see e.g. [4,5], the machine size needed for achieving the mission of ignition could
substantially be reduced. In [6] it was shown that this improvement in confinement time
over L-mode also alleviates the necessary engineering R&D. The parameter dependence of
75 for H-mode plasmas from various machines has been enthusiastically investigated [7-15]
and several scalings, under varying assumptions, have been presented.

The phenomenon ELM, which stands for Edge Localized Mode, has been observed from
the beginning of H-mode research {16] and has aroused active interest ever since [17,18].
In a very rough empirical classification, based on solely the Hq (or Dg) signal, one can
distinguish between three types of H-mode: ELM-free H-mode, H-mode with giant ELMs,
and H-mode with small ELMs. The discrimination of these three H-modes is an important
concern for future machines, because they exhibit a quite different behaviour. ELM-free H-
mode discharges exhibit the largest increase in confinement time, but are most vulnerable to
the accumulation of impurities and the resultant radiation collapse [2]. Long sustainment of
ELM-free H-mode seems at present impossible {19]. The presence of giant ELMs during the
H-mode moderates this problem, but the repetition of the large heat pulses will be a major
obstacle in designing the divertor plate and the first wall. Large heat pulses cause a transient
peak in the temperature of the divertor plate, so as to enhance the erosion rate and impurity
generation. The H-mode with small ELMs i1s presently the best candidate for future plasmas
aiming at sustained thermonuclear burning. Hence, we need a guiding principle to avoid the
appearance of ELM-free H-mode as well as H-mode with giant ELMs, in order to enhance the
probability of (quasi) steady-state operation in future experimental fusion reactors. Several
experimental efforts have been made to look for the most efficient control parameter to realise
the H-mode with small frequent ELMs [20-22}.

The ITER H-mode database (ITERH.DB1) [7, 8] contains global confinement data from
the ASDEX, DIII-D, JET, JFT-2M, PBX-M, and PDX tokamaks. The three types of H-mode
that were discussed above have been distinguished in this database. The scaling of the energy
confinement time with respect to the plasma parameters is not precisely the same for the
various types of H-mode [8,11,15]. Hence, also from this point of view, it is useful to identify
the plasma parameter regimes where the various types of H-mode occur.

To analyse this question, we apply the method of discriminant analysis [23-27] to this
H-mode database. We want to study the regions in plasma parameter space where two classes
of H-mode, i.e., class-1 (ELM-free or with Giant ELMs) and class-2 (with Small ELMs) occur.
The analysis is done for each device separately. In this report, attention is restricted to the
analysis of the ASDEX, JET, and JFT-2M data of the database. These are the tokamaks



the authors are most familiar with. The restriction to ITERH.DB1 was made because of the
general availability of the dataset, and the fact that precisely this dataset has been used for
the global confinement time analysis published in [8].

The flow of this article is as follows. In Section 2, we present a guided tour to those
theoretical aspects of discriminant analysis which are needed to understand the background
of the practical sections. In particular, the relationship between discriminant analysis and re-
gression analysis is payed attention to. In Section 3, we describe the datasets used, present a
preliminary graphical analysis, and apply discriminant analysis in various settings to predict
the occurrence of the various types of ELMs. In particular, we compare ‘parametric dis-
crimination’ (using linear as well as quadratic diseriminant functions) with ‘non-parametric
discrimination’ (using kernel density estimates and the multinomial independence model, re-
spectively). We discuss the explicit forms of the linear and the quadratic boundaries, and
compare the performance of the various methods. In Section 3.2, this is done using four or
five instantaneous plasma parameters that are usually also applied in global confinement
time analyses, i.e, plasma current, magnetic field, injected power, electron density, and iso-
tope composition, all considered at the same time-point as that of the oceurrence of ELMs. In
Section 3.3, the elapsed time since the L-H transition is taken into account, and the ohmic tar-
get density replaces the instantaneous density as a discriminating variable. In other words,
we examine the effect of the plasma’s ‘memory’. Furthermore, the plasma-wall distance is
used as an additional variable, and all variables are normalised with respect to machine size.
Condensed results of the analyses are presented in tables and physical interpretations are
discussed in the main text whenever they are deemed to be appropriate. A Summary and
Discussion is presented in Section 4.




2 THEORY Wir machen uns Bilder
der Tatsachen
Wittgenstein, Tractatus

2.1 Informal Introduction to Discriminant Analysis

In order to assess quantitatively in which regions of plasma parameter space the various
types of ELM are likely o occur, we must formulate relevant parts of the mathematical theory
of discrimination. Here we present some heuristic considerations. A more precise description
of the theory is given in the next sub-section. An important aspect is to determine the
mathematical form of the boundary of the regions of interest.

For simplicity, let us consider two classes of shots with ELMs. We want to determine the
boundary between the regions in plasma parameter space where these two classes are expected
to oceur. One way to find this boundary is by estimating the probability distributions of the
two classes of ELMy shots over plasma parameter space. We consider boundaries such that,
locally, class-1 (e.g. non-HSELM) discharges are more probable than class-2 (e.g. HSELM)
discharges on one side of the boundary, and vice versa on the other side. The probability
density to find class-j discharges is denoted by

filz), 1=12, L

where z is an n-dimensional vector of variables (i.e., plasma parameters), such as the injected
power Pj,;, plasma current Ip, magnetic field By, electron density fig, etc. These densities
have to be estimated from the available data. The estimates depend on the assumed class of
probability distributions, see Section 2.2. The boundary B is defined by B = {zfi(z) =
fa(z)}. The region Ry satisfying the condition Ry = {z|fi(z) > fa(z )} is the region where
class-1 shots are expected, whereas class-2 shots are expected in the region Ro = {z |f1(z) <
fo(z)}. The boundary B and the regions Rj9 can be calculated for each set of plasma
variables X = (Xi,...,Xp). The dimension p can be as large as the number of parameters
which fully characterise the discharge. Among this large set of parameters, we look for key
parameters which determine the boundary B. In statistics, this is called the problem of
variable selection. Obviously, this requires in practice a good interplay between physical
considerations and statistical methods. Given a boundary in a higher dimensional space,
one can identify which linear combinations of plasma parameters are locally important to
discriminate between the classes: obviously, they consist of those linear combinations of which
the hyperplanes of constant values are ‘close’ to the tangent plane of the boundary. (This
means that the gradient of the linear combination should have a large component in the
direction of the gradient of the ratio fi(z)/fo(z).)

The allocation regions Ry and Ry are influenced by considerations that take the risks
associated with the various types of misallocation into account. Usually, misclassifying a



(new) observation as class-1 has different consequences than misclassifying a (i.e. another!)
new observation as class-2. For instance, mispredicting ELM-free H-mode as ELMy H-mode
is more harmful, from the viewpoint of impurity accumulation, than mispredicting ELMy
H-mode as ELM-iree. In that case, the boundary B between the regions R and Rs is no
longer optimal, and improvement is possible by constructing boundaries so as to reduce the
probability of dangerous errors, which amounts to minimise, in some sense, the expected

losses.

Another extension is to consider an additional area in parameter space. For instance, one
region is assigned to class-1, another to class-2, and a third region is the ‘grey’ area, in which
the probabilities associated with the two classes are either not distinctively different or are
both negligibly low. (In fact, distinguishing between these two reasons for non-allocation, one
has two additional regions.) By using such ‘noun-allocation regions’, the prediction of ‘class-1’
(or ‘class-2’) can be made with less expected error. This kind of analysis is sometimes called

‘discrimination in non-forced decision situations’.

Fach of these cases require more precise formulations, which are discussed in the next

Section.

2.2 Statistical Aspects of Discriminant Analysis

The theory of discriminant analysis is a well developed branch of statistics and at the
same time still a field of active research, see e.g. [28-35]. Part of the algorithms are imple-
mented in special or general statistical packages [36-39]. Here, we will discuss only those
parts of the theory that are needed to understand the background of the practical analyses

in Section 3.

One can approach discriminant analysis from a purely data-descriptive point of view and
from a probabilistic point of view. (Both approaches, but most easily the latter one, can be
incorporated into a decision theoretical framework.) In the latter approach, a probabilistic
model is used to describe the situation. The applicability of such a model in non-random si-
tuations may be questioned from a fundamental point of view. However, such a probabilistic
framework is almost indispensible if one wants to estimate the performance of procedures in
future situations, and to express uncertainties in various estimates. Moreover, it often leads to
procedures that are also sensible from a data-descriptive point of view. Or reversely: A specific
procedure can often be viewed upon as a data-descriptive one, with little further interpreta-
tion, and as a probabilistic one, with considerably more interpretation, the validity of which
is of course dependent on the adequacy of the framework. Sometimes a procedure developed
in one probabilistic framework can also be interpreted in another probabilistic framework,
which may be more relevant for the data at hand. We will return to this when discussing
the relation between discriminant analysis and regression analysis. To our opinion, the use
of such probabilistic models is justified as long as one does not take them ‘too seriously’,




i.e., one should realise their approximative model character. Here we shall discuss basically
probabilistic methods, but we take care to introduce the various probabilistic structures only
step by step.

With the term (multivariate) observation one generally denotes a basic item (consisting
of various components) that is liable to repetitive measurement. In this context we use it for
a vector of plasma parameters, say (Pinj, Ip, B, fie), measured at a certain time-point (or
even at several time-points) during a discharge. The principal object of the excercise is to
predict the occurrence of the type of ELMs as a function of the plasma parameters on the
basis of historical ‘training samples’ of such observations for each class of ELMs.

In the case of two kinds of observations that are distributed according to two elliptical
multivariate distributions, there is a geometrically evident family of boundaries that can
be used for prediction: Assign a new observation to group 1 if D; < ¢Dj, where D; and
Dy are distances of the particular observation to the centers of gravity of group 1 and 2,
respectively. Obviously, these distances have to be measured in the metric defined by the
ellipses. Intuitively, the choice ¢ == 1 seems best. (In a decision theoretic formulation, the
constant ¢ depends on the losses one wants to minimise. In a symmetric loss situation, the
choice ¢ = 1 is appropriate.) In this case the boundary becomes simple if two distributions
differ only by their first moment: it is the line conjugate to the line joining the expectation
values of the two distributions. (‘Conjugate’ is the same as ‘perpendicular in the metric given
by the ellipses’. Such a line, obviously, passes through the two (real or imaginary) intersection
points of any pair of ellipses with the same ‘radius’.)

A specialisation of the above elliptical situation is the case of two multivariate normal
distributions, and a generalisation is the situation that we have two shifted multivariate
distributions, with convex contours of equal probability density that define a seminorm on
RP. For analogy with the normal case, it is convenient to ‘scale’ the seminorm according
to the relation f(z) « exp[—3D*(z )], where f(z) denotes the probability density of the
multivariate distribution. In the language of mechanics, —2log f{z ) = D?(z) is called the
potential V(z ).

We now describe discriminant analysis while introducing some more probabilistic struc-
ture. Again for simplicity we do this for two groups. Generalisation to ¥ > 2 groups is in
principle straightforward, though in practice sometimes unwieldy because of combinatorial
complexity.

The basic method is to estimate the probability density for the two groups, and to
allocate a new observation according to a rule based on (an estimate of)) the above described
family of boundaries. Actual allocation requires the determination of a single member of this
family. This choice, other than the obvious one, fi(z) = fa(z), may be influenced by two
considerations: (a) The assignment of losses for the various types of error that can occur and



(b) the assignment of prior probabilities with respect to the occurrence of the two types of
observations. Let pz, A = 1,2, denote these prior probabilities (obviously, p; + po = 1), and
let fp(z) denote the probability density for group h. Then, according to Bayes’ theorem,
the conditional or ‘posterior’ probability Phlz to belong to group h, given the vector of

observations z , can be written as

__ tuialz) 9
Phiz Z%le Ph’fh'(&). ( )

The above class of allocation rules considers regions of which the boundaries can, equiva-
lently, be characterised by (¢) the difference in metric or potential, (i¢) the ratio of probability
densities, and (722) the posterior probabilities. The relationship between the characterisations
is easily derived to be

Va(z) — Vi(z) = D3(z) — D¥(z) = 2d (3)
FAz) faolz) = (4)
log % = log - flpl +d. (5)

The latter expression means that d equals the shift from the prior to the posterior probabilities
on the logit scale. (The S-shaped logit function logit(p) = log(p/(1—p)) transforms the interval
(0,1) into (—o0,-+c0).) Note that in going from () to (4i7) gradually more probabilistic
structure is introduced. A basic question is the choice of d. One choice is d = 0, another
choice is d such that Plle = 50% (in that case, d depends on pj, and is obviously 0 for the
‘Laplacian’ choice of initial ignorance: p; = 1/2). A third choice is based on a loss-function
formulation. Losses are associated with actions. In the two group situation, there can be two
or more relevant actions. We consider: aj: assign to group 1, ag: assign to group 2, and ag: no
assignment. The actions are to be based on the value of the experimental variable z € R?.
The mapping d : R — {ag, a1,a9} is called a decision function. A decision procedure fixes
a decision function, which in the above case can be characterised by three regions, which we
denote by Ry, Ry, and R, respectively, where

—1
Ro = d '(ag) = {zeRP | d(z) = ag}, (6)
and similarly for Ry and Rs. (If Ry is empty, we are in the two decision situation described
above.) The losses depend on the actions as well as on the true state of nature, and are
conveniently summarised by a loss matrix. For instance:
ag a1 a2

2 FAYS £i9 ]




(The first index of £ denotes the action, and the second index of £ indicates the true state
of nature.) Some losses have to be specified, be it £g3 = £y2 = oo, and #91 = 19 = 1. Then
the risk (‘expected loss’) can be expressed as a function of the true state of nature and the
decision procedure:

R{d,1) = {n /Ro filz)dz + £ ]Rz filz)dz (7)

R@,2) =t [, fala)dz + b [ fola)da ®

One principle is to choose a decision rule dmm such that the maximum expected loss is
minimised, i.e., -

mﬁxR(dmm, h)= m&inmi?xR(d, R h=12 9)

This is called the minimax rule. Another principle is to minimise some linear combination
of the two risks. A natural candidate for the weights of this linear combination is the set of
prior probabilities, i.e.,

R’(ds ,0) = PlR(d7 1) + pﬁR(d,z) (10)

is minimised. This is called a Bayes decision rule with respect o the prior distribution p =
(p1,p2)- lts definition can be reformulated as: a Bayes rule with respect to p minimises, as a
function of z the sum of the probability densities, weighted by both the losses and the prior
probabilities, i.e., it minimises the ‘risk densities’

2

2 Ud(z), Mppfulz)- (11)

h=1
One can easily see that, in the special case of 0-1 losses, and no doubt region, the Bayes
rule assigns according to the largest value of ppfr{z ), i.e. to the largest posterior probability.
Unfortunately, prior probabilities are sometimes hard to assess, or even make little physical
sense. Therefore it is useful to look at the Bayes rule with respect to a prior distribution py¢
which is ‘least favourable’ in the sense that

It can be shown that under some regularity conditions, the Bayes rule with respect to the
least favourable prior distribution coincides with the minimax rule [40}.

