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Effect of Anomalous Plasma Transport
on Radial Electric Field in Torsatron/Heliotron

T.Yamagishi and H.Sanuki®)
Fukui Institute of Technology
a) National Institute for Fusion Science

Abstract
Anomalous cross field plasma fluxes induced by the electric field fluctuations

has been evaluated in a rotating plasma with shear flow in a helical system. The
plasma rotation frequency due to the radial electric field makes the Doppler
frequency shift which does not explicity affect the cross field flux. The
anomalous ion flux is evaluated by the ion curvature drift resonance continuum
in the test particle model. The curvature drift rersonance induces a new force
term <B>"<B> which did not make large influence in the ion flux. The shear
flow term in the anomalous flux combined with the electric field in neoclassical
flux reduces to a first order differential equation which governs the radial profile
of the electric field. A general exact analytical solution for the differential
equation is derived and a simple approximate solution for the radial electric field
is also given. Numerical results indicate that the shear flow effect is important
for the anomalous cross field flux and for determination of the radial electric
field particutarly in the peripheral region.

Keywords: Radial electric field, poloidal plasma rotation, curvature drift
resonance, gyrokinetic solution, test particle model, anomalous cross field

plasma flux, electric field fluctuations, magnetic field line curvature effect, shear
flow effect.



§ 1. Introduction

In toroidal high temperature plasma confinement devices such as tokamak and
Starallator/Heliotron, strong radial electric field has been experimentaily
observed{1)(2)(3). This electric field is believed to play important roles in various
plasma stability, classical and anomalous plasma transports and the L-H transition in
tokamaks(4)(3), This radial electric field may be produced by the unbalance of electron
and ion transports, and also by the momentum injection associated with auxiliary
heatings.

When the radial electric field exists, the plasma suffers rotation due to the ExB drift
motion mainly in the poloidal direction with the velocity vg=cE/B. In this case, the
Larmor gyromotion may be modified, i.., the perpendicular velocity is shifted by vp: w i
=(vx2+uy2) 172 with Uy=Vy-VE. The perpendicular constant of particle motion becomes
u=w _L2/2B. This may suggest that the plasma rotation plays an important role through the
finite L armor radius effect in a complicated manner.

The total energy related to the perpendicular motion a:(vx2+uy2)/2+ed>/m and the
paratlel energy 6=v“2/2 are also constants of motion, respectively, where E=-0&/0x.
The equilibrium distribution function fy may be written in the form

3
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where the scalar potential $ has been transformed to the shifted Maxwellian through the
invariance condition of particle guiding center X=x+ule and the normalization condition
_(fod v=N(x) (6) neglecting the trapped particle effect.

In the rotating plasma, the oscillation frequency « of perturbations may suffer the
Doppler frequency shift by the rotation frequency we=kyve. We will show that this
Doppler shift has no direct influence on anomalous plasma transport as in the kinetic
plasma stability theory. Although the uniform electric field E; may have no influence on
the anomalous transport, whether the shear flow effect due to the non-uniformity of E;
plays an important role or not remains to be investigated. Our purpose of the present
paper is, therefore, to examine whether the shear flow effect plays an important role for
the anomalous cross field ion flux.

When the radial electric field has the radial dependence, the radial derivative of the
equilibrium distribution function (1) has the velocity shear term induced from vginw,:
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where V=v/vp, and E=( 2+¢ ;2)/2 is the normalized kinetic energy.

To investigate the effect of plasma transports on the radial electric field E, we should
consider both neoclassical and anomalous transport processes. When we introduce the
shear flow effect, it also should have some influence on the neoclassical transport
process. In the neoclassical theory, however, the zeroth order electric field effect does
not vanishes, and play a pricipal role, i.e., the flow shear effect due to the nonuniformity
of E; may be higher order, and may be negligible as compared with the zeroth order of
Er. We will take into account this shear fiow effect only for anomalous ion flux and
neglect in the neoclassical ion flux.

§ 2. Anomalous Cross Field Flux
We consider the anomalous cross field plasma flux I' sy induced by the electric scalar

potential fluctuations E)', defined by

Taxy = J' (Qx f)cfv (3)

where the angular brackets means the ensemble average for purturbations, {;X is the radial
velocity perturbation and £ is the perturbed distribution function. We apply the
gyrokinetic solution given for ions

T e m+mE—w*(1+n(f:—§)—uva‘In)
f=-7 1+ 3% () L ¢& (4)

wtwg-Wwp

where all notations are standard: wg=kgvg, vg=CE;/B, w*=(cT/eB)/Ly, n=dlnT/dInN,
Ly 1=dInN/dr. The precessional drift frequency defined by wp =VS.bx(w,2/2
VinB+x(v2+vg?/e))/Q is approximated by wD=2z:nw*(\7"2+\?E2/s +W 12 12) in the low-B
plasmas in which k=b.yb = VInB, where e=t/R, and &4=R/Ly;. The term vg¥/€ in ©p is
induced by the centrifugal force due to the plasma rotation in the poloidal direction. In the
gyrokinetic solution (4), the E-effect is in the Doppler shift w+wg. It is also involvedin



the perpendicular velocity w, in B, wy,, the Bessel function argument a; =kgw /Q and
fo- The shear flow effect is in the fourth term in the numerator.

