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New evaluation method of superconductor characteristics for realizing the Large
Helical Device

Abstract

It is necessary to apply extra large scale superconducting magnets for a fusion
device like Large Helical Device (LHD). Because of the relatively larger current
(10kA or more), new evaluation method to determine the fundamental
characteristics of superconductors have to be developed, which are already
established for thin superconducting wires. In this paper, a measuring method of
critical current, stability margin, current distribution are mainly discussed.

Bath-cooled composite type and supercritical helium force-cooled type NbTi
conductors have been chosen for helical coils and poloidal coils of LHD,
respectively. A critical current of a conductor was measured as follows. Two 2 m
long parallel conductors, which were connected each other at the bottom, were
inserted in a 9 T split coil. The surface of the conductor was covered 50% by
spacers to simulate heat transfer conditions. The time dependent transition
phenomena between normal and superconducting state are observed by voltage
distribution along the conductor.

On study of forced flow cooled conductors, the current transfer from a
quenching strand to another strand was measured by pick up coils on a conduit.
We measured its stability margin by a pancake-type coil as a long sample test.

The major measurement results of bath- and forced-cooled LHD conductors
using this system have given enough fundamental data of high current multi-
strand conductors for the LHD.



1. Introduction

The Large Helical Device (LHD) is a fully superconducting heliotron/
torsatron type fusion experimental device and its construction has been
progressing from 1990 at Toki site of the Institute. All coils of the LHD (a pair
of helical coils and three pairs of poloidal coils) are designed using NbTi
superconductors, and a stored magnetic energy of 0.9 GJ (phase I) and 1.6 GJ
{(phase II)[1].

The LHD is the beginning of the extra large superconducting magnet for
fusion devices after successfully completed medium size TRIAM-1M and Tore
Supra. This paper will describe the many efforts to develop superconductor
evaluation methods to realize the LHD, because the most of past large coils are
designed without any precise characteristics of the large scale conductor.

2. Basic requirements and design of helical coil conductor

The conductor for the helical coils must satisfy the conflicting requirements of
high current density and sufficient stability and safety. The current density of the
conductor is 58 A/mm? at 6.9 T in order to satisfy the average coil current
density of 40 A/mm? in phase 1. The conductor is designed to be cryostable
according to Maddock's stability criterion. The mechanical toughness of the coil
and the flexibility during winding are another set of conflicting requirements[2].

The cross-sectional view of the conductor (named KISO-32) is shown in Fig.
1. Fifteen superconducting strands are twisted and formed into a Rutherford-type
flat cable. The pure aluminum (SN) stabilizer is co-extruded with a Cu-2%Ni
(resistivity : 2.5 x 10 -8 Qm) which was selected for the clad material to satisfy a
given recovery current. The conductor surface is oxidized to improve the heat
transfer coefficient to liquid helium[3].

3. Basic requirements for poloidal coil conductor

The LHD has three pairs of poloidal coils, which are named inner vertical
(IV), inner shaping (1S), and outer vertical (OV) coils. From the points of AC loss
and electro-magnetic force, supercritical helium forced-flow type NbTi
conductor which is composed of 486 (3 x 3 x 3 x 3 x 6) strands in a stainless
steel conduit of 3 mm or 3.5 mm thick, is selected for the coil[4]. This conductor
is the first thick conduit type to sustain the high stress of 440 MPa[5] applied fo a
device.

Uniform current distribution and, in case of partial quench of strands, easy
current transfer to another strand are necessary conditions[6]. The critical current
and limiting current are extensively measured here.

4. Experimental facilities

Test facility for full-scale conductors consists of a cryostat with 100 kA
vapor-cooled current leads, a 9 T bias field split coil and a short superconductor
sample, and a 75 kA DC power supply{7]. The flat top (90%) ficld region is
about 250 mm. Two short sample conductors of 1970 mm in length are arranged
parallel and are inserted into the split coils. The sample conductor are soldered
together at the bottom to join the cach other.

For pool-cooled conductors, the sample is supported with FRP jigs to kecp the
exposure tate of 50% to liquid helium. Many voltage taps, thermometers, heaters
and pick-up coils are attached to it. The normal zone propagation and recovery
phenomena can be measured using pairs of longitudinal voltage taps. Forced-
cooled CIC conductors are also examined with this sample configuration.

