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Abstract

To investigate the feasibility of high Z metals as plasma facing
materials, a Mo test limiter was inserted into the TEXTOR edge plasma
and the Mo content in the core plasma and its flux from the limiter have
been observed.

In OH plasma the additional radiation due to Mo impurities
increased with line averaged density H,. Beyond I, of about 3 x 101?
m-3, the central radiation increased strongly with time and a hollow
temperature profile appeared. In contrast, Mo impurity radiation
decreased with II; in NBI (co-injection) plasma and no clear Mo
accumulation in the plasma center was observed. However, when the
edge plasma was cooled by neon injection in NBI plasma, the Mo
concentration in the plasma center substantially increased.

The Mo flux from the limiter showed no remarkable change during
the OH and NBI density scan or with neon cooling. The possible reasons

for the Mo behavior in the core plasma are discussed.

[Key Words : TEXTOR, plasma facing materials, High Z materials,

molybdenum, tungsten, limiter, impurity behavior, neon cooling]



1. Introduction

Although low Z materials have been mainly considered for plasma
facing components (PFCs) of near term devices, high erosion rate and
loss of thermal conductivity in carbon based materials have not been
completely solved[1]. From these viewpoints, high Z metals
(molybdenum and tungsten) are possible candidates for PFCs in the next
large tokamak. One of the severe problems of high Z metals is its central
accumulation and resultant radiation loss. It is of great importance to
find conditions in which this problem can be avoided.

For this study, we inserted movable Mo and W test limiters into the
TEXTOR edge plasma and observed high Z impurity release from the
limiter and high Z impurity behavior in the core plasma[2, 3]. Since the
effects on the plasma performance are similar for Mo- and W-limiters,
this paper concentrates on the Mo-limiter results. Mo impurity
behaviors are shown under different plasma operation conditions such
as OH plasma, NBI plasma and NBI plasma with strong edge cooling by

neon injection.

‘2. Experimental

The experiments have been made under standard TEXTOR operating
conditions (deuterium discharge) with a plasma current of 340 kA and a
toroidal field of 2.2 T. TEXTOR[4] is a limiter tokamak with a major
radius of 175 cm and a minor radius of 46 cm which is determined by
ALT-II toroidal belt limiter. Co-injection neutral beam (hydrogen) with
a power of 1.25 MW was used in the experiments.

Mo test limiter was inserted from the bottom of the torus up to a

minor radius of 43 c¢m, which is 3 cm deeper into the plasma than the
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ALT-II main limiter (r = 46 cm). The dimensions of the limiter are the
followings; 10 cm long in toroidal direction and 6 cm wide in poloidal
direction with a round surface shape of a toroidal radius of 8.5 cm and a
poloidal radius of 6.5 cmf5]. Integrated heat load to the test limi-tcr was
estimated from temperature rise of the limiter head measured by two
thermocouples.

The fluxes of impurities and deuterium were determined by
spectral line intensities from neutrals and low charged ions measured
tangentially in front of the limiter surface. The impurity behavior in the
core plasma was studied by total radiation, VUV lines and soft Xray. The
total radiation was measured by an eight channel bolometer array. The
radial profile of radiated power P,4(r) was deduced by an Abel-
inversion technique. The VUV lines of MoXXXI(17.7 nm) and
MoXXVII(52.7 nm) and the soft Xray emission from L-shell electron
(~2.5 keV) were used for this study.

The radial profiles of electron temperature and density were
measured with an ECE system and an array of interferometers,
respectively. Edge electron temperature and density profile were

determined using a He beam technique[6].

3. Radiation characteristics of OH and NBI plasmas

Figure 1 shows the radial profiles of the radiated power for OH and
NBI plasmas with the test limiter position as a parameter for plasmas
with equal T of 2.5 x 10'® m3. All data shown in Fig. 1 are taken under
stable conditions during current flat top phase (t = 1.0 s for OH, t = 1.6 s

for NBI) except one OH case (r;, = 44.0 cm, ‘unstable’), in which the



central radiation rapidly increased and hollow electron temperature
profile appeared after t = 1.0 s, and finally a minor disruption occurred.
More details of this instability are described elsewhere[2].

