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Large amplitude Langmuir and ion-acoustic waves in a relativistic
two-fluid plasma are analysed by the pseudo-potential method.  The
existence conditions for relativistic nonlinear Langﬁuir waves
depend on the relativistic effect, the particular energy and the
jon mass Lo electron mass ratio. The allowable range of the
normalized potential depends on the relativistic effect. It 1is
shown that the Mach number has the significant effect for the
formation of relativistic nonlinear Iion-acoustic waves rather than
the ratio of the icn-acoustic velocity to the velocity of light.
The allowable range of the normalized peotential depends on the
Mach number. The present investigation predicts new findings of
relativistic nonlinear Langmuir and ion-acoustic waves in plasmas

in which high-speed electrons and ions coexist.
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l. Introduction

In the recent space observations, it has been investigated that the
high-speed streaming ions as well as the high-speed electrons play a
mejor role in the physical mechanism for the nonlinear wave structures.
When we assume that the ion and electron energies depend only on the
kinetic emergy, velocities of plasma particles in the solar atmosphere
and the magnetosphere have to attain to relativistic speeds'-Z, Thus,
by considering such relativistic effects as the ion and electron
velocities are about 0.0l¢—0.1c (c is the velocity of light), we can
take the relativistic motion of such particles into consideration
in the study of nonlinear plasma waves. When the velocity of the
particles approaches that of light, the nonlinear waves which occur
in the space exhibit a peculiar feature due to the effect of the high-
speed iong®~*,

Although relativistic Langmuir waves have been studied as the
subjects of laser-plasma interaction and laboratory experiments, the
studies on relativistic ion acoustic waves are also rapidly developing
for recent several years in the space plasma®~", In space, the low
frequency solitary waves are frequently observed and the modulatinally
stable and unstable waves in the finite wavenumber region are also
detected®™". We have presented the theories of relativistic ion
acoustic waves to explain these phenomena®~s, In the actual situa-
tions, there exist not only high-speed streaming ions but also high-
speed stireaming electrons, and they cause the excitation of various
kinds of nonlinear waves such as shock and solitary waves in the inter-
planetary space and the Barth’s magnetosphere. The conventional
mvestigations which treat the relativistic effect of only electrons or
that of only ions have not been completed in considering the energefic

particle phenomena of space plasmas. XNo one can truly understand these
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phenomena without investigating both effects of relativistic electrons
and ions. Hence, in this article, we consider a relativistic two-fluid
plasma composed of the high-speed relativistic electrons and ions.

The purpose of this paper is to derive the pseudo{Sagdeev)-
potential for a relativistic two-fluid plasma, to exhibit the
possibility of the existence of novel solutions of relativistic non-
linear Langmuir and ion-acoustic waves. We show that, by considering
both relativistic electrons and ioms, the stationary nonlinear potential
solutions in the plasma can be formulated in terms of an integral
equation which expresses the same form as the equation governing
the motion of particles in a potential well. In this paper, it is
predicted that large amplitude relativistic nonlinear Langmuir waves
coexist with relativistic ion-acoustic waves,

The layout of this paper is as follows. In section 2, we present
the basic equations for a relativistic, two-fluid plasma and derive
an energy equation with the effective potential. In section 3, we
discuss the existence condition of large amplitude relativistic non-
linear Langmuir waves on the basis of the energy equation. The
dependency of the pseudo-potential on the normalized potential,
the relativistic effect and the particular emergy is presented.
In section 4, we study large amplitude relativistic nonlinear ion-
acoustic waves. The effective potential structure is analyzed in Mach
number and potential space. We show the existence regions
of large amplitude relativistic ion-acoustic waves in relation to
the Mach number, the normalized potential and the relativistic
effect. The last section is devoted to the concluding

discussions.