Let us now consider some special cases. We consider the trivial (0-1) loss-function for-
mulation. For multivariate normal densities with equal covariance matrices, the Bayes rule
with respect to equal prior probabilities allocates an observation z to that group h for which
the squared Mahalanobis distance (or ‘potential’)

Di(e) = (& ~ ) Zgh(e — ) (13)



is minimal. For arbitrary prior probabilities, the ‘effective’ distance is changed into:
D) = (z — 1 En)(z — ) — 2log oy (14)
and for unequal covariance matrices into:
DP(z)=(z — 1) g2 — y) — 2log oy + log(det(Z ). (15)

As usual, superscript ¢ is used to denote vector transposition. In general, it requires rather
elaborated numerical procedures to determine the minimax rule, and for simplicity one caleu-
lates a Bayes rule with respect to equal prior probabilities, or according to prior probabilities
that are proportional to the observed relative frequencies of occurrence of the two groups in
the sample.

The discrimination surfaces between group 1 and group 2 are given by
Di(z)-Di(z) =e, (16)

where ¢ depends on the ratio of the prior probabilities, the ratio of the determinants of the
covariance matrices 2(1) and 2(2), and, in general, also on the ratio of the losses €5 and

{19 (at least if £y = £y = co). In general, these surfaces are quadratic surfaces, in practice
ellipses or hyperbolae. If and only if 2(1) = E—(Q) = X, they constitute parallel hyperplanes

w'z = ¢, characterised by a vector of weights

w=2"Ypa~py). (17)

In discriminant analysis, these are often called the weights of Fisher’s linear discriminant
function. They share a number optimality properties and interpretations. Weight vectors be-
long mathematically to the dual of the data-space RP. Often they are only important up to a
multiplicative factor, so that, mathematically speaking, they constitute a p — 1 dimensional
projective space. Plotting the weight vectors in the original data-space R?, they mark direc-
tions on which the data can be perpendicularly projected. For any random vector X ;in RP,
w!X ; divided by the length of the vector w is such a projection. We give three interpretations,
which hold if the origin of the coordinate system in which the vector w, given by Eq. (17)
with &, p1, and p9 estimated by their sample analogues, is chosen somewhere on the line
connecting the centers of gravity of the two groups.

() The above weights correspond to directions for which the ratio of the between-class vari-
ance and the sum of the within-class variances is maximal.

(1) Considering data vectors z,...,z p in the data space R("l"'”?), where ny and n9 denote
the sample sizes, w1z + - 4 wpz , can be viewed as that linear combination (up to a pro-
portionality factor) which maximises the (sample) correlation coefficient with the vector y
denoting the class membership. As the correlation coefficient is independent of location and



scale transformations of y and (uniformly) of 21,...,Zp, the coding of the class membership
and any proportionality factor in w are immaterial.

(#ii) The weights in Eq. (17) can be obtained (up to a linear transformation) by linear re-
gression of the vector y on z1,...,Zp. I the vector y is coded as ¢j = —al—?_lfn—z for group 1
and ¢cg = ¢1 + 1 for group 2, then precisely the weights in Eq. (17) are formally recovered by
the linear regression. (Note that the usual probabilistic assumptions used in linear regression
models are different.) This equivalence, which is useful in computational practice, goes back
to R.A. Fisher [41], see also [27] for a vivid practical account.

Discriminant analysis of k& > 2 groups can be based on separate discriminant analyses
between cach of the k(k — 1)/2 pairs of groups. However, the practical complexity of this
approach increases rapidly with k. A more parsimoneous description is given by canonical
correlation analysis between k — 1 binary group membership codes and the explanatory data
vectors £ 1,...,Zp. This is implemented in the procedure DISCRIM of the package SAS [38].
(For two groups, it reduces to multiple linear regression analysis of a single group-membership
vector.) In view of the general situation, the regression coeffcients are often called canonical
coefficients. They depend on how the vectors z 1,...,2Zp are (separately) normalised. Often,
one divides by the square root of the diagonal elements of some suitable covariance matrix.
For instance, the ‘total sample’ covariance matrix or the ‘pooled within-class’ covariance
matrix. The latter is estimated by (nj +ng —2)71(S + é(g)), where 5y and §(2) are the

sum of squares and cross-product (SSCP) matrices, corrected for the mean.

For simplicity, we shall consider in the practical sections only the ‘parametric case’, with
multivariate normal densities, the ‘non-parametric case’, with arbitrary multivariate densities,
and the ‘multinomial independence’ model, with a discreiised data structure (and a global
association factor).

In practice, the densities fg(z ) have to be estimated. In the parametric case, this is
done by substituting the standard estimators for g and X. In the non-parametric case, this
can be done by so-called non-parametric density (e.g. kernel) estimators. For a discussion of
such type of estimators, we refer to [42] (which describes mainly the univariate situation) and
to the description of PROC DISCRIM in the SAS manual [38] and the references therein.
The third approach starts with discretising the distribution by dividing each axis into £,
say 5 or 10, intervals. In general, one then cbtains a multinomial distribution. However, as
the number free parameters, (kP — 1) with p the number of discriminating variables, quickly
exceeds the number of available data points, one has to make further simplifying assumptions.
One possibility is to impose the multinomial independence model, which approximates the
distribution by the product of the marginal multinomial distributions. In that case the number
of free parameters is p x (k — 1). It obviously only works well if the original continuous
distribution can be thought to be generated by independent random variables, which will
usually not be the case in practice. In the case of two groups, one could discretise the joint



principal components’ [27], which are at least uncorrelated, and then transform back to the
original scale. The multinomial independence model is implemented in the program INDEP

[36, 43].

3 PRACTICE Bilder bergen die Gefahr,
uns gefangenzuhalten
Wittgenstein, Philosophische Untersuchungen

3.1 Description of the Dataset and Preliminary Analysis by Visual Inspection

We define two classes of H-mode plasmas, class-1 (without ELMs and with giant ELMs)
and class-2 (with small ELMs). We look for the boundary in plasma parameter space which
separates the regime of class-1 discharges from that of class-2 discharges.

The ITERH.DB1 dataset contains data from ASDEX, DIII-D, JET, JFT-2M, PBX-
M, and PDX. It consists of about 2000 H-mode timeslices (‘observations’) of some 1000
discharges. For each timeslice, 76 global plasma parameters (‘variables’) have been included.
Details of the dataset and its variables can be found in [8]. One of those variables is a label
of the type of H-mode: ELM-free, with small ELMs, and with giant ELMs (denoted as H,
HGELM, and HSELM, respectively). The characterisation of a timeslice as H, HGELM or
HSELM has been made by each experimental group providing the data. The distinction
between HSELM and HGELM was based on the height of the spikes in the H, signal. If
it was lower than or equal to the H, level during the L-mode, the timeslice was labeled
‘HSELM’. From the H-mode database, we dropped the pellet shots, and kept only the semi-
stationary H-mode timeslices, for which W,,j,4 and, if available, Wy;, are between —0.05 and
+0.35 times the injected power. Otherwise we applied none of the restrictions used in the
‘standard dataset’ used in [8].

We do not intend to present here an exhaustive practical analysis. We selected subsets
from the original dataset, each consisting of shots in a single magnetic configuration (either
DN or SN) from one of the machines ASDEX, JET, or JF'T-2M. The reason for this is that
DN and SN seems indeed to make a clear difference. In some of the six possible groups, the
plasma parameters have been varied rather little or only a few datapoints were available.
Hence, for convenience, we restrict attention to the ASDEX (DN), JET(SN), JFT2M (SN)
data in the database. The total numbers of observations for each tokamak are given in the
following summary table.

In addition, in Figs. 1 to 3, we made a graphical representation showing the distributions
of class-1 and class-2 discharges in plasma parameter space for the three tokamaks. Attention
is restricted to discharges on (a) the Pj,; — I plane, (b) the P;,; — fic plane, (c) the i, — I,
plane, and (d) the Seplim/a— P;y,; plane. (Pjy; is the injected power, I, is the plasma current,
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fie is the line averaged plasma density, a is the minor radius, and Seplim is the distance
between the separatrix and either the vessel or the limiter.) The symbols -, %, and © denote
ELM-free H-mode (i.e. H), H-mode with giant ELMs (i.e. HGELM) and H-mode with small
ELMs (i.e. HSELM), respectively. The symbols - and % correspond to class-1 shots, whereas
the symbol ® corresponds to class-2 shots.

Device Number of Observations

ASDEX 351 (only DN: 206)
JET 522 (only SN: 466)
JFT-2M 384 (only SN: 373)
total 1257 {main subsets: 1045)

Figure 1 gives the plots for ASDEX. On first sight, it appears from this figure that
the two classes considerably overlap. Some distinction, however, seems possible if we look
more carefully. From Fig. 1 (a), we see that H-mode with small ELMs (ie., class-2) are
predominant in the region of low Py,; and low I. For higher Pyp; and I, both classes oceur,
but class-1 occurs more frequently. From Fig. 1 {(b) one can see that in the Fj,; — ne plane,
the domain of class-1 discharges surrounds the region HSELM, except at low Py, ;. The plot
of the distribution in the fi, — I plane {c), indicates that the density is of discriminatory
value in addition to the current. (The figure suggests that no class 1 discharges occur at low
current, at least if the density is not very low.)

Figure 2 gives the plots for JET. From Fig. 2 (a), one can see that HSELM discharges
tend to occur at high current (at any medium to high input power) and at medium current
(3 MA) only for low input power. From Fig. 2 (b), one can see that HSELM and HGELM,
though they occur less often than ELM-free H-mode discharges, are well scattered over the
density and power range. At low density and power, there tends to be & region where ELM-
free discharges are less likely to occur. HGELM does not seem to occur for 7, < 1.5&%. From
Fig. 2 (c), it appears that also in the case of JET, the combination of current and density
gives a better discrimination than each of the variables alone. The HSELM discharges do not
occur at low current (2 MA).

Figure 3 gives the plots for JE'T-2M. In the present dataset, no discharge from JFT-2M
showed large ELM’s. From Fig. 3 (a) it appears that HSELM discharges do not tend to occur
at low current and at low power. Otherwise, they are fairly mixed with the ELM-free H-mode
discharges. In Figure 3 (b}, the HSELM discharges are also rather dispersed, but tend to
avoid the low density region. One might ask whether this may be due to a (high) correlation
between density and current. From Fig. 3 (c) one can see that this is not the case, so that
in summary, HSELM at JFT-2M seems to avoid the region of low values for I, P as well
as fie. In Fig. 3, the deuterium injected (D — H} discharges have been marked by symbols
that are about a factor 1.5 larger than those for the hydrogen njected (H — H) discharges.
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Fig. 1. ASDEX Double Null (DN), H — D) discharges. The symbois -, %, and () indicate ELM-free H-mode,
H-mode with Giant ELMs, and E-mode with small ELMs, respectively. The first two types of H-mode belong to
class-1 and the last type of H-mode to class-2. The data are projected onto the following planes: (a) ij -1,
(b) Pinj —Tie, (c) fie — Ip, and (d) Seplim/ a-Ppp 5. Seplim/a denotes the distance between the separatrix and

the vessel, normalised by the minor radius.
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Fig. 2. JET Single Null (SN), ) — D discharges. Seplim/a denotes the distance between the separatrix and

the limiter, normalised by the minor radius. For further explanation, see Fig. 1.
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Fig. 3. JFT-2M Single Null (SN} discharges. The smaller variant of each symbol denotes H — H, and the
larger variant ) — H . Seplim/a denotes the distance between the separatrix and the limiter, normalised by

the minor radius. For further explanation, see Fig. 1.
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The latter discharges turn out to have been performed with relatively high power. For both
types of discharge it appears that HSELM does not occur at low Iy, nor at low 7.

The above interpretation of the graphs should be viewed as tentative, because of an
incompleteness and an essential limitation.

