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Abstract

A self-organization process in a plasma with a finite pressure is investigated by
means of a three-dimensional magnetohydrodynamic simulaiion. It is demonstrated
that a non-Taylor finite § self-organized state is realized in which a perpendicular
component of the electric current is generated and the force-free(parallel} cairent
decreases until they reach to almost the same level. The self-organized state is
described by an MHD force-balance relation, namely, j; = BxVp/B-B and j; = uB
where 4 is not a constant, and the pressure struciure resembles the structure of
the toroidal magnetic field intensity. Unless an anomalous perpendicular thermal
conduction arises, the plasma cannot relax to a Taylor state but to a non-Taylor(non-
force-free) self-organized state. This state becomes more prominent for a weaker
resistivity condition. The non-Taylor state has a rather umiversal property, for
example, independence of the initial § value. Another remarkable finding is that
the Taylor’s conjecture of helicity conservation is, in a stxict sense, not valid. The
helicity dissipation occurs and its rate slows down critically in accordance with the
stepwise relaxation of the magnetic energy. It is confirmed that the driven magretic
reconnection caused by the nonlinearly excited plasma kink flows plays the leading

role in all of these key features of the non-Taylor self-organization.
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I. Introduction

In the last two decades, Taylor’s theory[1-2] has attracted considerable attention of
plasma physisists, because it has been able to predict a stable magnetic structure, for
example, the field reversal structure of the reversed field pinch(RFP) and the spheromak
configuration. Taylor conjectured that a weakly resistive magnetohydrodynamic{MHD)
plasma tends to evolve toward a minimum magnetic energy state under the constraint of
the total magnetic helicity conservation, and predicted that a self-organized state(minimum
magnetic energy state) is a force-free equilibria j = 4B where 4 is a constant eigenvalue
that determines the minimum energy.

Many numerical simulations [3-10] have been carried out to confirm the Taylor’s con-
Jecture and revealed the dynamical behavior of the self-organization process. Through a
three-dimensional full MHD simulation study Horiuchi and Sato[6-7] demonstrated that
the nonlinear driven magnetic reconnection plays a key role in the self-organization process
of an MHD plasma. For instance, through the nonlinear driven magnetic reconnection
process the spectrum of the magnetic energy exhibits a normal cascade, while that of
the magnetic helicity does an inverse cascade. An explanation of the phenomenon that
the dissipation rate of the magnetic energy is faster than the corresponding rate for the
magnetic helicity is also given in terms of the driven reconnection process.

It should be remembered, however, that the Taylor’s theory can be applied to a case
where the plamsa pressure is kept uniform throughtout the whole system. In view of
the fact that in self-organization an excess free magnetic energy is transformed into the
thermal emergy, it is not a natural consequence that the plasma pressure becomes ho-
mogeneous. If the thermal energy, when produced, is immediately expulsed by some
processes such as radiation, or if the plasma is not thermally insulated perpendicular to
the magnetic field, then the homogeneity conditior can be realized. Otherwise, this con-

dition would not be met. Many efforts have been made to extend the Taylor’s theory to



a finite pressure MHD plasma[11-12]. However, most of the works have reached to the
Taylor’s force-free state. Recently, Kondoh et al[13] have dealt with this problem from
a different viewpoint and asserted that the self-organized state becomes a non-force-free
one if the electrical resistivity has a spatial dependence. For the spatially uniform elec-
trical resistivity, their state is degenerated into the Taylor state. Numerical simulation
is a good methodology to understand the self-organization process of a finite pressure
MHD plasma. A three-dimensional simulation study of Horiuchi and Sato[8] showed that
a finite pressure MHD plasma relaxed toward a Taylor’s force-free minimum energy state.
We suspected that the homogenization of the pressure might have been caused mainly
by the numerical diffusion and partially by the choice of the boundary condition that the
pressure is floating.

In an attempt to bring cut clearly the effect of the plasma pressure on the self-
organization process of an MHD plasma, we employ the three-dimensional MHD sim-
ulation code{14] with a fourth-order accuracy both in time and space. The plan of the
paper is as follows. In Sec.Il we explain our simulation model. The simulation results are

presented in Sec.IT1. The section IV contains a brief summary of the present study.