2. Basic equations
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We consider an unmagnetized, collisionless relativistic two-fluid

plasma consisting of the hot and isothermal electrons and cold ions.
We do not take into account kinetic effects such as the deviation from
the Maxwell distribution, Landau damping, etc, and assume the electron
and ion flow velocities are relativistic, and thereby there exist
high-speed streaming electrons and ions in an equilibrium state,

The equations of continuity, the equations of motion and Poisson’s
equation of a fully relativistic two-fluid plasma in a one-direction

are described®'*® as:
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The subscript e and i denote electrons and ioms, respectively. The

electron and ion pressures are determined by Pe=&k T.7. and Pi=

k T.m,, respectively, where T.(T,) and =.(z.) denote the
electron(ion) temterature and electron(ion) density.
In the stationary state, the conmservation of electron and ion fluxes

are obtained as

1 e ] 2
n,ve{1+2— ”C] ]= of (2.2)
Yz
7 1+;— L Jz C. ., (2.b)
c
from egs. (1,a) and (1.Db). The equations for conservation of electrom

and ion energy are described as:

Me®e 3 {ve]?] _ _
5 [1+ f [ c] ] e +k Telnn.=Ca {2.¢c)
" .2 2

ZiVs [1+i KAY ]+e¢ + g Tian=C, (2.d)
2 4 c

which are obtained by integrating egs.(l.c) and (1.d), in the
stationary state. (i~ C. are integration constants. T. and T
are assumed to be constant.

Adding eq.(l.c) to (1.d), using eq.{l.e) and integrating, the

conservation law of total pressure is given as

2 Yz
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The derivation of eq.(3)is discussed in Appendix.
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From eq. (3), one obtain

%[%]2+V:o 0

where the pseudo-potential is given by

V=U-—-Ww (8)
and
1
U= — {KTJ%+KT%1
€q
2 2
-I-menev._.z[l-i- 5—[ ve} ]+miniv,2[l+-s—{L’J ]}
6 c 8 c
(8)
where
W= S (7)
€

Equation (4) represents an energy equation for a classiecal particle
moving with the velocity d¢/dx in a potential V(¢).

We study the nonlinear potential structures for Langmuir wave and
ion-acoustic wave on the basis of egs.(4) and (5) in the following

sections,

3. Relativistic nonlinear Langmuir

waves

We consider large amplitude relativistic Langmuir waves in the
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cage that the electron inertia is important. We assume that the

electron flux and the ion flux are equal, that is,

NeVe=n,7:i=Po . (8)

In the case of w.=v;=v, at ¢ =0 and T.=T;=0, from egs.

(2.¢) and (2.4d), the integration constants Cs and C. are given as

2 L C
- mivo’ 3 [2o]” «
Ce= 5 [1+4[c]}’

where v, is the constant velocity. In this case, egs.{(2.c) and (2.d)

reduce to

MeVe” 3 vel?®  meVo? 3 [wve] "
——é—[lﬁ-?[ ] ]—e¢————[l+4 [ C] } (9.2)

and

m, v’ 3 N _ m, V" 3 [ ve)?
—"“—[l-i—z[T] J+e¢—-—2 {14— 1 [ C] ] (9.b)

Using egs. (9.a) and (9.b), we get, from egs.{(2.c) and (2.d),

g N 1/2
Ye = |1+ c® , (10.a)
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where we approximated {1+ (3/4)(wo/c)?) = (1+ @/ (v.../e)2) .
Then the potential U(#) reduces to

S N [C=ree

e8))

by using egs.(10.a) and (10.b), where we define w.={(7m.e2/¢ me )2
and this is the electron plasma frequency.

The oscillatory solution of the nonlinear Langmuir wave exist when
the following two conditions are satisfied:
(i)The potential U(®) has a minimum value W.,,, at ¢ =0,

The minimum energy Wa:. ig

Wmin: U(¢:0)

z_wezﬂuz[ Z“J2[1+ ZJ [1+—§-[ :”}2]. (12)

Nonlinear Langmuir waves exist provided that the constant energy W in

eq. (7) exceeds a minimum value W.,,.




(ii)The maximum potential  Waax satisfies when Waux=U(¢.},

where ¢ .=—(m.vo%/2¢) [1+ @&/ (vo/c)*] . Here Waax 1s given

a8

Wmaxz U(¢ C)

%’]2[1+ Z H : (13)

Oscillatory Langmuir soliton solutions exist if W is less than the
maximum value Wiax. From egs.(12) and (13), we obtain the
relativistic nonlinear Langmuir wave by an arbitrary choice of W in

the range

[1+ Z H . (1)

Large amplitude nonlinear Langmuir waves can propagate when W
gatisfies eq. (14). The energy W depends on m:/m. and the
relativistic effect wvo/c.