‘The incompleteness is that other plasma variables, such as she magnetic field, and, sofar,
the distance of the plesma to the wall have not been considered. From other investigations,
the last variable is expected to influence the occurrence of ELM’s at least at ASDEX and
JET-2M. Here, as an example, it is plotted against In Pp; in the Figs. 1 (d) - 3 (d). It can
be seen that for JET and JFT-2M, there is an upper limit of this distance, above which no
HSELM is found (at Seplim / a = 0.073 and 0.25, respectively). For ASDEX, the distance
(which is measured to the wall and not to the limiter) seems, according to this 2-D pro jection,
not to have a clear influence on the occurence of HSELM. The reader is referred to Section
3.3.1, where the influence of this distance is discussed when geyl, the plasma currrent and the
time since the L-H transition are also (simultaneously) taken into account.

From this it is clear that interpreting for each tokamak all 10 graphs from all of the
above 5 plasma variables in a similar way still has the limitation that only two-dimensional
projections are considered. (And from these, only those on the coordinate planes of the
variables considered.) The above graphical approach, how illustrative and supportive it may
be, is limited by the fact that we cannot easily represent the data in more than 2 or 3
dimensions. Of course, an importance objective is to try and find lower dimensional subspaces
and surfaces in R® that separate the data. In the following we will do this systematically by
applying discriminant analysis.

3.2 Discriminant Analysis using Four Instantaneous Plasma Parameters

We first perform discriminant analysis taking instantaneous plasma parameters (on loga-
rithmic scale) as discriminating variables. Choosing the engineering parameters Pinj (injected
power of the neutral beams), I, (plasma current), By (toroidal magnetic field), and 7 (line
averaged electron density), we define

XP:]'nP‘inj XIZIHIP XBI}.D.B-,& anlnﬁe (18)

The variables Pyj, Ip, By, and fie are assumed to be measured in units of MW, MA, Tesla,
and 1019 /m3, respectively. We use the symbol 5y = {P,I,B,n} to denote the set of indices
corresponding to these instantaneous plasma parameters. The above choice of variables im-
plies that we assume, for the time being, that the probability of appearance of each class
of H-mode is not influenced by the history of the discharge. (The influence of the discharge
history, or ‘plasma memory’, will be discussed in Section 3.3.)
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Two discrete variables in the dataset that may influence the occurrence of KELMs re-
quire special attention. One is the equilibrium configuration: there exist single-null (SN) and
double-null (DN) discharges. In view of the possible qualitative differences associated with
these configurations, we analyze SN and DN configurations separately. The other variable is
the gas mixture. We label the type of gas by the parameter A. A distinction is made between
proton (H, A=1), deuteron (D, A=2), and mixed proton-deuteron {A is assumed to be 1.5)
plasmas. Table 1 gives a break-down of the total number of discharges with respect to de-
vice, configuration and ion species. One can see that in this respect each Tokamak tends to
concentrate somewhat on its own ‘favourite’ type of discharges.

Table 1 — H-mode Database (from ITERH.DB1)
Numbers of timeslices per tokamak, gas composition, and diverior configuration.

Gas=1 Gas=1.5 Gas=2 All

SN DN SN DN SN
ASDEX . 206 145 . . 351
JET . . . 36 466 522
JFT2M 104 11 269 . . 384
Total 104 217 414 56 453 1257

Gas: 1=H, 2=D, 1.5= mixtwe Hand D

In our analysis we consider only DN discharges from ASDEX and SN discharges from
JET. The reason is that in the case of ASDEX SN, the class-2 (i.e. HSELM) discharges in
the database occur only at a particular value of the magnetic field, whereas for JET all of
the DN discharges in the database belong to class-1. An analysis with the same variables is
difficult for ASDEX (SN) and JET (DN). We therefore choose the ASDEX (DN} and JET
(SN) subsets.

We first apply parametric discriminant analysis using quadratic discriminant functions.
Subsequently, non-parametric discriminant analysis is performed: (1) by SAS using uniform
kernel estimates (with a certain radius that determines the amount of smoothing) for the
probability densities, and (2) by the program INDEP which uses a product multinomial
model for the discretised plasma variables (for each variable 10 classes have been taken,
roughly according to the deciles of the distribution).

In each case, a {mis-) classification summary is given, which counts the numbers of cor-
rectly and of the various types of incorrectly classified observations in the present dataset.
This gives information about the performance of the procedure. I the summary would be
based on the discriminant function fitted to all data, it would yield an optimistic view (bias) of
the performance of the procedure since the same data are used twice. Therefore, the leaving-
one-out method (also called ‘jackknife’) has been used, which classifies the jth observation
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according to a discriminant function based on all observations except for observation j. This
largely eliminates the bias (but increases the variance of the discriminant function estimates}).
If the performance of the parametric procedure is close to those of the non-parametric proce-
dures, then, at least for the set of plasma variables considered, the assumption of a quadratic
form of the boundary seems to be appropriate, and we have good explicit formulas describing
the region in which we can expect small ELMs.

3.2.1 ASDEX (DN)

The basic frequency table describing the occurrence of ELMs in the dataset is

non-HSELM HSELM Total
Number of observations 134 72 206
Ratio (%) 65 35 100

The distributions of the two groups of data with respect to the variables X;(z € S}) have
to be estimated. Therefore, we present the centers of mass, the standard deviations, and the
correlations for both groups, see Table 2. {Together, they determine the first two moments of
the distributions.)

Table 2 — ASDEX (DN) data

(a) Mean values and standard deviations

non-HSELM, N=134 HSELM, N=72
log: 4 Mean sD Mean SD T F
Pinj 1.07 0.16 091 0.17 67 .
I -1L.10 0.12 122 0.16 54 **
By 0.77 007 0.77 0.07 -08 .
Tz 1.39 .19 1.33 0.12 30 dk

=+ P<0.001, *: 0001 <PF<001, ¢:04<P<06

(b) Correlation coefficients

noo-HSELM, (STDg= 0.09) HSELM, (STDe=0.12)
log: 4 log: — Pinj I By T
Pinj 1 042 0.18 0.02
b 0.14 1 031 032
B; -022 0.16 1 0.13
Te -0.23 0.60 0.19 i

The sample correlation coefficients of the HSEIM class are displeyed in the right upper comer and those of the non-HSELM
class in the left lower coreer.

STDe is one stzadard deviation of the sample correlation coefficient under the hypothesis of no actual comelation.

From the table, one can see that HSELM occurs at lower current and lower injected power
than non-HSELM. One can also see that the correlations are not very large, the largest being
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r = 0.6 between log I, and logfie in the non-HSELM group. (However many of them are
more than two standard deviations different from zero, and not the same for the HSELM
as for the non-HSELM group.) The other columns of Table 2 (a) quantify how significant
the differences of the mean values and the standard deviations are between the two groups.
For each plasma variable Xj;, ¢ = 1,...,4, the difference in mean value between the two
classes is to be compared with the standard deviation of this difference, which is estimated
by &; = \/ S.D;?’1 /N1 + SD;?"Q /N9, where Ny and Ny denote the sample sizes. If this difference
is significant, ie., if T; = ]X'z-l — X’? |/&; > 2, then this variable is effective for (univariate)
discrimination between the two classes. (The over-bar is used to denote the mean value and
the second subscript j to denote the class: 1 = non-HSELM, 2 = HSELM). The t-values T;
are displayed in the fifth column of Table 2 (a). In fact, when the null-hypothesis that the
two variances are equal was rejected, in column F denoted by one or more *’s, the t-value was
calculated using separate estimates for o1 and o9 [38]. (The corresponding loss in degrees of
freedom for the approximate ¢ distribution is negligible in this case.)

So, on the basis of this statistical analysis, we can infer from the table that Xp and
X7 are significantly larger in the non-HSELM class than in the HSELM class. This is not
the case for Xp and X,. However, the variation of the density is significantly larger for the
non-HSELM class than for the HSELM class. These observations are in accordance with the
visual inspection of Fig. 1.

Of course, the above considerations are only univariate, taking the ‘influence’ of only one
variable at a time into account. (Due to correlations, such ‘influences’ may be confounded
with those of other variables.)

The simultaneous influence of Py, Ip, By, 7. is investigated by performing discriminant
analysis for these variables (on logarithmic scale). From the output of the program DISCRIM
of SAS [38], we will discuss (¢) the distance matrix between the (two) groups, (z¢) the stand-
ardised canonical coefficients, and (#z2) the (mis-) classification tables for quadratic and non-
parametric discriminant analysis.

The (squared) distances between the two groups are calculated using as metrics (yard-
sticks) the covariance matrices of both groups of data. These distances are summarised in a
matrix D, which allows an effective generalisation to k groups. Specifically,

Diyj = (X;: — X; )tg(_j; (X; — Xj) (19
is used as an estimator of

Dij = (ui — p V50 — ). (20)
For ASDEX (DN), the matrix D equals

- (1.(')12 1§8) ' (21

21
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The fact that ‘bl,Q is smaller than f)2,1 means that the estimated variance along the line
connecting the means, which is (for group j) proportional to

(X1 - X.Q)tg(j)(il - Xbs),

has a smaller value for group 1 than for group 2. This implies that §1 and 22 are unequal.
Of course, the difference between ﬁl’g and 132,1 is not tremendously large. The question is
whether it is statistically significant, i.e. whether D 9 = Dy ;. Assuming multivariate normal
distributions for the two samples and neglecting the sampling variation of X; and Xo, the
ratio between Dy 1 and Dj ¢ is asymptotically (for N >> p) distributed as an F-distribution
with N9 and Ny degrees of freedom [25]. In our case, N1 = 134, Ny = 72, and p = 4. The
critical value of the corresponding F-distribution at 5% is about 1.4. The ratio between D 9
and Ds 1 being 1.72/1.38 ~ 1.25, the effect is not statistically significant at the 5% level.
Hence, from that point of view, one cannot conclude that £, and X9 are unequal. (Note
that taking the sampling distribution of X 1 and X ¢ into account will lead to an even larger
critical value and hence also not to statistical significance of the value 1.25.) Of course, this
univariate consideration works only in one direction: the fact that Dj9 = D91 does not
imply at all that 31 = 2 2. A multivariate fest is required to determine whether or not the
hypothesis ¥ 5 = X9 can be accepted. In fact, the modified likelihood ratio statistic (see
e.g, [26], Ch. 7.4), which compares the pooled covariance matrix with the individual ones,
and programmed in SAS [38], gives a highly significant result: 45 > X%O,.OE) = 18. Hence, the
null-hypothesis £ 1 = X 9 is indeed rejected in favour of det(X2) < det(X 1), though along
the line connecting the two centers of mass, the two distributions do not have a significantly
different spread.

The pooled within-class standardised canonical coeflicients are given by

0.72
. | 045 o
1 -0.19 ] (22)

0.25

The vector € = (Cp,Cr,Cp, Cn)t = (0.72,0.45, —0.19, 0.25) is proportional to

Difé' s (X1 — Xo), (23)
where gws = (n1 +n2 —2)"Y(n — 1)§1 + (ng — 1);2) is the pooled within-class covariance
matrix and D, its diagonal part. The subscript denotes the class of discharge (1=non-
HSELM, 2=HSELM). The word standardised means in this case that the coefficients pertain
to the plasma variables In Fyy,;, In Iy, In By, In 71, normalised by their (pooled within sample)
standard deviations. For that reason, the unstandardised (raw) coefficients are multiplied
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by D}U/SQ, i.e. by the standard deviations of the corresponding plasma variables. As we have

only two groups, the canonical coefficients are (up to a multiplicative constant) the same as
the weights of Fisher’s discriminant functions, and also the same as the coefficients obtained
from linear regression of the group membership vector (arbitrarily coded). The t-values (the
ratio between the estimated coefficients and their estimated standard deviations), calculated
from standard linear regression, are (4.9,2.6,—1.3,1.5). This indicates that Cp and Cj are
significantly {at least 2 standard deviations) different from zero, whereas C'g and C, are not.

Linear discriminating boundaries are in terms of the standardised plasma variables
formed by the hyperplanes perpendicular to the vector €, and in terms of the unstandardised
plasma variables by the hyperplanes perpendicular to X; — X5 in the metric given by gw 5
The pooled within-class covariance matrix is used as a metric to measure distances and angles.
This should be viewed as a approximate data-descriptive procedure, since we know that the
hypothesis ¥ 1 = Z 5 is rejected by the data, in which case no single metric is satisfying from
all points of view, and some improvement is expected by considering quadratic boundaries.
At least, from the vector € one can see that the (standardised) variables Xp and X are
more important for discrimination than the (standardised) variables Xp and X, and that
small ELMs (7 = 2) are to be sought in the region of low current and injected power. (More
precisely, for low values of Q tx , where X is the (column-) vector of standardised variables
Xp, X1, Xp, Xn. However, the coefficients for X and X, are not significantly different from
7€10. )

Table 3 (a) shows the jackknifed {‘cross-validated’) resubstitution summary of the data in
the data set. Now, a quadratic discriminant function has been used. In the 2 x 2 performance
table, the (1,2}-component is small (14.9%), but the {2,1)-component is large (47.2%). This
result indicates that most of the non-HSELM discharges are correctly classified as ‘non-
HSELM’, whereas a relatively large fraction of the HSELM discharges is misclassified as
‘non-HSELM’. This is because, as is seen in Fig. 1 (a), except for two almost identical outlying
points at low current, the non-HSELM discharges are observed in a fairly narrow region, Ry,
in parameter space, where also SELM discharges are possible. Below this region is a region,
Ry, where only SELM discharges are possible. This result allows us to avoid the region
where the non-HSELM discharges occur, which would be the more dangerous ones from the
viewpoint of sustaining good confinement under stationary conditions.

