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Dynamical Model of Pressure-Gradient-Driven Turbulence

and Shear Flow Generation in L-H Transition

ABSTRACT

We present a dynamical model for the L-H transition consisting of three ordinary differ-
ential equations. This model describes temporal evolutions of three charcterisistic variables,
i.e., the free energy contained in the pressure gradient, the turbulent kinetic energy and the
shear flow energy in the resistive pressure-gradient-driven turbulence. The model equations
have stationary solutions corresponding to the L and H-modes and their stabilities depend
on the energy input to the peripheral region. Changing the energy input parameter yields
the L to H and H to L transitions. We also find the parameter region in which the H-mode
stationary solution becomes unstable and bifurcate to the imit cycle which shows periodic
oscillations like ELM. It depends on the viscosity for the shear flow which the type of the

1-H transition is, a first-order or second-order transition.

1. INTRODUCTION

Various theoretical models have been proposed in recent years in order to explain the
mechanism of the L-H transitions observed in many tokamaks and in some stellarators. The
key points, which such models attempt to describe, are how the radial electric field or the
poloidal shear flow suppresses the turbulence and anomalous transport and how the electric
field or the shear fiow is produced. Concerning the mechanism of the shear flow generation,
some models are based on the particle orbit loss processes [1,2} and others are based on the
turbulent processes or Reynolds stress [3-8]. In the latter. the divergence of the Reynolds
stress or the nonlinear convective term in the momentum equation drives the plasma flow.
In. the L-II transition model presented in this work, the Reynolds stress is considered to
be the cause of the shear flow generation. Diamond et al. [5,6] presented a simple L-
H transition model consisting of two ordinary differential equations which describes the
temporal behavior of the turbulent fluctuation and the shear flow although the pressure
gradient is fixed as a control parameter. In actual experiments, the pressure gradient also
changes at the L-H transition according to the change in the transport. Therefore. our

model extends their model by including the pressure gradient as a basic variable as well as



the fluctuation and the flow. Then the physically novel features, not contained in theirs,

appear in ours as is described later.

2. MODEL EQUATIONS AND STABILITY OF STATIONARY SOLUTIONS

Basic variables for our dynamical model of L-H transtion are the turbulent kinetic energy
K, the background shear flow kinetic energy £, and the potential energy related to the
pressure profile U, which are defined by
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respectively, where we define the peripheral region by —¢ < z < 0. Here, the angle bracket

(-) denotes the average over the (y, z)-plane {(or the magnetic surface). The velocity and
the pressure are divided into the z-dependent average parts and the fluctuating parts as
v = vo{x)+7 and p = po(z) + P, respectively. The average mass density is denoted by nom;.
The unfavorable magnetic curvature is represented by 1/L, and is assumed to be constant.
From the reduced resistive MHD equations [7-9] in the electrostatic approximation, we

obtain the following energy balance equations

dU/dt = Py - Py (2)
dK/dt = PK—PF—EK (3)
dFjdi = Pp—e¢p (4)

where the production and dissipation terms in the right-hand sides are given by
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Here 1 denotes the (kinematic) viscosity, n the resistivity and j'“ = 171V} the parallel cur-

dz

rent. The electrostatic potential ¢ gives the velocity as v = —(¢/By) V¢ X # in the reduced
MHED model. In the temporal evolution equation for U, we have neglected the collsional
dissipation term by assuming that the turbulent thermal transport is much larger than the
collisional one. The potential energy production Py is given by the energy input to the
peripheral region through fhe inner boundary at z = —4, the turbulent energy production

P is expressed in terms of the pressure transport multiplied by the unfavorable curvature,




which is originally from the potential energy, and the background flow production is rep-
resented by the product of the Reynolds stress and the flow shear, which comes from the
turbulent kinetic energy. As for the dissipation terms. ex stands for the viscous and Joule
dissipations of the fluctuation, and er the viscous dissipation of the average flow.
Estimating the time scale 7, in the g or ballooping mode turbulence as 7. ~ it =
(Lenoma/|dPy/dz|)*/? and approximating U ~ & {dPy/dz| [(Lonom.) yield 7o ~ sU—172,
Giving the anomalous pressure diffusivity as D ~ 7K. we have Py ~ D|dFy/dz|/ (Lengm,) ~
77 K ~ §WW'? K. From similar approximations for the Reynolds stress (¥.7y) ~ 7. K (dvy/dz)
and the shear flow energy F ~ §*(dup/dz)?, we obtain Pp ~ r.K{(dv/dz)? ~ IV FK.
Assuming that the Joule dissipation is dominant in eg, the turbulent energy dissipation
can be written as ex ~ D7'K? where Dy = Dy{U) is the L-mode anomalous diffusivity
[10] and a function of U through its dependence on the background temperature. This
form of the turbulent energy dissipation ex o< K is the same as in the Diamond’s model
(5,6]. Finally the background flow energy dissipation is written as ep ~ pé~?F where the
ion collisional viscosity = p{U) is also given as a function of U. Thus a closed set of the

equations for U, K and F are obtained as follows

dUJdt = Py—Cgé UK 5)
dK/di = Cxé ‘UK — Ce6™ U PFK — Cx D7 K (6)
dF[dt = Ceb 'UPFK = CobuF 7

where the potential energy input Py(> 0) is regarded as an external or control parameter
and C's are nondimensional numerical constants.
Introducing the following normalized variables, functions and parameters
w=UfU, k=K/Us, f=F/Us, 7=Cx6 Ut
d(v) = CxC 5 W52 DL(U),  miu) = C5 CR6 UL *u(U) (8)
g=CgléUs"*Py, ¢=Cp/Ck