The frequency ordering: w>w*=w,>w;;=k,v; , has been assumed. The ion transit
frequency wyj, therefore, has been dropped in eq.(4). The drift frequency (wg) due to
the centrifugal force is also neglected in usual theory. It may becomes important when the
rotation speed vg is comparable to ion thermal velocity vi, or the Mach number is close to
unity.

For electrons, the electron transit frequency wes=kve may be much higher than w;
We>> w=w*, the second nonadiabatic term in the curly braces in eq.(4) may be
neglected, and ?may be approximated by the first adiabatic term:
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Assuming that ?/’x 1s given by the perturbed ExB drift velocity: '\\fx=—ike$lB, and
introducing eq.(4) into eq.(3), we have the cross field ion flux

~
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where g ia a function of the Doppler shifted frequency W=w+g:
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For electrons, on the other hand, applying eq.(3), we have no real flux: I' 45*=0.

It is worthy to note that the integral in eq.(7) is the same one in the electrostatic
dispersion relation derived from the neutrality condition{”):

- 0e B3 -yt
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The discrete time eigenvalue wy, for the nj-mode is determined by solving eq.(8) for w.
The growth rate y of an instability is given by y=Imwg which gives the real cross fieid
flux T's; due to the instability(discrete eigenvalue). Since the dispersion relation (8) is
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derived from the neutrality condition, the resultant cross field ion flux should be equal to
the electron flux: T ! =T 4. If we apply the dispersion relation (8), it is clear that the
imaginary part of the velocity integral is zero, g{k,w)=0, i.e., we have no real flux I’ ANi
=() for the n;-mode. This is due to the fact that T ,®=0. Although the ion flux induced by
the n;-mode is zero, the heat flux

Oy = J' (;x £E>d3v ©)

does not , in general, vanish even for the discrete mode(7).

Instead of the flux induced by the growth rate of instability, here we evaluate the flux
(6) induced by the drift resonance continunm applying the test particle model without the
neutrality condition and assuming that the power spectrum of perturbations, Ie$lcT12, has
been given. The source of fluctuations 'Y may be certain instabilities and/or subcritical
turbulence or nonlinear chaos.

The integral (7) can also be expressed in terms of force terms as in the neoclassial
theory

W T  eB, eE,.!
=Wt Cy ==+ —+C +Cy— 10
glcw =¢y e e (10)

where the coefficients ¢j have been defined by
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The fourth term in eq.(10) comes from the rotation frequency wg in eq.(4). If the first
term in eq.(10) is combined with the fourth term, they give the Doppler shifted
frequency: ¢1{w+wg). The fourth term with electric field " is always transfored to the
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Doppler shift, which is proved in a more general formalism in Appendix A. Since the
frequency power spectrum I('I\;l2 in the rotating system suffers the same Doppler shift
when observed in the Laboratory system, the cross field flux has no electric field effect
when integrated over frequency v in eq.(4).

Since oy =kgw, /Q and wy, depend on both w| and v,, and the shear flow term involves
Uy the velocity integrals in eq.(7) and egs.(11) - (14) become triple integral with respect
tovg, uyandy. In this case, eq.(7) can be written in the form
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The triple integrals may only be possible by numerical calculations making use of high
speed computer. The major complexity in eq.(15) is due to the shear flow term.

The simplest approximation for the shear flow term may be to assume the ion velocity in
the poloidal direction is thermal velocity: Uy=Vy-Vg=Vj, or y=1. In this case, the shear
flow effect may approximately be evaluated as (vg/vi)Lo/Lg, where Ly is the scale length
of electric field variation. Since vg/vi <<1, the shear flow effect may be negligible unless
Ly/Lg >>1, i.e., the variation of the electric field E; should be much larger than that of
ion density N. This may not happen in usual situations. In the Torsatron/Heliotron,
however, the density shows hollow profile(2}(3) and L/L.z>>1 may occur near the
peak point where Ly -0, If this shear flow term is assumed to be a constant, or uy is
approximated by w, and the curvature drift frequency is approximated by wp, = ‘3}) E,
the triple integral can be reduced to a double integral.

gtk =nfl B[ g2y G700 E-3/2 + Lovids) g [
Jr fiado e ®-wpE
(16)
where the transformation of variables: E=w L2+vﬂz, A=2uB/E=w lzl(w i2+v% yand w, =
(AE)!2 have been employed.
If we neglect the finite Larmor radius effect, o =0, by carrying out the intagration with

respect 1o A, q.(16) is reduced to a single integral form:
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By the same manner, all velocity integrals in egs.(11)~(14) can be reduced to the single
integral with respect to E as follows