The few outlying HGELM points (which are, according to the agreed definition, indeed
HGELM, but somewhat borderline with HSELM), make the dataset from a statistical point
of view an interesting example to try and compare various robust versions of discriminant
analysis (based on concepts in [44,45]), which downweight the points that do not conform
to the majority. We shall refrain here from doing so. To ease our conscience, we ‘spied’ at
the additional ASDEX data from the ITERH.DB2 dataset. There, an EL.M-free point occurs
very close to the outlying HGELM points, indicating that that spot does not belong to the
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Table 3 — Classification performance for varions models

ASDEX (DN}

Prior probability: HSEIM = 0.35

HSELM OTHER  TOTAL

Allocated class
Troe class non-
HSELM
a) Quadratic boundaries
non-HSEEM 114 20
Row % 8.1 14.9
HSELM 34 38
Row % 472 528
Total 148 38
Row % 7.8 28.2
b1) Kernel density estimation {r=1}
non-HSELM 130 4
Row % 970 3.0
HSEIM 43 2%
Row % 59.7 403
Total 173 33
Row % 84.0 16.0
b2) Kernel density estimation {r=0.5)
non-HSELM 116 G
Row % 86.6 6.7
HSEIM 34 32
Row % 472 444
Total 150 41
Row % 728 19.9
¢) Multinomial independence model
non-HSEILM 111 23
Row % 828 172
HSEIM 27 45
Row % 315 62.5
Total 138 68
Row % 67.0 330
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72

206

region of (exclusively) HSELM. Hence, from a physical point of view it seems sensible not to
downweight the outlying points in this case.

Table 3 (b1) shows the jackknifed resubstitution summary of the discrimination based on
kernel estimates of the probability densities (with a uniform kernel with radius 1 on natural
logarithmic scale). In comparison with Table 3 (a), the (2,1} component of the matrix (i.e.,
the probability to misclassify HSELM discharges as non-HSELM) changes from 47.2 to 59.7%.
The (1,2) component of the matrix (i.e., the probability to misclassify non-HSELM discharges
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as HSELM) reduces from 14.9%, which is the value for the parametric discrimination, to
3.0%. This indicates that even (multi-dimensional) elliptical contours do not demarcate very
well the region where only HSELM discharges occur, and that some further improvement
of prediction is possible, at the cost of a more complicated boundary, if one wants to avoid
entirely the non-HSELM discharges. This more complicated boundary does not classify ali
HSELM shots correctly, possibly because the HSELM shots are rather scattered throughout
‘non-HSELM region’. By adjusting the kernel radius, one can get some trade-off between the
numbers of (1,2)-type and (2,1)-type misclassifications. This is illustrated in Table 3 (42),
where the same type of discrimination is performed, but now with kernel radius 0.5. One
sees a reduction of the number of (2,1)-type and an increase of the number of (1,2)-type of
misclassification. Note also that 9 non-HSELM and 6 HSELM observations are not allocated
to either group, and hence fall into the category ‘other’. This is because those observations
are outside a radius 0.5 of all other cbservations in the dataset, whence, by this method, both
estimated probability densities are zero. Such a situation does not oceur if the radius of the
kernel is increased to 1.0. Which kernel radius will be ‘optimal’ depends on the relative losses

associated with the two types of misclassification.

In Table 3 (c), the results from applying the multinomial independence model, obtained
by using the program INDEP [38], are shown. For simplicity, the discretisation was done on
the original variables, not on the (joint) principal components. (As one can see from Table 2
(b), the four discriminating variables are not very highly correlated.) Ten groups per variable
were used, as far as sensible roughly according to the deciles. Zero cells were avoided by
using a ‘fattening constant’ [46], which has some Bayesian justification. One can see that the
performance of the multinomial independence model is comparable with that of the quadratic
boundary model.

A very simple way to compare the three approaches is to look at the Crude Error Rates
(C.E.R.), i.e the total fraction of misclassifications. From this point of view, the estimated
performance is similar (C.ER. = 26%, 23%, and 24%, respectively). (In Table 3 (52), the
C.E.R. would be 24.5% if not classifying an observation is considered half as serious as making
a misclassification.) The two types of misclassification occur in a different ratio for the kernel
density estimate approach than for the other two approaches, however. Clearly, the C.E.R
is a sensible criterion only if the two types of misclassification are considered to be about
equally serious, which is not the case here. To cope with this situation, one has either to
associate losses to the misclassifications, or to analyse both types of misclassifications jointly.
Some theory and analysis using the last approach, albeit in another physical context, can be
found in [47].
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3.2.2 JET (SN)

The basic frequency table is

non-HSELM HSELM Total
Number of observations 383 83 466
Ratio (%) 82 18 100

The centers of mass and the standard deviations of the distributions are shown in Table
4. The column T of this table gives, for each of the four variables, the difference in mean
value divided by its estimated standard deviation, and the column F roughly indicates the
significance of the difference between the standard deviations.

Table 4 — JET (SN) data

{a) Mean values and standard deviations

ron-HSELM, N=333 HSELM, N=83
log: A Mean SD Mean SD T F
Pinj 1.97 026 207 0.34 25 **
I 1.08 022 1.30 0.19 -84 -
B: 0.90 0.15 103 0.11 -8.7 *
He 136 024 1.38 0.30 04 *k

** 0001 <P<001, =0.05<P<02

(b) Correlation coefficients

non-HSELM, (STDo=10.05) HSELM, (STDg=0.11)
log: 4 log: — Py b B e
Py i 055 0.60 0.70
5 0.8 1 030 045
B; 045 051 1 0.52
Te 0.35 .58 0.45 1

‘The sample correlation coefficients of the HSELM class are displayed in the right upper corner and those of the non-HSELM
class in the left lower corner.

STDg is one stardard deviation of the sample correlation coefficient under the hypothesis of no actual correlation.

In contrast to the case of ASDEX, Xp and X are larger for HSELM than for non-
HSELM discharges. Also, the average value of X g is larger for HSELM than for non-HSELM
(for ASDEX there was no significant difference). The question whether the density distribu-
tions of the HSELM and non-HSELM shots can be considered to be the same is addressed in
the same way as for ASDEX. The distance between the two groups, in the two corresponding

metrics, is given by
. 0 3.33
D= . (24)
= 175 0
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Now D1 9 is larger than D9 1, and significantly so, since the ratio is about 1.9 which is larger
than Fy7g 79, o5 = 1.4. This indicates that, for JET, group 1 (non-HSELM)} does not have the
same covariance matrix as group 2 (HSELM). This is confirmed by the modified likelihood
ratio test {26, 38], which gives a highly significant result: 72 > xgo,g_% = 18, det(X 9) being
smaller than det(X ;). Hence, the discrimination boundary cannot accurately be expressed

by linear combinations of X;.

Table 5 — Classification performance for various models
JET (SN}

Prior probability: HSELM = 0.18

Allocated class
True class non- HSELM OTHER TOTAL
HSELM
a) Quadratic boundaries
non-HSELM 370 13 383
Row % 94.6 34
HSEILM 44 39 23
Row % 53.0 47.0
Total 414 52 466
Row % 822 112

bl1) Kemnel density estimation {(r=1.0)

non-HSEL.M 362 19 0 383
Row % 9.5 5.0 0.0

HSELM 24 39 0 83
Row % 289 71.1 0.0

Total 386 78 0 466
Row % 82.2 17.8 0.0

b2) Kernel density estimation (r=0.7)

non-HSELM 358 17 8 383
Row % 93.5 44 21

HSELM 14 69 0 83
Row % 168 831 0.0

Total 327 86 8 466
Row % 798 185 1.7

¢} Multinomial independence model

non-HSELLM 325 58 383
Row % 849 15.1

HSELM 35 48 83
Row % 422 57.8

Total 360 106 466
Row % 77.3 221

27



The pooled within-class standardised canonical coefficients are

0.11
N 0.87
C = ) 25
T 0.51 (25)
—0.72

where € = (Cp,C,Cp,Cn). Using this simple yardstick, we see that the injected power
is, in comparison with ASDEX (DN), more important and the current is less important
for discrimination between HSELM and non-HSELM. Also, the canonical coefficients for
the magnetic field and the density are somewhat larger in absclute value than in the case of
ASDEX (DN). The t-values of these coefficients, calculated from linear regression analysis, are
(1.0,7.1,4.1, —-5.6). Hence, except for Cp, all coeflicients are clearly significant. Table § shows
the jackknifed (mis-) classification summary for (¢) the quadratic discriminant function and
(b) non-parametric discriminant functions based on density estimates with uniform kernels
and radii r = 1 and r = 0.7, respectively. The estimated probability of (1,2) misclassification
is 3.4% in case {a), 5% in case (b1), and 5.5% in case (52). {The latter applies if making no
classification is considered half as serious as making a wrong classsification.) This means that
the quadratic fit is better suited to exclude the non-HSELM shots than in the ASDEX (DN)
case. Therefore, we will describe this boundary more explicitly. The squared Mahalanobis
distance, or potential, of an observation at point z to the center of gravity, Bjs of group j

can be written as
D_‘;?(E) =(z ~ Ej)téj(i - Ej) + b§(£ - &j) + €5, (26)

where the index j = 1,2 indicates the class, and 4 j and b; are a matrix and a vector of
coefficients, respectively. The posterior probability density for an observation at point z to
belong to group 7 is given by
1752
File) = 2@ sd_ 30, - (27

An observation is allocated to group 7 if the posterior probability density to belong to group
J 1s larger than 50% (j = 1,2).

The boundary B separating the two allocation regions is given by

B ={z|fi(z)= falz)} (28)

The coefficients {éj,bz-,cj-}, maltiplied by —%, where 4, = (Ajir )i kes; and QE- = (bjk)kcSy>
for j = 1,2, are tabulated in Table 6. In both cases, among the quadratic coefficients 4; ¢,
the diagonal ones, A p, are dominant (4, k € S7).
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Table 6 — Quadratic discrimination
JET (8N)
Cogfficients of the quadratic form representing —0.3 times the sguared Mahalanobis distance

To: non-HSEIM
log: 4 log: — P I B, i
Py -9.7 23 7.6 28
A -23 -184 102 79
By 7.6 102 -38.8 25
e 28 79 25 -149
Linear term 218 92 1.0 79
Constant =30.2
To: HSELM
log: 4 log: - Py I B 2,
Pij -11.5 5.7 102 54
A 37 -20.1 22 17
B 10.2 22 -624 50
Tie 55 1.7 30 -113
Linear term -3.1 238 7.0 59
Constant —46.4

9.2.3 JFT-2M (SN)

The original ITERH.DB1 database contains only a few JFT-2M observations with small
ELMs. After having made some analyses with them, we turned back to the original time
traces plotted on the review sheets {8]. Looking at the H, signal, it was noticed that in a
number of cases, small ELMs did occur just after the last time-point that had been selected for
inclusion in the database. Since for the present investigation, in contrast to the confinement
analysis in [8], it is important to know whether or not small ELMs were produced during
a substantial period of time during the shot, which may be outside the two time-points
selected for the confinement analysis, we reclassified some of the shots as being ‘HSELM’. A
description of the criteria used and a list of shots and time intervals that were classsified as
‘HSELM’ are given in the Appendix.

The reclassification was based solely on the H, signal. It should be noted that sometimes
the H, spikes are provoked by sawteeth. Hence, the label HSELM is, more precisely speaking,
used to denote ‘shots with a spiky H, signal indicating either (small) ELMs or sawteeth’. A
further study in which the Hy signals are compared with those from interferometry in order
to separate the ELMy from the sawtooth cases, would be very valuable.

For the ASDEX and JET data, the reclassification problem is less pressing. In those
cases usually three, sometimes four, time-points per shot have been taken, covering the in-
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terval between the beginning of the H-mode and the time that Wy, is maximal somewhat
better than in the case of JFT-2M. Nevertheless, in a future investigation, one could consider
to investigate as response variable the total duration of the periods (standardised in some
way) with and without small ELMs during the discharge. At present, no such information is
available in the database. The basic frequency table for JFT-2M (SN) is:

non-HSELM HSELM Total
Number of observations 312 61 373
Ratio (%) 84 16 100

The centers of mass and the standard deviations of the distributions are shown in Table 7.
Again, the column F indicates which SD’s, and the column T indicates which mean values
are to be considered different between HSELM and non-HSELM.

Table 7 - JFT-2M (8N) data

(a) Mean values and standord deviations

nor-HSELM, N=312 HSELM, N=61
log: 1 Mean sD Mean sD T F
P —0.18 0.57 -£0.13 031 -0.7 .
I -152 0.19 -1.39 0.11 =70 g
B; 0.22 0.07 0.24 0.01 -4.5 i
Tie 143 0.26 146 02 07 -
(Gas 0.32 0.17 0.16 0.20 6.6 -

=+ P<000], < 0.05<P<02 » 02<P <05

(b) Correlation coefficients

noo-HSELM, (8TDg=0.06} HSELM, (STDg=0.13)
log: 4 log: = Py L B Tie Gas
Py 1 0.16 0.15 0.51 —0.77
A 013 1 0.2 0.40 Y
B -0.09 0.18 i 0.11 -0.25
Te -0.02 0.62 0.17 1 -0.26
Gas —0.41 0.15 -0.11 .21 1
The sample correlation coefficienis of the HSFLM class are displayed in the right upper corner and those of the non-HSELM class in the left

lower corner,
STDg is one standard deviation of the sample comrelation coefficient under the hypothesis of no actual correlation.