It should be noted that U(¢) is real, if

-1 < mevosz_l_i[_ﬁljlz] < Zi
2 4 c




We show a Bird’s eye view of V(3)/(w.?v,*(me/€)?) when We
1848.3, In Fig. 1. Figure 1 illustrates the dependence on the

normalized potential ed/(m.w.%/2) and the effect of the

streamning velocity ve/e of the normalized pseudo-potential
V(¢)/(w.2ve2(m./e)?). From Figs.1-3, we can understand the
following:

1) In the range of wvo/c < 0.144, V(¢ /(w.2ve(m./e)?) is
always positive. In this case, the potential well does not exist.
2) If 0.144 <w,/c <0.1568, V(¢)/(w.? vo*(m./e)?) forms the

potential well.  In the potential well, large amplitude relativistic

nonlinear Langmuir waves can exist. For the calculation, we
assume that the ion is protom, that is mi/m.~1836, As
an example of this case, we illustrate the pseudo-potential in

Fig.2 when wo/c =0,150 and W =1870.5.

8) In the range of 0.156 <vo/c, V(9)/(w.2v.2(m./e)?) is
always negative. We show a typical example of this case in Fig. 3,
where vo/c =0.20 and W =1898.4.

We illustrate the existence region of large amplitude relativistic
nonlinear Langmuir waves depending on the energy W and the
relativistic effect vo/c in Fig. 4. Langmuir waves propagate in the
shaded region. Figure 5 shows the existence region of nonlinear
Langmuir waves as the relation between the normalized potential
e¢/(me.vo®/2) and the relativistic effect, where W =1837.5 .
Large amplitude Langmuir waves exist in the region A but not exist
in the region B.

We now understand that large amplitude relativistic non-
linear Langruir waves can propagate under proper conditions,

mentioned above.
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4. Relativistic ion—acoustic waves

We consider large amplitude relativistic ion-acoustic waves.
Since the motion of massive ions will be involved, these will be low-
frequency oscillations. The electrons move so fast relative to the
ions and the electrons therefore are isothermal.

In order to obtain the pseudo-potential for the relativistic ion-
acoustic wave, we focus our attention again on eq.(3). In the
following discussions, we assume that the electron flux is equal to the

ion flux, that is,

Tle’l)e:ﬂi’lM:qOu. (15)

We consider the case that m.=0, T.=0 and n.=n., at ¢ =0.

In this case, we can obtain the electiron density distribution from

eq. (2.¢c) as

ne=70 exp[ e ] . (18)

Since we consider the case, v.=v:=1v; at ¢ =0, we can rewrite eq.

(2.4) to

m,v,° 3 [ v, }°? B _ mivet { 3 wo ] 2]
7 [1+4[c ]+e¢_c“* 2 U1 o :
(17)
which yields
1/2
LATRPON E i (18)
Vo miVo



in the same manner as the derivation of eq.(10.b), where we used that
(I+(vo/0)?) = (1+(w./c)?) . Using eq. (18), the term
amyvi® (14+(5/8)(v./¢)?)  in eq.(8) reduces to

2
nlmlv,2[1+-§-[EJJ }
6 c
1/2
:mi@gvo{l_ z e¢ z
[ T2
2 4 c

(R =y

2 4

Substituting egs. (18) and (19) into eq. (6), we obtain the pseudo-

potential as

1 — e
2 + 4 ¢
2 e
X |1+ 2 [ﬂ’] 1— ef _ . (20)
6 ¢ oy [ 3 [voJ J
R L
§ 2 4 c

Equation (20) implies that the solution exists if
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’”——‘”"2[14—3 [1]] > oo,
c

holds. The particular solution of the ion-acoustic wave is obtained by
imposing the boundary conditions:
V(¢:O): V(¢:¢U): 0 y

daV

b 16=0 "

The constant potential W is determined by the conditions that V(¢)=

d¢/dx=0 and V(¢)=U(¢)—W=0 at ¢=0, that is,

Wz__L{KTeﬂo +m, PoPo [1+ _5"[9_0}2] } . (21)
6 ¢

€

We here introduce the dimentionless variables as

_e¢

®= P (22.2)
2 7)02 — ?Joz

R k Te/m, cst ’ (22.b)

where ¢. and M denote the ion-acoustic speed and the Mach number, res-

pectively. In this case, the pseudo-potential is given by
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)z 2
V(‘ID)“———wizcsz[—”il] exp(®)—1—M2 | 1+ S [v—oj
e 6 c