4 JEe PR
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This single integral may be convenient for numerical integration.
By the transformation of variable : E=x2, and making use of the relation

111 1
¥-c? 2gkx~<; X+ ¢

the above integrals with respect to E can be transformed to the usual plasma dispersion
function as follows

where {=(@8p) /2, and the plasma dispersion function Zj(%) has been defined by

1 x %2
750 = =] —e " & 21
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Z,(0) is the usual plasma dispersion function. The higher moments are expressed by the

lower moments: Z1()=1+{Z(0), Zo()=LZ1(L), and so forth(B).
The coefficients cj are expressed in term of the plasma dispersion function:
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The integral in ¢4 , however, can not be expressed by the Z-function. The argument
{=(/Sp) 12 indicates that the coefficients have the branch points at the origin &=0 and
at infinity (=-°0, and the branch cut is the whole negative real axis in the complex @-
plane (%), This branch cut is the Vlasov continuum due to the curvature drift resonance.

Since the frequency integration is real in eq.(6), the coefficients ¢j have no real
compornent except the resonance condition: EJ-(SDE=O, i.e., without the wave-particle
resonance all coefficints ¢j vanish, and we have no anomalous particle flux, I'y=0. At
the drift resonance condition, &-(pE=0 (0<E<es), applying the formula

bl ime-wp) (25)
UJ-LUD w-wD

whete P means the principal value, we have the real component of the flux from the
second term in eq.(25), and eq.(17) can be written in the form

gk =~ 2 c{@—w*(lm(;l-i)+ELnVE'<;}}e"‘2 (26)
J;’(BD 2’ 4

which can also be derived by using the formula ImZo({)=n!/2exp(-{2) for the
coefficients in eqs.(22)n(24).
If we assume the separation of variables in the power spectrum

b
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introducing €qs.(26) and (27) into eq.(6), and transforming the sum over the frequency
into an integral with respect to Gy’(SD, we have



Tan= 2 {(wn ~w*mE- w*(l—-—n --f-:-LnVEm*I_I} (28)
2
where the moment integral Ij has been defined by
. _r2
= =[c B esac 29)
-

The flux (28) can be rewritten in the neoclassical expression

Tan= Z ed>

™ (B> 71ve. E
T T e~ L ¥Ey DX 30
kN{IO (%Il] 2]i<B> 4viLEEr (30)

Introducing the E; effect, we have seen that the frequency suffers the Doppler
frequency shift, i.e., @ is replaced by w=w+wg. When observed in the Laboratory
system, the frequency spectrum S(w) should also be a function of the Doppler shift :
@=w+wg. The moment integral with respect to « is transformed to the integral about 0,
and therefore, we have no wg-effect.

If we assume a simple cut-off frequency spectrum with width 2wg of the form
S(w)=12wg for |wi<wg, and the width wg is wide enough wg>>lwp|, the moment
integral (29) can be approximated by the white noise spectrum: Ig=1/wg, I;n=2/1"2e
and 11=3/2<.os(10). In this case, the temperature gradient term in eg.(30) cancels out.
Bearing in mind the relations, w*=(cT/eB)N'N, @p=2e,0* =2(cT/eB)B/B, eq.(30)
can also be rewritten in the neoclassical from:

fle

The second force term BY/B in the curly braces in eq.(31), which comes from the

—oKe

Tan=1 eB
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curvature drift frequency p, is a new term. The third term due to the shear flow is also a
new term.

We assume the saturation level of the power spectrum

2
1

X ) k2 1?
and the perpendicular wave number is of the range k, p;=A" 1 with A is close to unity. In

&b

T

9



this case, the flux may be expressed in the simple form(10)

N <B>'_£EE_I_E_1;’} 32

vip?

Ty=h—7* N{_ﬁ'3 <B> 2 v E,
This flux involves no radial electric field Ey. Notice that the disappearance of TYT term in
eq.(31) is due to the cancellation of the moment integrals for the particular spectral

function. This cancellation may not occur in general, and we have TYT term in the flux.
So far, we have neglected the centrifugal force effect due to plasma rotation. When the
rotation speed is comparable to ion thermal velocity or the Mach number is close to unity,
the drift frequency wg may become important for the flux T'. If the centrifugal force
effect is included, the moment integral defined in eq.(10) should be modified by

mutiplying a nonlinear factor exp(-wg/&D).