Eqs.(3)~(7) are rewritten as

dufdr = q—u"%k (9)
dkfdr = uPk—ou™ P fk - d7 (u)k? (10)
df fdr = cu V2 fk — em{u)f. {11)

Stationary solutions corresponding to the L and H mode stationary points are give by

(wr,kr, fr) and (ug, kg, fr) respectively, where kz = ulL/Qd(uL), £ =0, kg = up mug)
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and fg = ¢ lugd H(ug)(d(vg) — m{ug)). Here uy and ug are functions of the control
parameter g defined by upd(uz) = ugm{uyg) = ¢. The condition for the existence of the
H-mode stationary solution is written as d{ug) > m{ug). The critical value g, is give by
solving uqd{ie) = vam(ua) = g.. Here we define the normalization unit U, such that
u. = 1. We consider the two cases where ud(u) and wm(u) are functions of v as shown
in Figs.1(a) and (b). In the case of Fig.1(b), the condition d{uy) > m(ug) is equivalent
t0 ¢ > ga. In the case of Fig.1(a), the H-mode solution exists for ¢ > g.o where ¢, is
the minimum value of um(u) at u = ue(> u,; = 1). In this case, for g0 < ¢ < g1, the
equation wm{u) = ¢ has two solutions ug_ and ug.{> uy_) where ug_ is unstable and
ug. corresponds to the real H-mode.

Next, we examine linear stabilities of the L and H-mode stationary solutions. The
eigenvalues of the matrix obtained by the linearizing the model equations around the L-
mode solution are given by Ar; = ¢{dy — my), Ary and Ap_ where A\;. and A;_ are the

solutions of the quadratic equations
1
/\2 + (50115 + Uyg) A + uyg(uLdL)’ ={. (12)

Here dy, = d{ug), mp = m(ug), &) = d'{ug) and ’ denotes the derivative with respect to u.
We find that Reiry < 0 and Redz_ < 0since (ud) > 0 is assumed as seen in Figs.1(a) and
(b). The eigenvectors corresponding to Azy and Az_ are both tangential to the (u, k)-plane
defined by f =0 and the L-mode solution {uy, k;,0) is a sink for the orbits on this plane.
The L-mode solution is unstable if and only if d; > my which is equivalent to the condition
q > G-

The eigenvalues of the matrix obtained by the linearizing the model equations arcund

the L-mode solution are given by the solutions of
ML AL BA+C=0 (13)

where A = myg (1/2+uf’/dg). B = ujf'ma((1 + c)(1 — mg/dg) + my(updn) | dy),
C = cqumH(uHmH)’(l —mg/dy), dg = d{ug), mg = m{ug) and my = m'(ug).
Here we consider the case in which the condition for the existence of the H-mode solution
dg > mpyg is satisfied. It is found that both A and B are positive. In the case of ug = ug_
in Fig.1(a) where g5 < ¢ < g.1, we obtain C < 0 since {um)’ < 0 for 4y < ¥ < ue. Then
the stationary point {uy..,kg—, fz_) is unstable since Fq.(13) has one real and positive

solution for C' < 0. For the H-mode stationary point in Fig.1(b) and for that at u > u. in
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Fig.1{a), we have C' > 0 and therefore at least one real and negative solution of Eq.(13).
In these cases where ¢ > 0. other two solutions of Eq.(13) are both real and negative or
a pair of complex conjugate values since both A and B are positiw:e. Thus the marginal
stability of the H-mode solution except for {ug-. kg, fr-) occurs when €' = AB which
implies that Eq.(13) has a pair of pure imaginary solutions. Then these H-mode solutions
become unstable when € > AB which is rewritten as

(ama) (1 Ll L/t (quH)') (l +iﬂp) , (14)

m g 1—mH/dH dH 2 dH

This criterion for the instability of the H-mode depends on the values of ¢ (through vy =
ug(q)), ¢ as well as the functional forms of d(u) and m(u). There appears a Hopf-bifurcation
from the stable H-mode solution to the limit cvcle around the unstable H-mode solution

just when (14) is satisfied.