From the table one can see that the HSELM discharges generally occur at higher values
of I, By, and at a lower value of GAS than the non-HSELM discharges do. The last fact can
also be seen from Table 8: For the H into H (GAS=1) discharges, a larger fraction HSELM
observations occurs than for the D into H discharges (GAS=1.5). Of course, such considera-
tions are only univariate, taking the ‘influence’ of only one variable at a time into account.
Due to correlations, such ‘influences’ may be confounded with those of other variables.
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Table § — JFT-2M (SN) data
Numnbers of timeslices per ELM type and gas composition

Gas H-H D-H Total
non-HSELM 67 245 312
HSELM 37 24 61
Total 104 269 373

The simultaneous influence of Pyy;, I, By, fie, and GAS is investigated by performing
discriminant analysis for these variables on logarithmic scale. We summarise the main results.

The estimated pairwise distances between two groups are given by the matrix

. (0 4T
b= ( ) . (29)
= 182 0

The fact that D 9 is significantly larger than D9 ; indicates that, like at JET and unlike
at ASDEX, see Egs. (21) and (24), the HSELM shots occur in a smaller region of plasma
parameter space than the non-HSELM shots. The imbalance between D ; 9 and D 9 ; implies
that the discrimination boundary is expected not to be efficiently representable by a linear
combination of the above five, logarithmically transformed, variables.

The (pooled within-class) standardised canonical coefficients are estimated by

0.19
—0.87

€ =|—-006]. (30)
0.47
0.83

The t-values of the estimates € = (Cp,Cr,Cp,Cn, C) are (1.4,—6.0,—0.5,3.2,6.1). As
in the univariate analysis, we have a significant dependence on plasma current and on gas
composition. However, in contrast to the univariate analysis, the effect of the plasma density
turns out to be significant. This (significant) density dependence is to be interpreted when
the four other plasma parameters are kept constant. In the univariate analysis, this fact was
masked by the correlation between density and current, which is about 0.6 for non-HSELM,
and 0.4 for HSELM, see Table 7 (b). Compared with the univariate analysis, the injected
power remains insignificant, and the magnetic field has become insignificant in the presence
of the other variables. To understand the latter, we noted that two magnetic fleld scans exist
in the present dataset, but no BSELM shots occurred in these scans. This is in accordance
with By being significant from univariate considerations. However, the two magnetic field
scans were made only with D into H, i.e. GAS=1.5, and are somewhat negatively correlated
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(r = —0.3) with I. The coefficients of the simultaneous analysis express the fact that the
non-occurrence of HSELM can be ascribed to the high value of GAS and the relatively low
value of Ip for the 16 observations from the 2 scans. In addition to these two effects, which are
estimated from all data, the magnetic field does not exhibit additional discriminatory value.
Obviously this holds within the simple power-law type model used so far.

Table 9 — Classification performance for various models

JFT-2M (SN)
Priors HSELM = 0.16
Allocated class
True class non- HSEIM OTHER  TOTAL
HSEIM

a) Quadratic discriminant analysis

non-HSELM 236 3 312
Row % 76.6 234

HSEIM i1 50 61
Row % 18.0 820

Total 250 123 373
Row % 61.0 33.0

bl) Kernel density estimation (r=1.0)

non-HSELM 263 42 7 312
Row % 8.3 135 22

HSEIM 17 42 2 61
Row % 219 689 33

Total 280 8@ 9 373
Row % 7.1 25 24

b2} Kernel density estimation (r=0.5)

non-HSELM 238 12 62 312
Row % 76.3 39 199

HSELM 2 21 18 61
Row % 36.1 344 285

Total 260 33 80 373
Row % 69.7 89 215

¢) Multinomial independence model

pon-HSELM 296 16 312
Row % 949 5.1

HSEIM 45 16 61
Row % 73.8 262

Total 341 32 373
Row % 914 86

Table 9 shows the jackknifed (mis-) classification summary of the discriminant analy-
sis using: (a) a quadratic discriminant function, (b) non-parametric density estimates with
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uniform kernels and radii r = 1 and r = 0.5, respectively, and (¢) the multinomial inde-
pendence model with a global association factor. It is noted that the discrimination with
the uniform kernel density estimates improves the number of {dangerous) misclassifications
of non-HSELM shots. Nevertheless, a fair amount of misclassifications remains for r = 1,
whereas for r = 0.5 there is a large number of unclassified observations. The multinomial
independence model reduces the number of non-HSELM misclassifications, albeit at the cost
of a larger number of the (less dangerous) HSELM misclassifications.

3.3 Discriminant Analysis taking Plasma Memory and Plasma-Wall Distance into
Account

We now want to investigate the effect of ‘plasma memory’ on the class of plasma dis-
charges that will occur. First, we only replace the instantaneous plasma density by the target
plasma density, i.e., we use as fourth discrimination variable the logarithm of the line-average
density in the Ohmic phase,

Xﬁc,ohm = ]-n(ﬁe,ohm)a (31)

and keep the other three components the same as in Section 3.2. The effect of this replacement
will be investigated for ASDEX (DN) plasmas only.

The estimated canonical coeflicients are

0.53

n 0.99
—0.12

0.64

(32)

Comparing these values with the canonical coefficients in Section 3.2, we see the importance
of Pj,; and I, and the unimportance of By for linear discrimination confirmed. However, the
density dependence stands out more clearly now. This means that the appearance of HSELM
discharges depends on the target plasma density rather than on the instantaneous density.

The difference between the target density and the instantaneous density in their effect
on the discrimination suggests the importance of the elapsed time after the transition to the
H-mode. Furthermore, the distance between the separatrix and the wall has been known by
the experimentalists to influence the occurrence of ELMs [16, 8].

To see these effects quantitatively, we choose as new set of variables
Xe=In(t—trp), Xpy =Wn(Pini/Vp), Xa,.pm =100 ohim) (33)

Xg=dgwordgy, Xg=In{g.y), Xprv=(BiI/V,), (34)
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where t — t7  is the elapsed time after the L-H transition (expressed In units of 50 ms for
ASDEX and JFT-2M, and of 500 ms for JET), dgy, is the distance between the separatrix and
‘limiter’ and dgy the distance between the separatrix and the outer wall, both normalised

by the minor radius and defined more precisely below, ggyp = 10%%% is the cylindrical

g-value, and V) = 972Rab is the plasma volume (in m®). The impact of the parameter Xy
has been experimentally extensively studied, see e.g. [20]. As some values of Xz were close to
zero, it was decided not to use the logarithm of this variable. Note that for constant Vj, the
transformation from (Xg,Xr) to (Xg,Xpry) can be described by a simple rotation of the
coordinate frame. With these variables, we perform discriminant analysis for ASDEX (DN)
and JET (SN).

Table 10 — ASDEX (DN) daia

(a) Mean values and siandard deviations

non-HSELM, N=134 HSELM, N=72
log: J Mean S.D. Mean s.D. T F
t—trm 0.10 0.54 ~0.15 0.53 3.1 .
Pini | Vp -0.61 0.16 -0.76 0.17 6.5 .
Te, ofunt 125 0.17 1.23 0.24 06 i
sepwall/ a 0.44 0.04 Q.46 0.05 -3.0 .
geyl 1.15 0.13 1.28 0.17 3.6 *
B Vp —2.02 0.16 -2.12 (.21 3.7 *k

#¥2. P 0001, **0.001 <P<00l, %:001<P<005 —005<P<03, »03<P

(b) Correlation cogfficients

non-HSELM, (STD¢=0.09) HSELM, (STDg= 0.12)
log: i, log: — t—Ig ij f Vp The, ohm SBPWB.HI a Geyt B;Ip ! VP
f—tryg 1 0.00 0.20 0.19 —0.02 0.10
Pini 1 Vp —0.44 1 0.17 -0.15 ~0.39 0.45
Fe, obm” 0.25 0.14 H 0.31 —0.49 0.69
sepwall/a 0.03 0.16 0.55 1 -0.13 0.33
Gext 0.00 —0.27 .69 —0.58 1 073
BilplVp 0.26 .08 0.69 0.60 —0.5% 1

The sample correlation coefficients of the HSELM class are displayed in the right upper comer and those of the non-HSELM class in the left lower corner.
STDs is one siandard deviation of the sample correlation coefficient under the hypothesis of 10 actual correlation.

39.8.1 ASDEX (DN)

Table 10 describes and compares the distributions of the non-HSELM and HSELM observa-
tions in plasma parameter space. We can see, for instance, that the difference in Xy is 0.25,
i.e., on average, the non-HSELM mode appears eV-25 % 50 ~ 65 ms later during the shot than
the HSELM mode. The difference in dgpyy means that the distance between the separatrix
and the outer wall for the HSELM observations is on average 0.02 x 40 = 0.8 cm larger
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than for the non-HSELM observations. Discriminant analysis applied to the N = 206 DN
observations from ASDEX gives the following estimated (pooled within-class standardised)
canonical coefficients:

G = (0.53,0.54, ~0.52, —0.49, ~0.66,0.29 ). (35)

The t-values of C! = (C’t,é‘pv,éﬁe’ohm, C‘d, éq:éBIV)a obtained from standard linear
regression, are (—4.5,—4.5,3.2,3.9,4.2, —1.6). These results indicate that the variables t—t 7,
fig ohms> and dgyy) are about as important for discrimination as the heating power.

The interpretation of the last two coefficients in Eq. (35) is: for fixed values of the four
other plasma parameters, the direction of highest discrimination is given by the logarithm
of ¢~0-66/ 0'14(BtIp/Vp)0‘29/ 0.18 where 0.14 and 0.18 are the pooled within-class standard
deviations of Xy and X gy, estimated from Table 10 (a). By comparing Eq. (35) with Egs.
(22) and (32) one can see that the g-value is more important for discrimination than the
absolute value of the toroidal magnetic field.

Table 11 shows the result of the jackknifed (mis-) classification summary. The perfor-
mance is better than the performance of the discriminant analysis based on the four in-
stantaneous variables. The (2,1) component of the (mis-) classification table is 9.0% for the
quadratic discriminant analysis, and 7.8% for the analysis using uniform kernel density es-
timation with » = 1.5. The assumption of the quadratic fitting is better than in Section
3.2.1.

It is noted that for X; the variable SEPLIM as available in ITERH.DB1 was used, which
denotes for ASDEX an estimate of the distance between the plasma boundary and the outside
torus wall (in the horizontal plane), not taking the position of the ICRH antenna into account.

We also did the discriminant analysis while taking the position of the ICRH antenna
into account, as well as with an estimate of the closest distance between the plasma and the
wall (not necessarily in the horizontal plane). These data are presently not available in the
ITER H-mode Database. In both cases, the performance of the discrimination turned out to
be less than in the above case. This suggests that for instance the magnetic field ripple {48}
may be of more importance for the occurrence of ELM’s than the closest distance between
the plasma and the wall. Such a suggestion would not be in contradiction with [49], where
ballooning-type instabilities with toroidal modes numbers n = 8 to 15 were considered to be
likely candidates for ELM precursors. This topic can be investigated more precisely as soon as
more accurate estimates of the minor plasma radius than presently available in ITERH.DB1
will be at our disposition.

The coeflicients for the Mahalanobis distances to the two centers of gravity are given
in Table 12. The discrimination surfaces are surfaces of constant difference between the two
Mahalanobis distances. Note that they can be multidimensional ellipses and that they can also
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Table 11 — Classification performance for varieus models
ASDEX (DN)

Priors HSELM = 0.35

Allocated class
True class non- HSELM OTHER  TOTAL
HSELM

a) Quadratic discriminant analysis

non-HSELM 122 12 134
Row % 91.0 9.0

HSEIM 23 49 72
Row % 319 68.1

Total 143 61 206
Row % 704 206

bi) Kernel density estimation (r=1, threshold=0.3)

non-HSELM 108 10 16 134
Row % 80.6 15 11.9

HSELM 16 36 20 72
Row % 22 50.0 27.83

Total 124 46 36 206
Row % 60.2 223 175

b2) Kernel density estimation (r=1.5, threshold=0.5)

non-HSELM 122 9 3 134
Row % 91.0 6.7 22

HSELM 27 43 2 72
Row % 375 59.7 28

Total 149 52 5 206
Row % 723 252 24

have an hyperbolic character. The reader is referred to [50] for a graphical two-dimensional
section of the discriminant surface for these data.

3.9.2 JET (SN)

For JET, we used for dgy the variable SEPLIM as available in ITERH.DBI, which is an
estimate of the minimum distance between the separatrix and the ‘Limiter’, i.e. any part of
the wall. In Table 13, the univariate summary statistics and the correlation matrices are
given. One can see that the ohmic density and the variable B;Ip/Vy are the most important
ones for discrimination. Also, the HSELM shots seem to occur at somewhat higher values of
Pinj/Vp and at lower values of g,y than the non-HSELM discharges do. The time since the
onset of the H-mode does not exhibit a significant effect.