§3. Radial Electric Field
In this section we derive the radial electric field E, from the ambipolar condition taking

into account neoclassical and anomalous transport coefficients neglecting the second
order Er-effect in wg. The neoclassical cross field flux has been expressed in the form

N eE, '
I'ne=- am{ﬁ‘ eT }‘bmc % (33)

where coefficients ayc and by consist of two parts, the axisymmetric part associated
with transit or trapped particles , and the asymmetric part associated with locally trapped
particles arising through violation of the system's axial symmetry :

1.09ai 0.67bi(1)
anc=

140870 14y 00p 0 9
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3 tasa _tosay | 190" 3 067
21+03%¢ 1+0.870g I+0.59ﬁ.(1) 21+lmﬁm
1 1

byc (35)

where coefficients aj bj o and f; for ions have been given in Ref.(11). These coefficients
for the electron flux have also been given in-Ref.(11). Combiag eqgs.(31) and (33), the
total ion flux I'=T 4 y+I'yc may be written in the form
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where the neoclassical coefficients ayc and by have been given in egs.(34) and (35),
and the anomalous coefficients may be approximated by a,n=Av;p;3/L, cxn=3a, and
dan= m2pjasn/2. In order to adjust to the neoclassical electric field term and make a
differential equation with respect to Er, the shear flow term in eq.(31) has been changed
by the relation vg B 7E; = (p;f2)eE,/T.

Although the anomalous electron flux has been neglected in §2, if we take into account
trapped electron effect, strong trapped electron modes induced by temperature gradient
and curvature drift effects may be excited. These trapped electron modes may induce the
anomalous cross field flux(12), Even these TEM are absent, the trapped electron
resonance may make an anomalous electron flux as long as electric field fluctuations exist
as in the case of ion resonace treated in §2. We assume the anomalous electron flux in the

same form as eq.(31)
N' T ! <{B>
T =-32 Z._p® =& _©
AN ANy ANT AN (B>

We assume the anomalous electron flux I' ,® is much larger than the neoclassical
electron flux Ty€ and neglect I'yc®. In this case,. the ambipolar condition or neutrality
condition,
Tt = 1€ 37

determines the radial electric field E. Since the coefficient B in eqs. (34) and (35)
depends on E;=-®', the neoclassical flux, in general, depends nonlinearly on E;. In this
case, E; may be determined iteratively solving eq.(37) for each r(13), When the
coefficient [3(1) is negligible, which may be valid for low collisional regimes, the
ambipolar condition (37) depends linearly on Ep and E;'. In this case, eq.(37) reduces to
a first order differential equation for Ep:

B -SME v, @ (38)

aye

where Ep,, is the electric field in the case without shear flow, d =0, and given by

Pl
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Taking into account the shear flow effect and solving the differential equation (39), we
have the solution in the form

Er o= EXI{.E ane dr“){ dI'E'N—C'Ero (rr) e);{ r anc dr"J+Ero (0)}

(40)

If d 5y is small as in usuval situations, by repeating the partial integration for eq.(40), we
have an approximate expansion

2
da d
Er=Ero+ ANErO L(?m) Erg" . (41)

NC NC

Equation (41) indicates that, to the first order of d,n/a,n(>0), the decreasing electric field
(Ey'<0) makes E; more smabler.

§4. Numerical Result
First we examine the gradB-effect on the radial electric field Erg given by eq.(39)

without the shear flow effect. If we consider the frequency range wjp<<w<<wie and
neglect trapped electrons as mentioned in §2, the anmalous electron flux T’y © may be
neglected as compared with ion flux T ANi. We neglect the trapped particle effect and
assume I zn®=0 for the sake of simplicity. To compare theoretical results with
experimental observations, the anomalous as well as neoclassical electron fluxes should
be taken into account. We leave this problem in future study, and concentrate here on
investigation of the field line curvature and shear flow effects on the radial electric field.
The inverse scale length of the helically averaged helical magnetic field, Lg1
=<B>Y/<B>, is approximately given by eq.(B.9) in Appendix B. For CHS with
R=100cm, m=8, 1=2 and a=20cm, the radial variation of Ly calculated by eq.(B.9) is
presented in Fig.1. On the average, this quantity is essentially the same order of the
curvature of field lines, R-1. With this curvature effect, the radial variation of Ep, given
by eq.(39) without electron transport effect is shown in Fig.2, where the coefficient ratio
has been approximated by (anctaan)/ayc=do+a] x? with ag and &1 being constants. This
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model simulate the experimental observations(2) for the ratio of ion thermal diffusivity
)(explch which increases up to 10-100 as radius x increases from the center to the
periphery.

In calculation of eq.(39), temperature and density profiles have been given by(13)

T@)=(To-Tp)(1-x%H Bty @2)
—~-n ﬁn‘l
n = @-1m) 1 ; {1— (l—g)(l—x“nj }+nb (43)

The profile parameters oy, ty, Bt, Bn, Do, Nh, To, Th and g are chosen to simulate
experimentally observed profiles. These parameters are tabulated in Ref.(13) for two
typical low and high density discharges in CHS.