(23)

where the ion plasma frequency is defined by w.,=(7n,e%/¢ om )2
It should be noted that (wo/c)?=M2(c./c)?, where c. is the

ion-acoustic velocity. Since the value of V(®)/(w %c.?(m,/e)?)

is invariable even if we change c¢s/¢ in the range of

0.01 <egs/e < 0.05, we show a Bird's eye view of the pseudo-

potential in Fig.6 in the range of 0.1<®<0.8 and 1.2< <1, 58,

Figure 7 shows a Bird's eye view in the range of (.5<® <1.28

and 1.50<#<1.58 . Here, we wuse c¢./c =0.05. From Figs.8

and 7, we obtain the following facts:

1) In the range of 1.00<M<L.58, the pseudo-potential
V(®)/(w.*c.?(m./e)®) varies from negative to positive ag @
increases.  That is, V(®)/(w.%c:*(m./e)?) forms a potential
well, As an example, when M~1.25, the critical potential
where V(®)/(w:?cs®(m./e)?) vanishes is @ ~0.85.

As two typical examples of this case, we illustrate pseudo-potential
curves for M=1.20 and 150  in Figs.8 and 9, respectively.
The allowable range of relativistic lon-acoustic waves where

V(@) (wite.?(m,/e)2)<) is narrow when M is small, but
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it becomes wider as J increases.

9) The potential well becomes deep as L increases and @ increases.
The bottom of the curves in Fig.8 and 7 shifts from small &
to large ® as M increases.

Since the square root of eq. (23) is positive, @ <(#*/2)

X (1+(3/4)(wo/e)?)  is hold. Hence, figure 10 shows the

allowable region of nonlinear ion-acoustic waves depending on the

pormalized potential & and the Mach number . Large amplitude
nonlinear iom-acoustic waves propagate in the region A but not

propagate in the region B.

Next, we obtain the maximum potential

_ X 3 [za)”
Puax=y [1+4[C] ]

which is determined by the constraint that the square root of eq. (23)
is positive.

The maximum Mach number My.. is determined from the condition that
the potential becomes well. That is, JMluax has to satisfy the

condition

exD L [1+i[—:—°] ] <1+ﬂ2[1+%[0i°} ]

The maximum Mach number holds when

""’] 1 = 1+ Maux’ [1+-§
c 6

.ﬂ[maxz
2

B ]

Vo
exp 7

The maximum Mach number Ma... lies in the vicinity of i.60.

The minimum Mach number is determined by expanding the right-hand
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side of eq.(23) in the small amplitude limit, such that @ € 1. He

obtain the condition

r——
Jod
+

e

———

Qle
(=1

| —

[+

R T —

(-]

under the approximation that (5/6)(vo/c)t=(3/8) (v ./c)2 1. The

ninimum Mach number holds when

2

5 Vo
1+6[C

3 _szz
[1+4[c }

The minimum Mach number M... lies in the vicinity of range of 1.0 .

Mmluz -

Thus, Mnex and Mnin are almost invariable even if w,/c

varies,

5. Concluding Discussion

The nonlinear wave structures of large amplitude relativistic
nonlinear Langmuir and ion-acoustic waves are studied in a
relativistic two-fluid plasma.

First, we investigated the existence conditions for the
stationary wave solutions of large amplitude relativistic Langmuir
waves, Dy analysing the structure of pseudo-potential, which ig

illustrated in Figs.1-5. The results are briefly summerized as
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follows:

1) The existence conditions for large amplitude relativistic nonlinear
Languuir waves strongly depend on the relativistic factor ve/e,
the energy W, the normalized potentia.I ep/(m.vo2/2) and
the mass ratio m:/me..

9) Since mi/m. is constant, the range of the energy W
sensitively depends on the relativistic effect.

3) Large amplitude relativistic Langmuir waves can propagate if the
relativistic effect lies in the range 0.144 <w./c < 0.156
and the energy W lies in the range -1837 < W < -1888.

4) The allowable range of the pormalized potential where Langmuir
waves exist depends on the relativistic effect.