5. Evaluation of superconductor
5.1. Critical current of multi-strand conductors



To calculate the critical current, we have adopted the following two
assumptions to evaluate the effect of the self field[8]. One is that each strand in a
conductor can be individually excited up to its critical current determined by the
maximum magnetic field experienced through the orbit of the strand, and the
overall critical current of a conductor is determined by the sum of the critical
currents of all strands. The other is that we take the representative field for each
strand at the center of the strand which gives the critical current of the strand by a
measured value of a single strand.

Figure 2 shows the measured critical currents of KISO-32 against the bias
magnetic field. The results (20 kA at the bias field of 7 T) were in good
agreements with predicted values indicated by the dashed curve.

5.2. Hall effect in a composite conductor and its recovery current

As for the cryogenic stability, we have observed an extreme enhancement of
the effective resistivity of aluminum stabilizers which deteriorated the cryogenic
stability of the conductor. This is due to the 'Hall effect’ which occurs in a metal-
metal composite[9]. We have derived an exact formula of the effective resistivity
of composites based on the 'Hall effect’[10]. Figure 3 shows the measured normal
resistivity of the stabilizer of KiSO-32 after normal transition[3].

5.3. Limiting current and stability margin measurements of the cable-in-conduit
conductor

In order to measure the stability margin of the poloidal conductor, the
demonstration conductor of 70 m was formed into a double-pancake {named I'V-
S) and mounted on the back-up field coil named TOKI-PF[11,12]. Both coils
have the same inner radius of 0.6 m. Supercritical helium flows from the inner
turns to the outer turns with a pressure of 1 MPa or less. Peak magnetic field was
2.7 T with the current of 20 kA. By raising the working temperature up to 7.5 K;
the sample experiences the same load line as the LHD coils. The Figure 4 shows
instrumentation required for the experiments. If assuming that the heat was not
lost to the neighboring layer, the input energy can be calculated from the
integration of the increase of helium enthalpy.

The margin of IV-S was measured at 7.5 K with the pressure of 1.0 MPa and
0.5 MPa. The heating was repeated with sufficient intervals until the coil
quenched. The results are shown in Fig. 5. The dashed and the dash-dotted line
indicate the available helium enthalpy for 1.0 MPa and 0.5 MPa, respectively.
The margins were all very close to the calculated available enthalpy in the both
cases of 1.0 MPa and 0.5 MPa. Thus the conductor stayed in the upper stability
region[13] up to 21 kA, which was about 94 % of the critical current.

5.4 Stability for partial quenching of the cable-in-conduit conductor

The measurements of the stability margin have been doae in a condition that
all strands were simultaneously heated. In case of the actual conductor, we had
better consider that the quench originates from the normal transition of a few
strands. Thus we have investigated normal propagation and current transfer in the
transverse dircction after partial quenching by using a short sample[6]. The
partial normal zone was generated by a heater and the current distribution was
monitored by pick-up coils. The resistive foil heater of 350 £ was attached to
about ten strands. Eight pick-up coils with 260 turns surrounded the conductor
to detect the magnetic field produced by the transport current.

The experimental results indicated that the current in the strands with the
normal zone was transferred to adjacent strands and the normal zone vanished
when the critical/operating current ratio exceeded two.

6. Conclusion



Superconductors for LHD have been evaluated with newly developed
methods. Bath-cooled conductors for the helical coils have been tested in a short
sample, and ferced-cooled one for the poloidal coils have been tested in double
pancake coil and also in a short sample. Many diagnostic sensors are used to
carry out these precise evaluation.

As for the bath-cooled conductors, the measured critical current can be well
explained as the summation of critical currents of all the sirands under a
magnetic field including the self-field. The enhancement of the
magnetoresistivity of an aluminum stabilizer was observed and the 'Hall effect’
well explained this phenomenon.

The stability margin of the force-cooled conductor was measured by a long
sample shaped as a coil using an inductive heater. In a short sample experiment,
the current transfer from a quenching strand to another strand could be observed
by pick-up coils on the conduit.
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Figure Caption
Fig. 1. Cross-sectional view of the helical coil superconductor named K1SO-32.

Fig. 2. Measured critical current and recovery current. Calculated values are also
shown for each specific current.

Fig. 3. Measured longitudinal resistance after a transition to the normal state.
Fig. 4. Instrumentation of the stability margin measurements. A resistive heater
(RH) was attached on the inlet pipe to increase gas temperature. An inductive
heater (IH) was wound around the conductor in order to measure the stability

margin.

Fig. 5. Results of the stability margin measurements at 7.3 K.
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