We also calculated Epg without <B>' term in eq.(39) for the same high density case.
The result was almost the same as shown in Fig.2, i.e., the curvature effect may be
negligible in evaluation of the radial electric field By,

We now examine the shear flow effect on the radial electric field. Since dan/(2 asn)
=mi/2p;f2a <<1, the expansion in eq.(41) up to the first order term may be good enough.
The radial derivative Ero' is numerically calculated making use of eqs.(39), (42), and
(43) for the radial difference Ax=0.001. Result is presented in Fig.3 for the high density
case. Although analytical limit of Ero' tends to zero as x—>0 for the profiles given by
eqs.(42) and (43), numerical result indicates a singularity at x=0 even for Ax=0.001.
This singular behavior may be induced by the numerical error due to the difference of two
very close quantities. Therefore, numerical result at the center x=0 may not be reliable.
Although d /(2 a,pp is small, the derivative dEpo/dx is large as seen in Fig.3, the shear
flow effect may be important particularly in the peripheral region.

Making use of the numerically calculated E;y', the electric field is calculated by eq.(41).
Result is presented in Fig. 2, and comparison is also made with the zeroth order electric
field Ero. As seen Fig.2, the shear flow effect makes important contribution to the
determination of electric field profile. The difference between Epg and Er is so large in the
peripheral region, the higher order term in eq.(41) or more precise solution (38) may be
necessary for more complete theory.
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§5. Summary
Anomalous cross field ion flux induced by the curvature drift resonance has been
evaluated by the test particle model in a rotating CHS plasma . assuming electric field

back ground fluctuations exist. The radial electric field E; only makes the Doppler
frequency shift and makes no influence on the anomalous flux as in the case of transit
resonance model.

Due to the curvature drift resonance, w=wp, the anomalous flux involves a new term
contributed from BYB.This curvature effect was, however, not significant in a high
density CHS discharge case.

‘When the shear flow effect is taken into account, the velocity integral in the cross field
flux becomes complicated triple integral form. Evaluation of this integral may only be
possible by numerical calculationbs. By employing a simple model, neglecting the finite
Larmor radius effect, the triple velocity integral has been reduced to a single integral with
respect to energy, which made it possible to analytically evaluate the flux.

Combing neoclassical and anomalous fluxes, from the ambipolar condition, a first order
differential equation for the radial electric fieid E; has been derived. The exact analytical
solution for the differential equation has been derived in general form. By partial
integrations of the solution, an approximate solution has been derived for a weak shear
flow case, which was applied for numerical evaluations. In a high density CHS
discharge, numerical results indicate that the shear flow effect is impotant particularly in
the periphery region as in stability theories.

In our calculation, we have assumed a simple white noise like frequency spectrum. In
this particular case, the anomalous coefficient for the term T'/T in the flux disappeared. In
general form of the spectra, this cancellation may not occur, and we have some

anomalous transport contribution to T/T term which may modify the electric field profile.
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Appendix A Radial Electric Field in Shaing's Flux
Assuming the existence of electric field fluctuations in a toroidal system, Shaing has

derived the cross filed particle flux induced by the transit resonance, w=kyv;, in the
form(eq.(46) in Ref.(14))
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where @y is the Fourier coefficient of scalar potential fluctuations with m and n being
the poloidal and toroidal mode numbers, respectively, v F=w+wg, gp and gt are heat
fluxes, and all other notaions are standard as defined in Ref.(14). Let us confirm that the
term with the radial electric field ¢' in the mass flow velocities Up and Uy in eq.(A.1)
can be tranformed to the Doppler shift in the first frequncy term.

From the definitions of Uq and U; as given by eq.(18) in Ref.(14) near the rational
surface, g=m/n, we have

g+ - (SST2IED op
a

ep' <P> m

That is, the electric field involved in Ug and Uy can be expressed by the rotation
frequency wg. Since the frequency average has been defined by

-1

W
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we have
E
W\ @e _ (“m
m/f m m

By introducing this relation into eq.(A.1), the flux can be written in term of the Doppler

shifted frequency in the form
( 2
2 B
3¢ won By n ©n
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ex'p! & 6 T vjjm-nq W
\
2
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Since the frequency power spectrum Ie@mwlz in the rotating system may suffer the
same Doppler shift as observed in Labolatory system, integrating over w in eq.(A.2), the
effect of wg may be eliminated in the flux T , .

Appendix B Averaged Helical Magnetic Field
Each compornent od helical magretic files may be written by

B=by 11j(z) sin (B.1)
Bg=(ibj/an)lj(z) cosd (B.2)
B,=B(1-¢ cosd) (B.3)

where z=lar, $=A8-laz, ax=m/IR, ey=c;jIj(z), cj=Ibj/Bo and the dot over the modified
Bessel function I} means the differental with respect to the argument.The equation of
magnetic field lines is

dz
BZ

8

rdb
=== B4
B (B4)

The radial variation of magnetic field line is given by integration of eq.(B.4):
r=ro+Arcos¢ (B.5)
where the hehical amplitude is given by Ar=c]RIj(z).
If we define the averaged magnetic field <B> over the helically deformed magnetic
surface by

-4
<B> = (Bl (B.6)
introducing eq.(B.5) into eq.(B.3), and applying the Taylor expansion, we have

<B> = Eb[l--;-mh'J (B.7)

The radial derivative of the averaged field becomes

-

<B>' = ~Boc, @) R (@) (2) (B.8)

From eqs.(B.7) and (B.8), we have

BT (R (22D (B9)

<B>
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Figures Captions

Fig.1: Variation of charateristic scale length of helically averaged helical magnetic field,
<B>'/<B>, versus normalized radius x=r/a for m=8, =2, and ¢;=0.382.