Second, we studied the proper existence conditions of large
amplitude nonlinear ion-acoustic waves. The pseudo-potential shown
in Figs.6-10 confirms the existence of large amplitude nonlinear
lon-acoustic waves. We obtained the existence conditions for large
amplitude nonlinear ion-acoustic waves 1in detail by the calculation.
The results are summarized as:

1) The existence conditions for large anplitude nonlinear ion-
acoustic waves sensitively depend on the Mach number rather
than the relativistic effect.

9) Large amplitude nonlinear ion-acoustic waves can exist if the
Mach number lies in the proper range.

3) Large amplitude nonlinear ion-acoustic waves can propagate
even if the high-speed streaming velocity vo ~ 0.

4) The pseudo-potential 1is  sensitively dependent on the Mach
number but independent of the change of the ratio of the ion-
acoustic velocity to the velocity of light cs/c .

5) The allowable range of the normalized potential where nonlinear ion-

acoustic waves exist depends on the Mach number.
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5) If the relativistic effect is neglected, eq.(4) with eq. (23)
coincides with the result of Chen (eq.8-29 of Ref,1l). In
this case, the aliowable range of the Mach number of large
amplitude relativistic ion-acoustic waves lies im the range

100 <A< 1.58 .

This investigation predicts new findings on large amplitude
relativistic Langmuir and ion-acoustic waves such as shock and
solitary waves in plasmas composed of relativistic high-speed
streaming electrons and ions. Although we have no direct
observational data of high-speed energetic events, the present
theory 1is applicable to analyze large amplitude energetic shock
and solitary waves associated with relativistic Langmuir and

ion-acoustic waves which occur in space.
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Appendix

Detailed derivation of eq. (3)

In the stationary state, egs.(l.c) and (I.d) become

8 _d¢ 1 8n.
meﬂeax’Y:Ue edx+ Te 7. ax *—O (A.a)
and
d d¢ 1 8n, _
m1viax71vi+edx+5 T1 7, ax ‘—O. (A.b)

It is obvious that the integration of (A.a) is eq. (2.¢) and the
integration of (A.Db) is (2.4).

Multiplying (A.a) by ». and (A.b) by 7., we have

a 1 [we}?® d¢ Bn.
Tzeme’ueax[l-i-z [C} }'Ue needx+KTe A x *0:

and

2 R
nim,vl—a-[l-i-i[v—lJ J?_rm‘-frzleﬁﬁ--l-l{T1 672[:0‘
8x 2 c x
(B.b)

Adding eq. (B.a) to eq.(B.b) and using Poisson’s equation, we obtain

il i v.]? a i v,]?
ﬂemeveg—x[l+?[?] Jve+n1m:v18x[l+2 [ C] J'vn

d¢ & ¢ an. dn,
S0 dx da? £ T dx €T dx ©
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In order to obtain eq.(3), we integrate eq.(C), and define its

left-hand side and right-hand side as

L1““_

Hil
——
3

1]
3
ow
<
o
@
®
lasmnammny
[
+
o
p—aa,
o |2
| UU—
[ 5]
—
<3
1]

Lz_z_ [nimivii[l+i[vi
ax

J

for the left-hand side and

- d¢ d°¢ 07me 87,
R""’J[a"dx dx? £ Te 5 % kT, e dx

for the right-hand side, respectively.

First, we consider L, that is,

- a [ v.? g {v.t
L,:Jn,m,a {2 ]dx-l— ZQJnemeax 1 ]dx
1 d [ ve?
=Cum. RERE a’x[ 7 ]dx
Ve |1+ — | —
2 c
3 1 d ve"‘]
+ 2 2 Clme [ 1 [ve] 2] dx 4 dx
Ve |1+ = | —
2 c
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= Cim, l”; _ + —~—dv.
vy (5] ) [eg (%]
2 c c
2 3 2 2
3 v.® Ve H_2 { C] ]
‘]“—Clme + dvc
8ct 1 {v.]2 1 fve]2)2
T T
2 c 2 c

(D)