4. NUMERICAL MODELING AND DISCUSSION

Here numerical solutions of Eqs.(9)—{11) are given for two cases of the functions d{u) and
m{u) based on neoclassical and turbulent viscosities. The dimensional analysis [11] gives
the anomalous diffusivity in the resistive g and ballooning mode turbulence proportional to
the pressure gradient, and we use d{u) = u in all the numerical calculations reported here.
The turbulent viscosity resulting from the small scale part of the turbulent inertia term is
dominant for larger pressure gradients and given as ~ c,u where the positive constant c,
is small since we consider that the low wavenumber part of the turbulent inertia term or
the Reynolds stress generates shear flow against the viscous damping. For smaller pressure
gradients, the neoclassical viscosity [12] given by pin = Rqurivai/[(1+va){1+ e/%,;)] with
v, = Rqu,/vr:€*/? is dominant for the damping of the mean shear flow. Here we model
the teperature dependence of the viscosity by taking u proportional to T; and introduce
m(x) ~ w32 for small u in Case I as in the banana regime (v, < 1) and m{u) = u™ for
low u in Case II as in the transitional regime (v,, ~ 1}. Thus, for the numerical studies
we take m(u) = u~¥2(0.95 + 0.05u%/2) for Case I and m(u) = u=*(0.97 + 0.03%) for Case
1L Case I and Case II correspond to the cases in Figs. 1(a) and (b). respectively. We put
¢ = 5 for which we can satisfy the H mode instability criterion (14) for some values of g.

For Case I, we have ug = 1, ga = 1, vy = 3.01, ue = 1.86, ul = 0.93, g = 0.87,
u3 = 4.40 and g = 1.42, which are shown in Fig. 1(a). Here (ga, 3} denotes the critical

point for the bifurcation of the H mode into the limit cycle associated with ELM state.
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The solid and dashed curves in Fig. 1 correspond to the stable and unstable stationary
solutions, respectively. For ¢ < ¢, there exists only one stationary solutiom, 1.e., the
stable I mode solution. For g < ¢ < ¢, the L mode stationary solution remains stable
while there appears one stable H mode solution and another unstable stationary solution.
For qq < g < g3, the L mode stationary solution is unstable and the stable H mode
solution appears. For g > g3, the L mode remains unstable and the H mode also becomes
unstable. There appears a limit cycle around this unstable H mode solution. Thus we
obtain the Hopf-bifurcation at ¢ = g3 = 1.42. Let us regard a value of u for the stable
stationary solution as an ‘order parameter’ in our system and consider it as a function
u = u(q) of the control parameter ¢. Due to the parameter region gz < g < ¢.; where the
two stable stationary solutions exist, we obtain the hysteresis curve of the order paramater
u = u{q) as shown by arrows in Fig. 1{a). At the critical points ¢ = g,; and ¢ = g of the L
to H and H to L transitions, the order parameter u changes discontinuously with respect to
q 48 U — Uy and ug — u5,. Thus the L-H transition is like a first-order phase transition
for Case I where w; < 1 is required. In Fig. 2. we find the results where the control
parameter is temporally varied, which corresponds to ramping up and down additional
plasma heating power. Figure 2(a) shows the control parameter ¢ = ¢{7) as a function of
time. The temporal dependence of (u, &, f) are shown in Figs. 2(b}. The hysteresis nature
can be clearly seer in that the L to H transition occurs when ¢ > ¢, = 1 while the H to
L transition occurs when ¢ < g = 0.87. We can also see that, while ¢ > g5 = 1.42, the
ELM-like instability grows approaching to she periodic oscillation represented by the limit
cycle.

For Case II, we have v, = 1, gu = 1, ug = 6.28 and g3 = 2.15, which are shown in
Fig. 1(b). For ¢ < ¢, there exists only one stationary solution, i.e., the stable L mode
solution similar to that for ¢ < g in Case . For ¢ < ¢ < g3 and ¢ > ¢.3, the stability of
the L and H stationary solutions is the same as in the corresponding parameter regions for
Case 1. The Hopf-bifurcation is again found at ¢ = g.3 = 2.13. At the critical point ¢ = g1,
the order parameter u as a function of the control parameter g is continuous while the its
first derivative du/dg is not. No hysteresis is obtained. Thus the L-H transition in Case il
is like a second-order phase transition. Finite change in g is required for finite change in
u. In Fig. 3, the results where the control parameter is temporally varied are shown in the
same way as in Fig. 2. Even though this case corresponds to the second-order transition,

we find clear L to H and H to L transitions since certain time lag required to reach the




hifurcated stable solution causes the finite difference in g and accordingly sudden changes

in (u,k, f). The ELM-like oscillations are also seen for g > gi3 = 2.15.
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FIGURE CAPTIONS

FIG.1. Stationary solutions in the (u,¢)-plane. (a) Case I (v, < 1): (b) CaseII (vu ~ 1).
The solid and dashed curves correspond to the stable and unstable solutions. respec-

tively.

FIG.2. Numerical solutions for Case I where the energy input is temporally varied. (a) The

energy input parameter ¢ as a function of time. (b) The temporal dependence of

(u,k, f).

FIG.3. Numerical solutions for Case II where the energy input is temporally varied.
(a) The evergy input parameter q as a function of time. (b) The temporal dependence
of {(u,k, f).
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FIG.1. Stationary solutions in the (u, g)-plane. (a) Case I (v.: < 1). {b) Case II (., ~ 1.
The solid and dashed curves correspond to the stable and unstable solutions, respec-

tively.
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