Fig.2: Variations of electric fields Ero and Er calculated by eqs.(40) and (41),
respectively, versus x for "high density” case with by /ay=0.15 and a;=5.

Fig.3: Variation of shear flow effect normalized by Ero, Re= (dananc)Ero /Eror

versus x for the same case as in Fig 2.

17



-204
-ao04
-60+
-804

-100¢

-120¢

-140¢

Fig.2

0.2

rig.3



NIFS-272

NIFS-273

NIFS-274

NIFS-275

NiFS-2786

NIFS-277

NIFS-278

NIFS-279

NIFS-280

NIFS-281

Recent Issues of NIFS Series

A. Fujisawa, H. Iguchi, A. Taniike, M. Sasao, Y. Hamada,

A 6MeV Heavy Ion Beam Probe for the Large Helical Device,
Feb. 1984

Y. Hamada, A. Nishizawa, Y. Kawasumi, K. Narihara, K. Sato, T. Seki, K. Toi,
H. lguchi, A. Fujisawa, K. Adachi, A. Ejiri, S. Hidekuma, S. Hirokura,

K. Ida, J. Koong, K. Kawahata, M. Kojima, R. Kumazawa, H. Kuramoto,

R. Liang, H. Sakakita, M. Sasao, K. N. Sato, T. Tsuzuki, J. Xu, I. Yamada,

T. Watari, |. Negi,

Measurement of Profiles of the Space Potential in JIPP T-1IU Tokamak
Plasmas by Slow Poloidal and Fast Toroidal Sweeps of a Heavy lon
Beam; Feb. 1994

M. Tanaka,
A Mechanism of Collisionless Magnetic Reconnection; Mar. 1994

A. Fukuyama, K. ltoh, S.-1. ftoh, M. Yagi and M. Azumi,
Isotope Effect on Confinement in DT Plasmas; Mar. 1994

R.V. Reddy, K. Watanabe, T. Sato and T.H. Watanabe,

Impulsive Alfven Coupling between the Magnetosphere and [onosphere;
Apr.1994

J. Uramoto,

A Possibility of #~ Meson Production by a Low Energy Electron Bunch
and Positive lon Bunch; Apr. 1994

K. ltoh, S.-I. Itoh, A. Fukuyama, M. Yagi and M. Azumi,
Self-sustained Turbulence and L-mode Confinement in Toroidal Plasmas
II; Apr. 1994

K. Yamazaki and K.Y.Watanabe,
New Modular Heliotron System Compatible with Closed Helical Divertor
and Good Plasma Confinement; Apr. 1994

S. Okamura, K. Matsuoka, K. Nishimura, K. Tsumori, R. Akiyama,

S, Sakakibara, H. Yamada, S. Morita, T. Morisaki,. N. Nakajima,

K. Tanaka, J. Xu, K. Ida, H. Iguchi, A. Lazaros, T. Ozaki, H. Arimoto,

A. Ejiri, M. Fujiwara, H. Idei. O. Kaneko, K. Kawahata, T. Kawamotio,

A. Komori, S. Kubo, O. Motojima, V.D. Pustovitov, C. Takahashi, K. Toi
and |. Yamada,

High-Beta Discharges with Neutral Beam Injection in CHS, Apr. 1994

K. Kamada, H. Kinoshita and H. Takahashi,
Anomalous Heat Evolution of Deuteron Implanted Al on Electron
Bombardment ; May 1994



NiFS-282

NiFS-283

NIFS-284

NIFS-285

NIFS-286

NIFS-287

NIFS-288

NIFS-289

NIFS-290

NIFS-291

NIFS-2g2

NIFS-283

H. Takamaru, T. Sato, K. Watanabe and R. Horiuchi,
Super fon Acoustic Double Laver; May 1994

O.Mitarai and S. Sudo
Ignition Characteristics in D-T Helical Reactors; June 1994

R. Horiuchi and T. Saito,
Particle Simulation Study of Driven Magnetic Reconnection in a
Collisionless Plasma; June 1994

K.Y. Watanabe, N. Nakajima, M. Okamoto, K. Yamazaki, Y. Nakamura,

M. Wakatani,

Effect of Collisionality and Radial Electric Field on Bootstrap Current in
LHD (Large Helical Device); June 1994