However, these univariate considerations do not necessarily give the correct estimates
for the simultaneous influence of these variables. In fact, the estimated standardised canon-
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Table 12 — Quadratic discrimination
ASDEX (DN)
Coefficients of the guadratic form representing —0.5 times the squared Mahalanobis distance

To: non-HSEILM

Quadratic term log: - t—1H Pinj I Vp Tie ol Sepwall/a Gt Bilp/ Vp

Iog: 4
t—1g -2.61 -3.80 265 -4.01 1.86 2.16
Piil Vp -3.80 -26.84 291 -1.33 621 040
T, ohm 2.65 201 —44 18 14.28 2450 16.60
sepwall fa -4.01 -1.33 1428 -477.34 —42.96 50.68
Gevl 1.86 —-6.21 2430 —42.96 —65.60 -8.05
Bilp!Vp 2.i6 0.40 16.60 50.68 -8.05 —47.38

Linear term 275 -22.05 224.10 689.55 209.63 ~259.17

Constant -669.29

To: HSELM

Quadratic term log: — 11y Pypid Vp T, olm  scpwall/a Gyt BV,

log: A
-ty -191 0.33 106 351 0.46 —0.49
Pl Vp 033 -26.86 —4.40 -30.16 -1.05 15.08
Toe, ohm 1.06 —4.40 -18.96 123 —0.00 16.36
sepwall /a 351 -30.16 123 —250.90 15.80 41.59
Gest 046 -1.05 -0.00 15.80 -39.62 —24.61
B!V 049 15.08 16.36 4159 —24.61 —48.28

Linear term 016 64.56 108.64 35755 -19.43 -198.11

Constant —313.37

ical cocfficients from discriminant analysis, which are, as we have seen before, the multiple

regression coefficients after standardising all variables by the pooled within-class variances,
are (N = 277)

G = (—0.004,0.038,0.217,0.003, —0.037,0.785) . (36)

The corresponding t-values are (—0.04,0.26,0.89,0.02, —0.25, 3.2). This means that, except
for ByI,/Vp, none of the coefficients are statistically significant, nor large in absolute value!
This illustrates the effect of confounding, due to correlations between the discrimination
variables. Indeed, HSELMs are associated with a larger ohmic density than non-HSELMs,
but a higher ohmic density is also correlated with a higher value B;I,/V, (r = 0.85). At a
constant value of ByI,/Vp, the ohmic density has no statistically significant predictive value
for the occurrence of small ELMs. The correlations between Bilp/Vp and Pipj/Vp and gey
are smaller {r = 0.4 and r = —0.4, respectively), but apparently sufficient, as one can see by
comparing Table 13 (@) with Eq. (36), to provoke a smaller amount of confounding.

The question may arise whether the correlations between the variables are sufficiently
high fo make the dataset ili-conditioned for simultaneous regression. This is investigated by
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Table 13 — JET (SN) data

(a) Mean values and standard deviations

non-HSELM, N=218 HSELM, N=59

t-1H 0.54 0.58 0.65 0.62 -12 .
Pyl Vp -2.68 0.26 -2.55 03p -32 -
e, ohm 0.39 0.32 0.72 02 -95 rEE
seplim / a 0.055 0.017 0.05% 0.012 -~1.9 **
g 1.10 0.17 1.01 0.19 36 -
B/ Vp 272 0.3 -2.33 0.23 -104 i
#e P 0001, ** 0.001 <P<0.0!, *0.01 <P<005, - 005<P<03, «03<P
(b) Correlation coefficients

non-HSELM, (STD¢=0.05) HSELM, (STD¢=0.11)
log: 4 log: — t—g Pinjl Vp Mg ohm  Seplim/a eyt Bl 1 Vp
t—tH 1 0.29 022 —0.04 0.05 -0.01
P I Vp -0.407 1 0.59 0.24 —0.29 0.62
Tle, oo 0.18 0.16 1 0.28 —0.24 0.68
seplim /a 0.16 -0.03 021 1 -0.13 0.52
eyl 025 0.08 048 0.01 i -0.58
B/ Vp 0.16 0.33 0.83 (.13 —0.34 1

The sample correlation coefficients of the HSELM class are displayed in the right upper comer and those of the non-HISELM class in the left lower corner.

STDy is one standand deviation of the sample correlation coefficient under the hypothesis of no actual comrelation.
principal component analysis. The square root of the smallest eigenvalue of the correlation
maitrix equals 0.36, and the assoclated eigenvector is mainly associated with Bl /Vp and
fig ohm- As the measurement accuracy of these 2 quantities is better than, say, 0.2 times
0.36 {i.e., than about 7%), the estimated bias in the estimates of the canonical coefficients
induced by neglecting such (random) measurement errors is not more than a few percent of
those estimates. The square root of second smallest eigenvalue is considerably larger (0.74).
From these considerations, the condition is sufficiently good for a well-behaved simultaneous
linear discriminant analysis.

The canonical coefficients suggest that the minimum distance between the separatrix
and the wall is not at all important for (linear) discrimination. This should, however, not
be misinterpreted. About 150 observations with missing values for dg;, have not been used
in the analysis. They are, in overwhelming majority, shots for which at least one of the
X-points is outside or nearly outside the vessel, so that the missing values correspond to
dg; < 0. Using an indicator variable for those missing values {0=missing, 1=non-missing),
instead of the variable dgy, gives a significant discrimination coefficient (f = 2.6), while the
other coefficients remain roughly the same! Also, coding the missing values as dg; = 0, and
retaining the positive values of dgj, as they are in the database, gives a significant coefficient
(# = 2.45). So the negative values of dg, seem to be far more interesting for discrimination
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than the positive ones. HSELMs are associated (in the simultaneous regression) with positive
dgr, i-e. with X points within the vessel, but the precise value of dgy, is rather unimportant.
A fortunate coincidence is that restricting attention to the observations with both X-points
inside the vessel leads a region where the desirable HSELM discharges are expected, and at
the same time simplifies the discriminant analysis, by fading out the influence of all plasma
variables, except for BiI,/Vp .

‘Table 14 — Quadratic discrimination

JET (8N)

Coefficients of the guadratic form representing —0.5 times the squared
Mahalanobis distance
To: non-HSEIM
Quadratic term log: - T, ohm BV
log: 4

Tle, otum -160 12.6

B ;1 Vp 126 -143
Linear term 810 -87.6
Constant -132.3
To: HSELM
Quadratic term log: —» Te, okm B 1 Vp
log: |

Tie, ohm -21.0 12.8

Bilp!Vy 12.8 7.1
Linear term 8938 982
Constant —144.7

Hence, as a compact representation of the case that both X-points are inside the vessel,
we present in Table 14 the quadratic discriminant function using the variables B;I,/V} and
e ohm Only. The table is based on the N = 277 observations with dgy, > 0. In two dimensions
one can eagily make plots of the discriminant curves such as in [50]. In our situation, one can
see that the difference between the two Mahalanobis distances is positive definite. Hence, the
discriminant curves are ellipses.

Finally, we check that, using only fi, opy, and Bylp/Vp, the canonical coefficients are

C* = (0.22,0.81), with t-values (0.97,3.6). This is not very different from the corresponding
coefficients in the linear analysis with the 6 variables discussed above.

Table 15 (a) shows the result of the jackknifed (mis-) classification summary of the
guadratic analysis with the six and with the two variables described above. One can see
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Table 15 — Classification performance for various models

JET (SN)
Priors HSELM = 0.21
Allocated class
True class non- HSELM OTHER TOTAL

HSELM

a} Quadratic discriminant analysis

al) with the 6 variables from table 13

non-HSELM 199 19 218
Row % 613 8.7

HSELM 24 35 59
Row % 40.7 59.3

Total 223 54 277
Row % 805 193

a2} with e, ohm ard By Ip / Vi only

non-HSELM 200 18 218
Row % 91.7 83

HSEIM 26 33 3%
Row % 441 359

Total 226 51 277
Row % 81.6 184

b1) Kernel density estimation {r=1, threshold=0.5)

non-HSELM 191 4 23 218
Row % 87.6 1.8 10.6

HSEIM 10 36 13 59
Row % 17.0 610 22.0

Total 201 40 36 277
Row % 78.7 144 13.0

b2} Kernel density estimation (r=1.5, threshold=0.5)

non-HSEILM 203 i0 5 218
Row % 93.1 4.6 23

HSEIM 12 43 4 59
Row % 203 729 68

Total 215 53 9 277
Row % 77.6 1%.1 33

that the quadratic discrimination with the six variables performs relatively well compared
to the non-parametric discrimination. With the two variables 7, by, and Bylp/Vp only, the
performance is somewhat worse, but still reasonable for practical purposes. The overall mis-
classification rate is 15.8% compared to 15.5% for the six variables, and 12.2% for the analysis
based on the four instantaneous variables (see Table 5). The latter analysis included the points
for which dg7, < 0. We now classify the HSELM shots better than in the analysis with the
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four instantaneous variables, but at the cost of including more non-HSELM shots in the re-
gion attributed to HSELM. We suspect that these costs could be reduced to a considerable
extent if the negative values of dg; would become available in the database.

4 SUMMARY AND DISCUSSION

In this paper, we looked at various methods to determine the plasma parameter regime
where H-mode discharges with small ELMs can be expected.

After a description of its theoretical aspects, discriminant analysis was applied to the
ASDEX, JET, and J¥T-2M data of the ITERH.DB1 database. We divided the H-mode
discharges into two classes: class-1 (ELM-free or with giant ELMs) and class-2 (with small
ELMs). This distinction was motivated by the fact that H-mode with small ELMs is favourable
from the viewpoint of a long sustenance of improved confinement against the contamination
by impurities. The distributions of the two classes of discharges in plasma parameter space
overlap each other. The general statistical methodology to describe these distributions, and
to discriminate between the two classes of H-mode has been discussed in Section 2.

In Section 3, linear and quadratic discriminant analysis on logarithmic scale was used to
find explicit expressions for combinations of variables that are efficient to predict the region
where small ELMs will occur. A general aspect based on the analysis of ASDEX (DN), JET
(SN) and JFT-2M (SN) data is that linear discrimination (on logarithmic scale) is not very
accurate since the covariance matrices for the two classes are significantly different. Hence, the
boundary B cannot effectively be expressed by a simple power law in terms of the engineering
variables, and hence also not in terms of the dimensionless plasma parameters.

Instead, the discriminant surfaces, i.e. the surfaces on which the difference in Mahalonobis
distance to the centers of gravity of the two groups of H-mode discharges is constant, are on
logarithmnic scale explicitly described by quadratic equations.

The performance of the quadratic discriminant analysis was estimated by using the jack-
knife method on the available datasets of ASDEX, JET and JFT-2M, and expressed in (mis-)
classification tables. A comparison was made with the performance of discrimination based
on non-parametric density estimates and of discrimination using a multinomial independence
model. These more flexible non-parametric methods showed a better performance than the
quadratic discriminant analysis, however considerably less so when the ‘plasma memory’ and
the plasma-wall distance were taken into account. The non-parametric methods do not permit
a simple representation of the discrimination surfaces.

It was found that for quadratic discriminant functions a larger fraction of non-SELM dis-
charges is (correctly) classified as non-SELM, than SELM discharges are classified as SELM.
The last feature is seen by inspecting the (mis-) classification tables and can be explained by
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assuming, as is partly seen from the scatter plots, that there is a mixed region where both
classes of discharges (HSELM and non-HSELM) occur, and a region where predominantly
HSELM discarges occur. This feature of the data is of importance for operating future ma-
chines since non-HSELM discharges have undesirable properties for long burning plasmas.
(The ELM-free H-mode is vulnerable to impurity accumulation, and giant ELMs may pro-
duce damage from strong repetitive heat loads on the divertor plates.) By using discriminant
analysis we have presented a method to avoid these unfavourable modes to a considerable
extent.

In the analysis of the ASDEX (DN) H into D discharges, the injected power F;,; and the
plasma current (or g-value) were shown to be important for discriminating between HSELM
and non-HSELM. For JFT-2M (SN) discharges, plasma current and gas composition were the
most important discriminating variables (with some additional effect of density), and for JET
(SN) D into D discharges, it was plasma current, magnetic field and density. Quantitative
estimates of the linear discriminant functions have been given in the main text. They can
be used as simple approximations to the discriminant surfaces, though it was shown that
quadratic surfaces give a more accurate description. Explicit quadratic coefficients have been
presented for ASDEX (DN) H into D discharges in Table 12. A comparison shows that
the discriminant surfaces are not the same for the three devices. For instance, low Fj is
favourable to get small ELMs in ASDEX, but in JET and JFT-2M, the variable FP;y,; does not
play an important role. This sets a limit to the ability to predict, from the present analysis, the
presence of small ELM’s in future devices. In ensuing analyses, the change of the discriminant
surfaces with machine size must be investigated more closely.

An important role of the ‘plasma memory’ during the discharge was found. The target
plasma density is more important for the prediction of the class of H-mode than the instan-
taneous density. The elapsed time is in ASDEX as important for discrimination as is the
injected power. In JET, the elapsed time does not seem important. These contrasting results
may be due to the fact that the timeslices at JET have been chosen differently, usually more
at the end of the H-mode phase, than the timeslices at ASDEX. They also suggests an im-
provement of the database and the ensuing analysis. Ideally, all the time-points of transition
between H-mode with SELM and the other types of H-mode should be recorded. From that
one can estimate, as a function of the plasma parameters and the elapsed time since the
L-H transition, the ‘hazard rate’ of transition of HSELM to another type of H-mode, or the
fraction of time the discharge dwells in H-mode with small ELM’s.

Two results from the analysis for JET are the following. (1) The distance between the
separatrix and the limiter, dgy, is not important for predicting the type of H-mode, unless it
is negative, which corresponds to the X-point being (nearly) outside the vessel. The negative
values of dgj are missing in the present database. (2) For discharges with the X-point inside
the vessel, the discrimination is much simplified by the fact that only the target density and
B;I,/Vp sre by far the most important variables.
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This result from JET may be in agreement with the fact that for ASDEX we found
a somewhat betier discrimination using dgpy instead of dgy, and it will be interesting to
investigate empirically, with improved data from both machines, made possible by the work
of McCarthy [51] and O’Brian et al. [52], whether the magnetic field ripple, rather than the
closest distance between the plasima the wall, is the factor to influence the ocurrence of small
ELM’s.