In OH plasma, the radiation within a plasma radius of about 30 cm
increased as the test limiter was inserted. MoXXVII and soft Xray (~2.5
keV) radiating in the center in this OH plasma also increased. However,
central electron temperature and density showed almost no change (less
than 3%) as the limiter was inserted until a limiter position 1, of 44.5
cm. At 1y;, of 44.0 cm, total radiation P4 increased by about 60%,
leading to a reduction of the central electron temperature by about 10%.
This condition seems marginal and the plasma showed two different
features, such as ‘stable’ and ‘unstable’.

In NBI plasma shown in Fig.1(b), the increment of the radiation was
very low compared with the OH plasma even with the limiter at 1;, =
44.0 cm. An energy ratio By, / B, reached about 10% in this case,
where E,, denotes total deposition energy onto the limiter and E.,,,
denotes total convective energy calculated by integrating the external
heating power subtracted by the total radiation over the discharge
duration. The maximum power flux reached about 20 MW/m? for 2
seconds. No clear change of the electron temperature and density (less
than 3%) in the core plasma was observed and P, increased by 20%.

Figure 2 shows the dependence on T of the increment in the local
radiation power AP, at the magnetic axis (r/a = 0) and that at the
position of r/a = 0.6 with a fixed limiter position (ry, = 44.5 cm for OH
and 1, = 45.0 cm for NBI). In OH plasma, as 1, was increased from 1.5
x 10 m? t0 3.2 x 10! m3, AP, in the plasma center rapidly increased.

Beyond T, of about 3 x 10'° m, the plasma was no longer stable and
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ran into minor disruption, as described before.

In contrast to OH plasma, AP_; of NBI plasma at r/a = 0.6 increased
as N, was decreased from 5 x 10!° m3 to 2 x 10'® m3. Although the
deposition energy to the test limiter did not depend significantly on I,
AP, in high I; was very small. In addition, the central radiation was
always low regardless of I, indicating that some impurity sweeping out

mechanism exists in NBI plasma.

4. Neon cooling

In order to reduce the heat load to PFCs, edge plasma cooling is one
of the attractive technologies. In TEXTOR, neon injection has been
proved to be a promising method for edge cooling without changing the
central electron temperature[7]. In our experiment, the ratio of the
radiation power P, to the heating power P,.,, increased from 0.40
(without neon cooling) to about 0.85. Under this condition, the flux ratio
of neon to deuterium measured on the poloidal limiter located at the
upper side of the torus of r = 48 cm was about 0.12. The deposition
energy to the limiter, E;;,, with the limiter position of r;, = 45 cm
decreased from 120 kJ to 50 kJ with neon cooling, while the electron
temperature at 1 = 46 cm also decreased from 35 eV to 15 eV.

Figure 3 shows the evolution of D-flux to the ALT-II limiter and the
MoXXXI emission from the central chord of the plasma. The intensity of
MoXXXI increased with neon injection by a factor of about 4, though D-
flux to ALT-II was reduced. In contrast, the low Z impurity content
{carbon and oxygen) did not change significantly. The MoXXXI emission
comes from the plasma céntral region ‘(central electron temperature is

about 1.3 keV), indicating that central Mo concentration increased
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strongly.

Figure 4 shows the flux of D, C and Mo from the Mo test limiter as a
function of the flux ratio of Ne/D. Although the D-flux shows
appreciable reduction with increase of the flux ratio of Ne/D, the Mo-
and C-fluxes are nearly independent of the flux ratio (Mo-flux increases
by only 10-20%). Obviously the decrease of the sputtered Mo by C due
to the decrease of edge electron temperature was roughly compensated
by the sputtering of Mo by Ne. However, this small change of the Mo-
flux with neon cooling is not enough to account for the considerable
increase in the central Mo concentration. According to Samm et al.[8],
the particle confinement time of helium is increased with neon cooling.
Therefore, Mo particle confinement might increase and cause the
increase of Mo concentration with neon cooling. But more detailed

studics are necessary.