H. Sanuki, K. Itoh, J. Todorcki, K. Ida, H. Idei, H. iguchi and H. Yamada,
Theoretical and Experimental Studies on Electric Field and Confinement
in Helical Systems; June 1994

K. itoh and S-i. ltoh,
Influence of the Wall Material on the H-mode Performance; June 1994

K. oh, A. Fukuyama, S.-1. Itoh, M. Yagi and M. Azumi
Self-Sustained Magnetic Braiding in Toroidal Plasmas: July 1994

Y. Nejoh,
Relativistic Effects on Large Amplitude Nonlinear Langmuir Waves
in a Two-Fluid Plasma; July 1994

N. Ohyabu, A. Komori, K. Akaishi, N. Inoue, Y. Kubota, A.l. Livshit,

N. Noda, A. Sagara, H. Suzuki, T. Watanabe, O. Motojima, M. Fujiwara,
A. liyoshi,

Innovative Divertor Concepts for LHD; July 1994

H. Idei, K. ida, H. Sanuki, 8. Kubo, H. Yamada, H. Iguchi, S. Morita,
S. Okamura, R. Akiyama, H. Arimoto, K. Matsuoka, K. Nishimura,

K. Ohkubo, C. Takahashi, Y. Takita, K. Toi, K. Tsumori and |. Yamada,
Formation of Positive Radial Electric Field by Electron Cyclotron
Heating in Compact Helical System; July 1994

N. Noda, A. Sagara, H. Yamada, Y. Kubota, N. inoue, K. Akaishi, O. Motojima,
K. lwamoto, M. Hashiba, 1. Fujita, T. Hino, T. Yamashina, K. Okazaki,

J. Rice, M. Yamage, H. Toyoda and H. Sugai,

Boronization Study for Application to Large Helical Device; July 1994

Y. Ueda, T. Tanabe, V. Philipps, L. Kénen, A. Pospieszczyk, U. Samm,
B. Schweer, B. Unterberg, M. Wada, N. Hawkes and N. Noda,




NIFS-294

NIFS-295

NIFS-296

NIFS-297

NiIFS-298

NIFS-299

NIFS-300

NIFS-301

NiFS-302

Effects of Impurities Released from High Z Test Limiter on Plasma
Performance in TEXTOR; July. 1994

K. Akaishi, Y. Kubota, K. Ezaki and O. Motojima,

Experimental Study on Scaling Law of Outgassing Rate with A Pumping
Parameter, Aug. 1994

S. Bazdenkov, T. Sato, R. Horiuchi, K. Watanabe
Magnetic Mirror Effect as a Trigger of Collisionless Magnetic
Reconnection, Aug. 1994

K. ftoh, M. Yagi, S.-1. ltoh, A. Fukuyama, H. Sanuki, M. Azumi
Anomalous Transport Theory for Toroidal Helical Plasmas,
Aug. 1994 (IAEA-CN-60/D-III-3)

J. Yamamoto, O. Motojima, T. Mito, K. Takahata, N. Yanagi, S. Yamada,

H. Chikaraishi, S. Imagawa, A. iwamoto, H. Kaneko, A. Nishimura, S. Satoh,
T. Satow, H. Tamura, S. Yamaguchi, K. Yamazaki, M. Fujiwara, A. liyoshi
and LHD group,

New Evaluation Method of Superconductor Characteristics for Realizing
the Large Helical Device; Aug. 1994 (IAEA-CN-60/F-P-3)

A. Komori, N. Ohyabu, T. Watanabe, H. Suzuki, A. Sagara, N. Noda,
K. Akaishi, N. Inoue, Y. Kubota, O Motojima, M. Fujiwara and A. liyoshi,
Local Island Divertor Concept for LHD; Aug. 1994 (IAEA-CN-60/F-P-4)

K. Toi, T. Morisaki, S. Sakakibara, A. Ejiri, H. Yamada, S. Morita,

K. Tanaka, N. Nakajima, S. Okamura, H. Iguchi, K. Ida, K. Tsumori,

S. Ohdachi, K. Nishimura, K. Matsuoka, J. Xu, |. Yamada, T. Minami,

K. Narihara, R. Akiyama, A. Ando, H. Arimoto, A. Fujisawa, M. Fujiwara,
H. Idei, O. Kaneko, K. Kawahata, A. Komori, S. Kubo, R. Kumazawa,

T. Ozaki, A. Sagara, C. Takahashi, Y. Takita and T. Watari

Impact of Rotational-Transform Profile Control on Plasma Confinement
and Stability in CHS; Aug. 1994 (IAEA-CN-60/A6/C-P-3)

H. Sugama and W. Horten,
Dynamical Model of Pressure-Gradient-Driven Turbulence and Shear
Flow Generation in L-H Transition; Aug. 1994 (IAEA/CN-60/D-P-1-11)