It has not been the purpose of the present article to present an exhaustive study, but to
provide the background and to illustrate the practical use of discriminant analysis to identify
the regions in plasma parameter space where various types of H-mode can be produced. The
approach can also be useful for identiying e.g. the plasma parameter regions where H-mode
and L-mode occur, which is one of the objectives of the Threshold Database [15].

The necessity to establish a guideline to get rid of the impurity accumulation in the
H-mode is now widely recognised [53]. The conirol of the type of H-mode remains therefore
an urgent and interesting task.
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5 APPENDIX

From the plotted graphs of the H, signal, the following shots and time intervals were classified
as ‘leading to small ELMs and/or sawteeth’. The criterion for this classification was that
approximately within one confinement time after the beginning of the time interval stated,
small ‘ELMy’ spikes did occur on the H, signal for some period of time during which W
was ‘non-decreasing’, i.e. dW/dt > —0.05W/7g, or during which a ‘semi-stationary’ W, i.e.
|dW/dt| < 0.2W/rg and W > 0.8Wpnar, was obtained. In the following list, dt denotes a
constant which was set to 0.005 s.

(shot=37740) and (0.75-dt < time < 0.77+dt)

(shot=44973) and (0.77-dt < time < 0.83+dt)

(shot=44958) and (0.64-dt < time < 0.75+4dt)

(shot=44959) and (0.64-dt < time < 0.82+dt)

(shot=44960) and (0.78-dt < time < 0.82+dt)

(shot=44961) and (0.66-dt < time < 0.714dt)

(shot=44963) and (0.66-dt < time < 0.714dt)

(shot=44974} and {0.65-dt < time <{ 0.71-+dt)

(shot=45057) and (0.65-dt < time < 0.67+dt)

(shot=45057) and (0.74-dt < time < 0.90+dt)

(shot=45061) and (0.65-dt < time < 0.73-+dt)

(shot=45080) and (0.75-dt < time < 0.95+dt)

(shot=45082) and (0.92-dt < time < 0.95+4dt)

(shot=45098) and (0.77-dt < time < 0.82-+dt)

(shot=45142) and (0.64-dt < time < 0.664-dt)

(shot=45143) and {0.65-dt < time < 0.684-dt)

{shot=45144) and (0.65-dt < time < 0.70+4-dt)

(shot=45430) and {0.69-dt < time < 0.75--dt)

(shot=45431) and (0.69-dt < time < 0.75+4dt)

(shot=45438) and (0.89-dt < time < 0.94+4dt)

(shot=45691) and (0.65-dt < time < 0.714dt)

(shot=45714) and (0.73-di < time < 0.82-+dt)

(shot=45716) and (0.65-dt < time < 0.704dt)

(shot=45734) and (0.71-dt < time < 0.80-+d%)

(shot=45737) and (0.71-dt < time < 0.80+dt)

(skot=45784) and {0.72-dt < time < 0.80-+dt)

{shot=48427) and (0.69-dt < time < 0.79+dt)

(shot=48428) and (0.64-dt < time < 0.80-+dt)

(shot=148461) and (0.66-dt < time < 0.72+dt)

(shot=18465) and (0.65-dt < time < 0.71+dt)

(shot=48480) and {0.69-dt < time < 0.80+dt)



(shot=48481) and (0.69-dt < time <C 0.80+dt)
(shot=48482) and (0.69-dt < time < 0.80-+dt)
(shot=48483) and (0.70-dt < time < 0.80-++df)
(shot=48486) and (0.70-dt < time < 0.80+-dt)
(shot=49716) and (0.78-dt < time < 0.90+dt)
(shot=49719) and (0.81-dt < time < 0.90-dt)
(shot=56850) and (0.80-dt < time < 0.82+dt)
{shot=56851) and {0.78-dt < time < 0.90+4dt)
(shot=56854) and (0.78-dt < time < 0.82-+dt)
(shot=56855) and (0.79-dt < time < 0.90+dt)
(shot=56861) and (0.79-dt < time < 0.88-+dt)
(shot=56867) and (0.79-dt < time < 0.92-+dt)
(shot=56868) and (0.80-dt < time < 0.92+dt)
{shot=56870) and (0.80-dt < time < 0.83+dt)
(shot=56871) and (0.85-dt < time < 0.90+dt)
{(shot=56872) and {0.86-dt < time <C 0.94-+dt)
{shot=57597) and (0.80-dt < time < 0.834dt)

ACKNOWLEDGEMENTS

The authors acknowledge the work of the ASDEX, DIII-D, JET, JFT-2M, PBX-M, and
PDX teams, which made the compilation of the ITERH.DB1 database possible, and they
are grateful to the other members of the H-mode Database working group, in particular Dr.
Y. Miura and Dr. K. Thomsen, for various discussions. This work was initiated when two of
the authors (SII and KI) stayed at the Max-Planck-Institut fiir Plasmaphysik for an ITER
Specialist Meeting. Part of the work was done when one (OK) or more of the authors were
visiting JAERI and JET. Thanks are due to the ASDEX, JFT-2M, and JET groups for their
hospitality, and to Dr. K. Lackner, Dr. H. Maeda, and Dr. G. Cordey for encouragement and
practical realisation of the visits. This work has been partially supported by the collaboration
program between JAERI and Universities on Fusioh, and by the Grant-in-Aid for Scientific
Research of the Ministry of Education in Japan.

45



REFERENCES

[1] International Atomic Energy Agency, ITER Conceptual Design Report, ITER Do-
cumentation Series No. 18, IAEA, Vienna (1991).

[2] The ASDEX Team, The H-mode of ASDEX, Nuclear Fusion 29 (1989) 1959-2040.

[3] Stambaugh, R.D., Wolfe, S.M., Hawryluk, R.K., et al., Enhanced Confinement in
Tokamaks, Physics of Fluids B 2 (1990) 2941-2960.

[4] Yushmanov, P.N., Takizuka, T., Riedel, K.S., et al., Scalings for Tokamak Energy
Confinement, Nuclear Fusion 30 (1990) 1999-2006.

[5] Kaye, S.M., Barnes, C.W., Bell, M.G., et al., Status of Global Energy Confinement
Studies, Physics of Fluids B 2 (1990) 2926-2940.

[6] Ttoh K., Itoh, S.-I., and Fukuyama, K., The Impact of Improved Confinement on
Fusion Research, Fusion Engeneering and Design 15 (1992) 297-308.

[7] Cordey, J.G., DeBoo, J.C., Kardaun, O., et al., ITER: Preliminary Analysis of En-
ergy Confinement H-mode Database, in Plasma Physics and Controlled Nuclear
Fusion Research 1990 (Proc. 13th Int. Conf. Washington, DC, 1990), Vol 3, IAEA,

Vienna (1991) 443-452.

[8] Christiansen, J.P., Cordey, J.G., Thomsen, K., et al., Global Energy Confinement
Database for ITER, Nuclear Fusion 32 (1992) 291-338, Corrigendum 1281.

[9] Kardaun, O., Thomsen, K., Christiansen, J.P., et al., On Global H-mode Scaling
Laws for JET, in: Controlled Fusion and Plasma Heating (Proc. 16th Eur. Conf.
Venice 1989), Vol. 13B, Part I, European Physical Society (1989) 253-256.

[10]) Kardaun O., Thomsen, K., Cordey, J.G., et al., Global H-mode Scalings based on
JET and ASDEX Data, in: Controlled Fusion and Plasma Heating (Proc. 17th Eur.
Conf. Amsterdam 1990), Vol. 14B, Part I, European Physical Society (1990) 110-113.

[11] Kardaun O., H-mode Scalings for Energy Confinement (based on the ITERH.DB1
Database), in: IPP Annual Report, Max-Planck-Institut fiir Plasmaphysik, Garching
bei Minchen (1990) 78, and (1991) 38.

46



[12] Schissel, D., DeBoo, J.C., Burell, K.H., et al., H-mode Energy Confinement Scaling
from the DIII-D and JET Tokamaks, Nuclear Fusion 31 (1991) 73-82.

[13] Riedel, K., Random Coefficient H-mode Confinement Scalings, Nuclear Fusion 32
(1992) 1270-1280.

[14] Miura, Y., Takizuka, T., Tamai, H., et al., Geometric Dependence of the Energy
Confinement Time Scaling for H-mode Discharges, Nuclear Fusion 32 (1992) 1473
1479,

[15] The H-mode Database Working Group (presented by O.J.W.F. Kardaun), ITER:
Analysis of the H-mode Confinement and Threshold Databases, preprint IAEA /F-
1-3 {Proc. 14th Int. Conf. on Plasma Physics and Contr. Nuclear Fusion, Witrzburg,

1992).

[16] Keithacker, M., et al., Confinement Studies in L and H-type ASDEX Discharges, in:
Plasma Physics and Controlled Fusion 26 (1984) 49-63.

[17] Zohm, H., Wagner, F., Endler, M., et al., Studies of Edge Localized Modes on
ASDEX, Nuclear Fusion 32 (1992) 489-494.

[18] Zohm, H., Osborne, T.H., Burrell, K.H., et al., ELM Studies on DIII-D and a Com-
parison to ASDEX Results, GA report A20895, 1992.

[19] Itoh, S.-1., Maeda, H., and Miura Y., Improved Operating Mode and the Evaluation
of Confinement Improvement. Fusion Engeneering and Design 15 (1992) 343-352.

[20] Wagner, F., Ryter, F., Field, A.R., et al., Recent Results of H-mode Studies at
ASDEX, m: Plasma Physics and Controlled Nuclear Fusion Research 1990 (Proc.
13th Int. Conf. Washington, DC, 1990), Vol 1, IAEA, Vienna (1991) 277-290.

[21] Miura, Y., Aikawa, H., Hoshino, K., et al., Studies on Improved Confinement on
JFT-2M, in: Plasma Physics and Controlled Nuclear Fusion Research 1990 (Proc.
13th Int. Conf. Washington, DC, 1990), Vol 1, IAEA, Vienna (1991) 325-333.

{22] The DIII-D Team (presented by R.D. Stambaugh), DIII-D Research Program Pro-
gress, in: Plasma Physics and Controlled Nuclear Fusion Research 1990 (Proc. 13th
Int. Conf. Washington, DC, 1990}, Vol 1, JAEA, Vienna (1991) 69-91.

47



{23] Kshirsagar, A.M. (1972). Multivariate Analysis, Marcell Dekker, New York.

[24] Krishnaiah, P.R., and Kanal, L.N., eds. (1982). The Handbook of Statistics, Vol. 2,
North Holland, Amsterdam.

[25] Mardia, K.V., Kent J.T., and Bibby, J.M. (1979). Multivariate Analysis, Academic
Press Inc., London.

[26] Morrison, D.F. (1990). Multivariate Statistical Methods, McGraw-Hill International
Editions, New York.

[27] Flury, B. and Riedwyl, H. (1988). Multivariate Statistics: A Practical Approach,
Chapmann and Hall, London.

[28] Rao, C.R. (1973). Linear Statistical Inference and its Applications, Wiley, New York.

[29] Kendall, M.G., Stuart A., and Ord, J.K. (1983). The Advanced Theory of Statistics,
Vol. ITI, ft* ed. Charles Griffin and Co., London.

[30] Lackenbruch, P.A. (1975). Discriminant Analysis, Hafner, New York.

[31] Schaafsma, W. and Van Vark, G.N., Classification and Discrimination Problems
with Applications, part IL., Statistica Neerlandica 31 (1979) 91-126.

[32] Ambergen, A.W. (1989). Statistical Uncertainties in Posterior Probabilities, Thesis,

University of Groningen.

[33] Steerneman A.W. (1987). On the Choice of Variables in Discriminant Analysis and

Regression Analysis, Thesis, University of Groningen.

[34] Schmitz, P.M. (1986). Logistic Regression in Medical Decision Making and Epi-

demiology, Thesis, Erasmus University Rotterdam.

[35] McLachlan, G.J. (1992). Discriminant Analysis and Statistical Pattern Recognition,
Wiley Interscience.

[36] Gelpke, G.J, and Habbema, J.D.F. (1981). User’s Manual for the INDEP-SELECT
Discriminant Analysis Program. Department of Medical Statistics, Leiden Univer-
sity, Leiden.

48



[37] Van der Stuis, D.M., Schaafsma, W., and Ambergen, A.W. (1989). POSCON us-
er manual, A Decision Support System in Diagnosis and Prognosis. University of
Groningen.

[38] SAS Institute Inc., PROC DISCRIM in: SAS/STAT User’s Guide, Version 6, 1989,
Cary, NC.

[39] W.J. Dixon ed. (1988). BMDP Statistical Software Manual, Ugiversity of California
Press, Berkeley.

(40] Ferguson, T.S. (1967). Mathematical Statistics, A Decision Theoretic Approach, A-

cademic Press, New York.

[41] Fisher, R.A., The use of multiple measurements in taxonomic problems, Ann. of

Eugenics 7 (1936) 179-188.

[42] Harle, W. (1990). Smoothing Techniques with Implementation in S, Springer Series
in Statistics, Springer-Verlag, Heidelberg,
[43] Habbema, J.D.F. and Gelpke, G.J., A computer Program for Selection of Variables

in Diagnostic and Prognostic Problems, Computer Programs in Biomedicine 13
(1981) 251-270.