Here, we used eq.(2.a) and carried out the partial integration, The

integrations in (D) can be solved in the following approximated form

3 [ ve]?
H?[? e |gl _ax [ ax
[ 1 {’Ue] zJ 20V e 9is2 X(X—1)i¢ X (x—1)2
1+ | 2
2 c
r 've
. 21/2
=2'"%¢ Zarctan{ 2:]/2 ] 3 (; ;
1+—[—=}
2 ¢
V. 1 v, |* 1 v, |°®
=2t 2[7—5—‘5[5—] +?[zmc] T J
Ve
ZI/ZC
EEiE
2 c
(D.1)
where X is defined by X=1+4(1/2)(w./c)%. Here we expanded
arctan( v ./2'7%*c) under the condition ive/21/20-|<<1 . Performing

the similar calculation, one obtain

_22_




1 . 2 2 e
[1+ 2 [ e J
dX dX dX
— (917233 o uA Pl e
(2 C) 3J(X_1)1/2 SJX(X—I)‘/E +2J’X2(X_,,1)1/2]
Ve
R 217%¢ Ve
=(217%¢)® 321/20+ RERE —4arctan[—m]
I+—= 1 —
2 c
Ve
i/2
= @720 |3 g T
1+= | =
| 2 1 ¢
Ve l Ve 8 1 Ve s
4[ 21/20— 3 Zl/‘ZC] +—5— zl/zc] R ]
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(E.1)
where we approximated that (v ./c )* =0, (v./c)® =0,

The integration L. can also be obtained similarly,

) 2
Lo=Cam,v, [1—i{”—'] ]
[ c

v
+—=C.m;v, - +2¢*
8¢c? 1 v;|? 1 'Ui}z
144 [ C} 1+ [

(42

| S———

(E.2)

Here we used eq. (2.b) and the approximation (vele )* =0, (v./c)® =0,

Using egs. (B.1) and (E.2), we can reduce the integration L to

3 7,2 1
— +2c2
8¢t 1 [v.}¢ PR
g %] g [ %]
2 {v.]?2
~1+?[ CJ
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+ — +2¢*
8c* 1 p,]* 1 vi)?
l-l-2 [ c} 1+:2 [ -
2 v 2
Hﬂ?]

(F}

Expansion of 1/ [1+(1/2)(w..i/¢)?) in (F) under the condition
(ve,i/c )KL Then eq. (F) gives rise to

z 1
] ]-I—szlv,{lJr—

Ve
c

3 3

”7] } @

where we approximated that (w.../c)* =0, (v.. :/c)® =0.

L FCImev,[l-l-—l—[

Next, integrating the right-hand side of eq.(C) and using eq.(G),

we obtain, from L = R,
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Using egs. (2.a) and (2.b) for C, and C., and putting (v.../c)* =0,

we finally obtain
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which is eq.{3).
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Captions of figures

Fig.1:

Bird’s eye view of the pseudo-potential V(@ )/ (w.?vo?(m./e)?)
for relativistic Langmuir waves represented by eq.(11) under
the conditions of 0.150 <wo/e < 0.170 and

0 < ed/(m.vo?/2) < 1837, W = 1849.3 .

Fig.2:
4 typical example in the case where the pseudo-potential forms

the potential well. W = 1870.5 and w»./c =0.150.

Fig.3:
A typical example of the pseudo-potential that does not form
potential well., W =1898.4 and w./c¢ =0.20.

Fig.4:
The existence region of large amplitude relativistic Langmuir waves

depending on the relativistic effect wo/c and the energy W .

Fig.5:
The existence region of relativistic Langmuir waves depending on the
normalized potential e®/(m.wvo?/2) and the relativistic effect

’Uo/C. W = 1837.5 .
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Fig.6:
Bird’s eye view of the pseudo-potential V() (wi%c.?(m./e)?)
for relativistic ion-acoustic waves represented by eq. (23) under

the conditions of 0.10 <& < 0.80 and 1,20 <M< 1.58 .

Fig.7:
Bird"s eye view of the pseudo-potential V() (w . %c.?(mi/e)?)
for relativistic ion-acoustic waves under the conditions of

0.50 << 1.28 and 1,50 <M< 1.88 .

Fig.8:

A pseudo-potential curve of large amplitude ion-acoustic waves for

HM=1.20.

Fig.9:
A pseudo-potential curve of large amplitude ion-acoustic waves for

H=1.50.

Fig.10:
The existence region of large amplitude relativistic ion-acoustic
waves depending on the normalized potential @ and the Mach number
K. Large amplitude nonlinear ion-acoustic waves exist in the

region A.
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