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Abstract

Stability of the current diffusive ballooning mode in tokamaks with
high toroidal mode number is analyzed in the region of second-stability
against the ideal magnetchydrodynamic mede. It is found that the
growth rate of the current diffusive ballooning mode is decreased by
the reduction of the geodesic curvature driving force. The reduction
of thermal conductivity in the limit of very weak shear or negative

shear in comparision with standard shear is also shown.
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Recently a new theoretical approach has been proposed to understand
the anomalous transport phenomena in tokamaks. In this new approach, ef-
fects of the anomalous transport process on the mode stability itself are self-
consistently treated taking into account of nonlinear interaction{1-5]. The
destabilization of plasma due to the fluctuation-driven dissipation can over-
come the stabilization effect of magnetic shear{l-8]. It is found that, below
the beta-limit of the ideal magnetohydrodynamic (MHD) mode, the micro-
scopic ballooning mode can be destabilized by the transport coefficient such
as the current-diffusivity A, and stabilized by other transport coefficients,
such as the thermal diffusivity x, and the ion viscosity, £[2-5]. Renormaliz-
ing the E x B nonlinearity in a form of transport coefficient, the anomalous
transport coefficient and characteristics of fluctuations (level, typical corre-
lation length and time) are determined simultaneously by the marginal sta-
bility condition for the least stable mode. This result on the self-consistent
treatment of the anomalous transport was confirmed by the scale invari-
ance method [9]. The theoretical resulis was compared with experimental
data[4,10], and a good agreement was seen for the L-mode plasma[l1]. Exten-
sion of the theory to the case of the H-mode plasma has been performed|12].

Since the origin of the fluctuations comes from the plasma pressure cou-
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pled with the bad curvature, which is the cause of MHD ballooning modes,
the improved

stability and transport is expected in the second stability region against
ideal MHD ballooning mode. The transport coefficient in this region was
partly discussed in previous articles[4,5], and seems to explain [10] the im-
proved confinement phenoména. in high- 8, plasma[l3], PEP H-mode [14] and
so on. In this note, we present the reéult of the stability analysis on the cur-
rent diffusive ballooning mode in the region of very weak or negative shear
region.

We consider large aspect ratio tokamaks with circular cross section in
toroidal coordinates (r,#,(). Starting from the reduced set of equations
[15], the eigenmode equation is derived in the ballooning space where the
valiable ¢(r,8) is transformed to d(n) (¢ is the static potential). Details of
the derivation is explained in Ref. [4,5]. By this procedure, the eigenmode

equation is reduced to the ordinary differential equation as

T Tl + comn + (o0 — asimn)sinalg
I i =F T AR dy TS LXF K+ cosn + (s sinn )sing
G+ MF)F6 =0 )

In Eq.(1), we use the normalization: r/a — #, t/74, — I, XTap/a® — %,

3



~

pTapfa® — Q, Tap/pooa® — 1/6, Aray/pea* — A, y74p — 5. Here the
notation is: Ta4p = ay/pymini/ By, = = n’¢?/5, A = Antgt, X = ¥ni¢?,
M = fn%¢?. Other notations are standard: m; is the ion mass, n;, the ion
density, B, the main magnetic field, B, = Br/g¢ZR, the poloidal magnetic field,
¢ = r/ R, inverse aspect ratio, a, the minor radius, R, the major radius, n,
the toroidal mode number, 3, the plasma pressure divided by the magnetic
pressure {8 = pon(T. + T3)/B?), 7, the growth rate, s, the shear parameter
defined by s = r({dg/dr)/q, g, the safety factor, F' = 1 + (sp — asing)?, the
normalized perpendicular wave number, & = —(r/R)(1 — 1/¢%), the average
well, o = —¢28 /€, the normalized pressure gradient, and 8’ = dB/dr. The
electric conductivity & is given by the classical theory. Transport coefficients,
i.e., the current-diffusivity A, the thermal diffusivity x and the ion viscosity
4, are given by renormalizing turbulence {2].

The equation (1) is the generalization of the previous ballooning equa-
tions [16]. If we neglect A, %, iz, and 1/& , the ideal MHD mode equation is
recovered as

d _d¢

— — - : . - A2 =
d??Fd’? + ak + cosn + (sn — asing)singlé — 7 Fo =0 (2)



From Eq.(1), it is seen that the mode becomes more stable when the
shear parameter becomes very small or negative. The potential [« + cosy +
(sn — asinn)sinn] is the driving source of the high-n ballooning mode with
dissipation and ideal MHD ballooning mode. For analytic insight, we expand
this potential in the small 5 region for the case of weak shear, 1/2+a > s. It
is approximated as {14k — (1/2 + a — 5)p?}. When the geodesic curvature
is small or negative, the coefficient (1/2 + & — s) becomes larger, so that the
eigenmode is more strongly localized near the origin, 5 = 0.

This lead to the better stability.

Equation (1) is solved by shooting method. Figure 1 illustrates the eigen-
function for the marginal stability condition (v = 0 in the case of s = 0.5 (a)
and s = —0.5 (b). It is seen that the mode is more strongly localized in the
case of negative shear.

Figure 2 shows the stability boundary on the 5 — o diagram for various
values of the toroidal mode number, n, for the fixed value of the transport
coefficient. For a fixed value of n, the mode is more easily stabilized in the
strong shear limit and the weak shear limit. The envelope of the stability
boundary is also drawn by the thick solid line in Fig.2. Left side of this

envelope line is stable to all mode. The region of stability is found to expand
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to higher pressure region as s becomes very small or negative.
Based on the stability analysis, we derive the formula for the anomalous
transport coefficient. The anomalous transport coefficient was given [2-4] in

the dimensionless form as

or in an explicit form of

¢ (RAB\? L4
X=Fora) (?E) "% (4)

Here we investigate the effect of geometrical factor, f(s,a), on the trans-
port in negative shear region. The geometrical factor denotes the effect of
the magnetic shear. It is not possible to express the factor f by using a single
power of s. Figure 3 illustrates the contour of the anomalous transport coef-
ficient in the s — o diagram. The unstable region for ideal MHD ballooning
mode is also shown by the dashed line. It is demonstrated that the trans-
port coefficient is reduced in accordance with the appearance of the second
stability region.

In this note, we report the stability analysis on the current-diffusive bal-

looning mode in tokamaks, putting the emphasis on the negative shear region.



It is shown that the change of the sing in the geodesic curvature is effective
in improving the stability. By this reduction in the driving source of the bal-
looning mode turbulence, the anomalous transport coefficient is also reduced

in the region of negative shear.
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Figure Captions

Fig.1 Eigenmode structure at the marginal stability condition for the
positive shear case (a) and negative shear case (b). s = 0.5,
o =0.145, 7 =29 in (a} and s = —0.5, « = 0.638, n = 45 in (b).

Other parameters are : ¥ = fi = 1075, A=10"°% ¢=3 and e=1/8.

Fig.2 Stability boundary on the s —a diagram for various values of
toroidal node numbers. Transport coefficients are fixed. Bold line
shows the envelope of the stability boundaries of various modes.

Parameters are ¥ = i = 1077, /¥ = 1074 ¢ =3 and e = 1/8.

Fig.3 Contour of the transport coefficient on the s — & diagram.

Parameters are A/¥ = 1074, g =3 and ¢ = 1/8.
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