[44] Huber, P.J. (1981). Robust Statistics, Wiley, New York.

[45] Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J -, and Stahel, W.A. (1986). Robust
Statistics, the Approach based on Influence Functions, Wiley, New York.

[46] Fienberg, S.E. and Holland, P.W., On the Choice of Flattening Constants for Esti-
mating Multinomial Probabilities, Journal of Multivariate Analysis, 2 (1972) 127-
134, :

[47] Kardaun, J.W.P.F. and Kardaun, 0.] W.F., Comparative Diagnostic Performance
of Three Radiological Procedures for the Detection of Lumbar Disk Herniation,
Methods of Information in Medicine 29 (1990) 12-22.

[48] Sadler, G. Barabaschi, P., Bertolini E., et al., Effects of Enhanced Toroidal Field
Ripple on JET Plasmas, in: Plasma Physics and Controlled Fusion 34 (1992) 1971-
1976.

49



[49] Huysmans, G.T.A., de Blank, H.J., Kerner, W., Goedbloed, J.P., and Nave, M.F.F.

(1992), MHD Stability Models of Edge Localized Modes in JET Discharges, in:
Controlled Fusion and Plasma Heating (Proc. 19th Eur. Conf. Innsbruck 1992),

Vol. 16B, Part I, European Physical Society {1992) 247-250.

[50] Kardaun, O.J.W.F, Kardaun, J.W.P.F., Itoh, S-1., and Itoh, K., Discriminant Ana-

lysis of Plasma Fusion Data, in: Computational Statistics (Proc. 10th Symposium on
Computational Statistics 1992), ed. by Y. Dodge and J. Whittaker, Physica-Verlag

Heidelberg, Vol. 1, 163-170. Also NIFS research report 156.

[51] McCarthy, P.J. (1992). An Integrated Data Interpretation Sysiem for Tokamak Dis-
charges, Thesis, University of Cork.

{52] O’Brian, D.P., Ellis, J.J., and Lingertat, J., Local Expansion Method for Fast Plasma
Boundary Identification in JET, Nuclear Fusion 33 (1993) 467-474.

[53] Engelmann, F., Fujisawa, N., Luxon, I., et al., ITER: Physics R and D Programme,
in: Plasma Physics and Controlled Nuclear Fusion Research 1990 (Proc. 13th Int.
Conf. Washington, DC, 1990), Vol 3, IAEA, Vienna (1991) 435-442.

80



NIFS-189

NIFS-190

NIFS-191

NIFS-182

NiFS-193

NIFS-194

NIFS-195

NIFS-196

NiFS-197

NiFS-198

NiFS-199

Recent Issues of NIFS Series

K. ltoh, 8. -I. Itoh and A. Fukuyama, Cross Field Ion Motion at
Sawtooth Crash ; Oct. 1992

N. Noda, Y. Kubota, A. Sagara, N. Ohyabu, K. Akaishi, H. Ji,

O. Motojima, M. Hashiba, I. Fujita, T. Hino, T. Yamashina, 7. Matsuda,
T. Sogabe, T. Matsumoto, K. Kuroda, S. Yamazaki, H. Ise, J. Adachi and
T. Suzuki, Design Study on Divertor Plates of Large Helical Device
(LHD} ; Oct. 1992

Y. Kondoh, Y. Hosaka and K. Ishii, Kernel Optimum Nearly-Analytical
Discretization (KOND) Algorithm Applied to Parabolic and
Hyperbolic Equations : Oct. 1992

K. ltoh, M. Yagi, 8.-1. ltoh, A. Fukuyama and M. Azumi, L-Mode
Confinement Model Based on Transport-MHD Theory in Tokamaks ;
Oct. 1992

T. Watari, Review of Japanese Results on Heating and Current
Drive ; Oct. 1992

Y. Kondoh, Eigenfunction for Dissipative Dynamics Operator and
Attractor of Dissipative Structure ; Oct. 1992

T. Watanabe, H. Oya, K. Watanabe and T. Salo, Comprehensive
Simulation Study on Local and Global Development of Auroral Arcs
and Field-Aligned Potentials ; Oct. 1992

T. Mori, K. Akaishi, Y. Kubota, C. Motojima, M. Mushiaki, Y. Funato
and Y. Hanaoka, Pumping Experiment of Water on B and LaB Films

with Electron Beam Evaporator ; Oct., 1992

T. Kato and K. Masai, X-ray Spectra from Hinotori Satellite and
Suprathermal Electrons ; Oct. 1992

K. Toi, 8. Okamura, H. lguchi, H. Yamada, S. Morita, S. Sakakibara,
K. Ida, K. Nishimura, K. Matsuoka, R. Akivama, H. Arimoto,

M. Fujiwara, M. Hosokawa, H. Idei, O. Kaneko, S. Kubo, A. Sagara,
C. Takahashi, Y. Takeiri, Y. Takita, K. Tsumori, I. Yamada and

H. Zushi, Formation of H-mode Like Transport Barrier in the CHS
Heliotron / Torsatron ; Oct. 1992

M. Tanaka, A Kinetic Simulation of Low-Frequency
Electromagnetic Phenomena in Inhomogeneous Plasmas of Three-
Dimensions ; Nov. 1992



NIFS-200

NIFS-201

NIFS-202

NIFS-203

NiFS-204

NIFS-205

NIFS-206

NIFS-207

NIFS-208

NiFS-209

NIFS-210

NIFS-211

NIFS-212

NIFS-213

NIFS-214

K. Itoh, S.-I. ltoh, H. Sanuki and A. Fukuyama, Roles of Electric Field
on Toroidal Magnetic Confinement, Nov. 1992

G. Gnudi and T. Hatori, Hamiltonian for the Toroidal Helical
Magnetic Field Lines in the Vacuum; Nov. 1992

K. Itoh, S.-I. ltoh and A. Fukuyama, Physics of Transport Phenomena
in Magnetic Confinement Plasmas; Dec. 1992

Y. Hamada, Y. Kawasumi, H. lguchi, A. Fujisawa, Y. Abe and
M. Takahashi, Mesh Effect in a Parallel Plate Analyzer, Dec. 1992

T. Okada and H. Tazawa, Two-Stream Instability for a Light Ion Beam
-Plasma System with External Magnetic Field; Dec. 1992

M. Osakabe, S. Itoh, Y. Gotoh, M. Sasao and J. Fujita, A Compact
Neutron Counter Telescope with Thick Radiator (Cotetra) for Fusion
Experiment; Jan. 1993

T. Yabe and F. Xiao, Tracking Sharp Interface of Two Fluids by the
CIP (Cubic-Interpolated Propagation) Scheme, Jan. 1993

A. Kageyama, K. Watanabe and T. Sato, Simulation Study of MHD
Dynamo : Convection in a Rotating Spherical Shell; Feb. 1993

M. Okamoto and S. Murakami, Plasma Heating in Toroidal Systems;
Feb. 1993

K. Masai, Density Dependence of Line Intensities and Application
to Plasma Diagnostics;, Feb. 1993

K. Ohkubo, M. Hosokawa, S. Kubo, M. Sato, Y. Takita and T. Kuroda,
R&D of Transmission Lines for ECH System ; Feb. 1993

A. A. Shishkin, K. Y. Watanabe, K. Yamazaki, O. Motojima,
D. L. Grekov, M. 8. Smirnova and A. V. Zolotukhin, Some Features of
Particle Orbit Behavior in LHD Configurations; Mar. 1993

Y. Kondoh, Y. Hosaka and J.-L. Liang, Demonstration for Novel Self-
organization Theory by Three-Dimensional Magnetohydrodynamic
Simulation; Mar. 1993

K. Itoh, H. Sanuki and S.-1. ltoh, Thermal and Electric Oscillation
Driven by Orbit Loss in Helical Systems; Mar. 1993

T. Yamagishi, Effect of Continuous Eigenvalue Spectrum on Plasma
Transport in Toroidal Systems; Mar. 1993



NIFS-215

NIFS-216

NIFS-217

NIFS-218

NIFS-219

NIFS-220

NIFS-221

NiFS-222

NIFS-223

NiFS-224

NIFS-225

NIFS-226

NIFS-227

NIFS-228

K. lda, K. ltoh, S.-L.itoh, Y. Miura, JFT-2M Group and A. Fukuyama,
Thickness of the Layer of Strong Radial Electric Field in JFT-2M H-
mode Plasmas; Apr. 1993

M. Yagi, K. ltoh, S.-I. Itoh, A. Fukuyama and M. Azumi, Analysis of
Current Diffusive Ballooning Mode; Apr. 1993

J. Guasp, K. Yamazaki and C. Motojima, Particle Orbit Analysis for
LHD Helical Axis Configurations ; Apr. 1993

T. Yabe, T. lto and M. Okazaki, Holography Machine HORN-1 for

Computer-aided Retrieve of Virtual Three-dimensional Image ; Apr.
1993

K. ltoh, S.-I. ltoh, A. Fukuyama, M. Yagi and M. Azumi,
Self-sustained Turbulence and L-Mode Confinement in Toroidal
Plasmas ; Apr. 1993

T. Watari, R. Kumazawa, T. Mutoh, T. Seki, K. Nishimura and

F. Shimpo, Applications of Non-resonant RF Forces to Improvement
of Tokamak Reactor Performances Part I: Application of
Ponderomotive Force ; May 19893

S.-l. ltoh, K. itoh, and A. Fukuyama, ELMy-H mode as Limit Cycle
and Transient Responses of H-modes in Tokamaks ; May 1993

H. Hojo, M. Inutake, M. kchimura, R. Katsumata and T. Watanabe,
Interchange Stability Criteria for Anisotropic Central-Cell Plasmas
in the Tandem Mirror GAMMA 10 ; May 1993

K. 1toh, S.-I. Itoh, M. Yagi, A. Fukuyama and M. Azumi, Theory of

Pseudo-Classical Confinement and Transmutation to L-Mode; May
1993

M. Tanaka, HIDENEK: An Implicit Particle Simulation of Kinetic-
MHD Phenomena in Three-Dimensional Plasmas; May 19983

H. Hojo and T. Hatori, Bounce Resonance Heating and Transport in a
Magnetic Mirror; May 1993

S.-I. Iton, K. ltoh, A. Fukuyama, M. Yagi, Theory of Anomalous
Transport in H-Mode Plasmas; May 1993

T. Yamagishi, Anomalous Cross Field Flux in CHS ; May 1993
Y. Ohkouchi, S. Sasaki, S. Takamura, T. Kato, Effective Emission and

Ionization Rate Coefficients of Atomic Carbons in Plasmas, June
1993



NIFS-2292 K, itoh, M. Yagi, A. Fukuyame, S.-I. Itoh and M. Azumi, Comment on
‘A Mean Field Ohm’s Law for Collisionless Plasmas; June 1983

NIFS-230 H. ldei, K. Ida, H. Sanuki, H. Yamada, H. Iguchi, S. Kubo, R. Akiyama,
H. Arimoto, M. Fujiwara, M. Hosokawa, K. Matsuoka, S. Morita, K.
Nishimura, K. Ohkubo, S. Okamura, S. Sakakibara, C. Takahashi, Y.
Takita, K. Tsumori and |. Yamada, Transition of Radial Electric Field
by Electron Cyclotron Heating in Stellarator Plasmas; June 1993

NIFS-231  H.J. Gardner and K. Ichiguchi, Free-Boundary Equilibrium Studies
for the Large Helical Device, June 1993

NIFS-232 K. ltoh, S.-1. ltoh, A. Fukuyama, H. Sanuki and M. Yagi, Confinement
Improvement in H-Mode-Like Plasmas in Helical Systems, June
1993

NIFS-233  R. Horiuchi and T. Sato, Collisionless Driven Magnetic Reconnection,
June 1983

NIFS-234 K. ltoh, S.-1. lteh, A. Fukuyama, M. Yagi and M. Azumi, Prandt]
Number of Toroidal Plasmas; June 1993

NIFS-235 8. Kawata, S. Kato and S. Kiyokawa , Screening Constants for Plasma;
June 1993

NIFS-236 A. Fujisawa and Y. Hamada, Theoretical Study of Cylindrical Energy
Analyzers for MeV Range Heavy lon Beam Probes; July 1993

NIFS-237 N, Ohyabu, A. Sagara, T. Ono, T. Kawamura and Q. Motejima, Carbon
Sheet Pumping; July 1993

NIFS-238 K. Watanabe, T. Sato and Y. Nakayama, (-profile Flattening due to
Nonlinear Development of Resistive Kink Mode and Ensuing Fast
Crash in Sawtooth Oscillations; July 1993

NIFS-239  N. Ohyabuy, T. Watanabe, Hantao Ji, H. Akao, T. Ono, T. Kawamura,
K. Yamazaki, K. Akaishi, N. [noue, A. Komori, Y. Kubota, N. Noda,
A. Sagara, H. Suzuki, O. Motojima, M. Fujiwara, A. liyoshi, LHD
Helical Divertor; July 1993

NIFS-240 Y. Miura, F. Okano, N, Suzuki, M. Mori, K. Hoshino, H. Masda,
T. Takizuka, JFT-2M Group, K. lich and S.-l. lioh, fon Heat Piulse
after Sawtooth Crash in the JFT-2M Tokama, Aug. 1993

NIFS-241 K, Ida, Y.Miura, T. Maisuda, K. lioh and JFT-2M Group, Observation
of non Diffusive Term of Toroidal Momentum Transport in the JFT-
2M Tokamak; Aug. 1993