5. Discussion

In this discussion, we will discuss the relation between Mo behavior
in the plasma and that in front of the limiter. The local electron
temperature and density did not show clear change by inserting the
limiter. Meanwhile, the low Z impurity generation from ALT-II limiter
was unchanged by the insertion of test limiter, since most of the
convective energy loss E,,,, flowed into the ALT-II limiter ( more than
96% at 1, = 45 cm). Therefore, the increment of the radiation AP_,4 can
be attributed to an increase of Mo-density. Assuming a steady state
coronal model, Mo-density can be estimated from AP, using the
cooling rate of Mo given by D. Post et al.[9]. The estimated Mo densities

of NBI plasma at 1/a = 0.6 (Fig.2) are 6.4 x 10*°> m™ for i, = 2.0 x 1019
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m3 and 1.6 x 1015 m'3 for B, = 4.0 x 10¥° m*3 corresponding to the
concentrations ny./n, of 2.9 x 10 and 3.6 x 105, respectively.

In our experimental conditions, Mo atoms were sputtered mainly by
low Z impurities (C and O)[2, 3]. With decrease of I, the electron
temperature at the plasma edge and the sputtering yield of Mo
increased. However, the change of the absolute Mo-flux with I, was
relatively small; the Mo-flux decreased by less than 40% during the OH
and NBI density scan (from & = 2.0 x 10 m?3 to 4.0 x 10! m3).
Therefore, the. variation of the total number of Mo in the core plasma
(more than a factor of 4) is much larger than that of the Mo-flux from
the test limiter. This means that for a better understanding of the Mo
behavior the particle confinement in the core plasma and the impurity
screening effects in front of the test limiter must be considered.

In OH plasmas, the increase in the Mo content at high 1. could be
related to an increase in the particle confinement. The impurity
confinement time T, has earlier been measured in TEXTOR using the
laser blow-off methodf{10}. It was shown that T, increases in OH plasmas
with I, and grows rapidly in detached plasmas.

In NBI plasma, the significant decrease of the Mo content in high T,
could be partly due to a change of the impurity screening effects in
front of the test limiter. Figure 5 shows the ionization length of Mo
neutral near the limiter surface as a function of N, As I, was increased,
the edge electron density also incresed and ionmization length decreased.
The gyroradius of Mo* with an energy of 4 eV is about 1.3 mm. When
the ionization length becomes less than this radius (fig > 4 x 10" m3, n, >
I x 10" m3 at r = 45 cm), the probability of the Mo ion reaching the

limiter surface within the first period of gyromotion is very high. This
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means that the impurity screening effects could be much stronger at

higher N (higher edge density).

6. Conclusions

In OH plasma, radiation increment AP_, by inserting the Mo test
limiter increased with increase of @I, and beyond N, of about 3 x 1013
cm3 the minor disruption occurred. In NBI plasma, however, AP
increased with decrease of M,.. In addition, central peaked radiation
observed in OH plasma was not observed in NBI plasma. The central
Mo-density increased significantly with neon injection, though the edge
electron temperature and the deposition energy to the limiter were
reduced.

The Mo-flux from the test limiter did not change remarkably during
the OH and NBI density scan or with neon cooling in contrast to the Mo-
density in the core plasma. An increased impurity confinement at high
density OH plasma and the impurity screening effects in NBI plasma

could be related to these Mo behaviors.
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Captions

Radial profiles of radiated power in OH(a) and in NBI(b) plasmas
for different Mo limiter position (I, = 2.5 x 10! cm™).
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(r/a = 0, where a is the minor radius, [J ) and at r/a = 0.6 (O ) for
OH plasma at 13, = 44.5 c¢m (a), and for NBI plasma at 1y, = 45.0
cm (b).

Time evolution of D-flux from the ALT-II main limiter, a VUV
line of MoXXXI (17.7 nm), and a NeVIII line for NBI plasma

with T of 3 x 10" m~ with neon cooling.

D-, Mo- and C-fluxes on the Mo test limiter as a function of flux
ratio of Ne/D. The fluxes are integrated in the poloidal direction
(unit cmls). '

onization length of Mo neutral determined by the decay length

of Mol light intensity near the test limiter for OH plasma( @ ) and
NBI plasma( O ). Gyroradius of Mo* (4 e¢V) is about 1.3 mm.
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Fig. 1. Radial profiles of radiated power in OH(a) and in NBI(b) plasmas
for different Mo limiter position (I; = 2.5 x 1013 cm3).
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