Y. Hamada, A. Nishizawa, Y. Kawasumi, K.N. Sato, H. Sakakita, R. Liang,
K. Kawahata, A. Ejiri, K. Narihara, K. Sato, T. Seki, K. Toi, K. ltoh,

H. Iguchi, A. Fujisawa, K. Adachi, S. Hidekuma, S. Hirokura, K. ida,

M. Kojima, J. Koog, R. Kumazawa, H. Kuramoto, T. Minami, |. Negi,

S. Chdachi, M. Sasao, T. Tsuzuki, J. Xu, |. Yamada, T. Watari,

Study of Turbulence and Plasma Potential in JIPP T-IIU Tokamak,
Aug. 1994 (IAEA/CN-60/A-2-II1-5)

K. Nishimura, B. Kumazawa, T. Mutoh, T. Watari, T. Seki, A. Ando,
S. Masuda, F. Shinpo, S. Murakami, S. Okamura, H. Yamada, K. Matsuoka,



NIFS-303

NIFS-304

NIFS-305

NIFS-308

NIFS-307

NIFS-308

NiFS-308

S. Morita, T. Ozaki, K. ida, H. Iguchi, 1. Yamada, A. Ejiri, H. Idei, S. Muto,
K. Tanaka, J. Xu, R. Akiyama, H. Arimoto, M. isobe, M. lwase, O. Kaneko,
S. Kubo, T. Kawamoto, A. Lazaros, T. Morisaki, S. Sakakibara, Y. Takita,

C. Takahashi and K. Tsumori,

ICRF Heating in CHS; Sep. 1994 (IAEA-CN-60/A-6-14)

S. Okamura, K. Matsuoka, K. Nishimura, K. Tsumori, R. Akiyama,

S. Sakakibara, H. Yamada, S. Morita, T. Morisaki, N. Nakajima, K. Tanaka,
J. Xu, K. Ida, H. lguchi, A. Lazaros, T. Ozaki, H. Arimoto, A. Ejiri,

M. Fujiwara, H. Idei, A. liyoshi, O, Kaneko, K. Kawahata, T. Kawamoto,

S. Kubo, T. Kuroda, O. Motojima, V.D. Pustovitov, A. Sagara, C. Takahashi,
K. Toi and |. Yamada,

High Beta Experiments in CHS; Sep. 1994 (IAEA-CN-60/A-2-IV-3)

K. Ida, H. Idei, H. Sanuki, K. ltoh, J. Xu, S. Hidekuma, K. Kondo, A. Sahara,
H. Zushi, S.-I. ltoh, A. Fukuyama, K. Adati, R. Akiyama, S. Bessho, A. Ejir,
A. Fujisawa, M. Fujiwara, Y. Hamada, S. Hirokura, H. iguchi, O. Kaneko,

K. Kawahata, Y. Kawasumi, M. Kojima, S. Kubo, H. Kuramoto, A. Lazaros,
R. Liang, K. Matsuoka, T. Minami, T. Mizuuchi, T. Morisaki, S. Morita,

K. Nagasaki, K. Narihara, K. Nishimura, A. Nishizawa, T. Obiki, H. Okada,
S. Okamura, T. Ozaki, S. Sakakibara, H. Sakakita, A. Sagara, F. Sano,

M. Sasao, K. Sato, K.N. Sato, T. Saeki, S. Sudo, C. Takahashi, K. Tanaka,

K. Tsumori, H.Yamada, |. Yamada, Y. Takita, T. Tuzuki, K. Toi and T. Watari,
Control of Radial Electric Field in Torus Plasma; Sep. 1994
{IAEA-CN-60/A-2-1V-2)

T. Hayashi, T. Sato, N. Nakajima, K. Ichiguchi, P. Merkel, J. Nihrenberg,
U. Schwenn, H. Gardner, A. Bhattacharjee and C.C.Hegna,

Behavior of Magnetic Islands in 3D MHD Egquilibria of Helical Devices;
Sep. 1994 (IAEA-CN-60/D-2-11-4)

S. Murakami, M. Okamoto, N. Nakajima, K.Y. Watanabe, T. Watari,
T. Mutoh, R. Kumazawa and T. Seki,

Monte Carlo Simulation for ICRF Heating in Heliotron/Torsatrons;
Sep. 1994 (IAEA-CN-60/D-P-I-14)

Y. Takeiri, A. Ando, O. Kaneko, Y. Oka, K. Tsumori, R. Akiyama, E. Asano,
T. Kawamoto, T. Kuroda, M. Tanaka and H. Kawakami

Development of an Intense Negative Hydrogen Ion Source with a Wide-
Range of External Magnetic Filter Field;, Sep. 1994

T. Hayashi, T. Sato, H.J. Gardner and J.D. Meiss,
Evolution of Magnetic Islands in a Heliac; Sep. 1994

H. Amo, 7. Sato and A. Kageyama,
Intermittent Energy Bursts and Recurrent Topological Change of a
Twisting Magnetic Flux Tube; Sep.1994