IT1. Simulation Model

We consider a compressible dissipative MHD plasma with a finite pressure confined in
a conducting cylindrical vessel with a rectangular cross-section. The basic equations are

described in the dimensionless form as

g_i = V- (pv), (1)
%:—V-(FV)—VP—I-jXB: (2)



2B

= Vx(vxB - 1), (3)
% = —V-(v) + (= 1) (=pV-v+nj-J), (4)

where
i = VxB, (5)

and F(= pv) is the mass flux density, p is the thermal pressure, p is the mass density,
v is the fluid velocity, B is the magnetic field, j is the current density, n is the uniform
electrical resistivity, and v(= 5/3) is the ratio of the specific heats. In general, the thermal
conduction term should be added in Eq. (4). In this paper, however, we consider the case
where its effect is discarded and the vessel is thermally insulated.

A Cartesian coordinate system (z,y, z} is employed. The system is periodic along the
z-axis with a periodic length L;, and is surrounded by a conducting wall at z = 0 and

L

pmandy=0and L,,ie,n-v=0,nxj=0and n-B = 0, where n is the unit vector

normal to the conducting surface. As an initial condition we impose a two-dimensional

force-free equilibrium which is given by

B, = [k1 By sin(kaz) cos(kr1y) + k2 Bz sin(k1z) cos(kay)]/ ko, (6)
By = —[kgBI COS(kgI) Sin(kly) + leg COS(kl.'E) Sln(kgy)]/ko, (7)
B, = B sin{kyz) sin{k,y) + By sin{kiz) sin(kay), (8)

£ = Po, P = Po, (9)

where po and pp are constant, kg = \/k? + k2, ky = nyw/L,, ky = nam/L,, ny and ny are
integers.

There are three important parameters to characterize the energy relaxation process of
an MHD plasma, i.e., (a) the initial normalized magnetic helicity o ( = 2xL, K/ L? ),
(b) the initial normalized magnetic energy € ( = L,W/2K ), and (c) the plasma beta 5 ( =

4py/(B? + BZ) ), where K and W are the total magnetic helicity and energy, respectively,
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and ¢ ( = [ B.dzdy ) is the total toroidal magnetic flux. In our system these values are
described by the parameters ny, ny, L/ L,, B, Bs, and po.

The Taylor’s relaxation theory[1,7,15] predicts that the plasma with o > o.(= 8.21)
relaxes to a helically symmetric state where the pressure is uniform and the toroidal mode
number 7 of the helical plasma column is determined by the ratio of the side lengths L;/L,.
For example, for the initial condition that ny = ny =3,B; =1, B, =0, and L,/L, = 3,
hence, o = 58.3, ¢ = 6.7, it is expected that the system relaxes to a helically symmetric
force-free state with the toroidal mode number » = 1 and ¢ = 3.1. The MHD simulation
study of Horiuchi and Sato[7] demonstzated that the plasma relaxed to a helical state
with a minimum energy state expected from the relaxation theory.

The numerical simulation of Horiuchi and Sato was based on the two-step Lax-
Wendroff method. This method is known to numerically smooth away the high wavenum-
ber components, so that the numerical diffusion may mask a significant fine structure of
a real phenomenon and sometimes lead us to an erroneous conclusion. In order to reduce
the numerical artifact and produce a physically reliable result we use a high-precision
simulation code[14] which relies on an explicit finite-difference method with fourth-order
accuracy both in space and time. This method ensures a reasonably reliable discussion
on the subtleties of the structure development due to the effect of finite plasma pressure.

The simulation domain is implemented on a (100 x 100 x 150) point grid.

I11. Simulation Results

The initial magnetic field configuration is given by Eqs.(6)-(8) where we have chosen
asny =mny =3, L;/L, =3, By = 1, and B; = 0 (see, Ref.7). The density and pressure
are initially distributed uniformly, as is given by Eq.(9). Figure 1 shows the vector plots
of the poloidal magnetic field { right ) and the contour plots of the toroidal magnetic field

intensity( left ) in the poloidal plare (z, y) in the initial stage. In the following discussion,



we devote ourselves to the analysis of the simulation result for Case A given in Table-1

unless otherwise stated.

A. Fundamental properties of energy relaxation

The previous papers{7-10] have revealed two important characteristics of the MAD
self-organization, namely, (1) conservation of the magnetic helicity and the selective dis-
sipation of the magnetic energy, (2) the normal cascade of the magnetic energy spectrum
and the inverse cascade of the magnetic helicity spectrum. Figure 2 shows the temporal
evolutions of the total magnetic energy W ( solid line ) and the total magnetic helicity
K ( dashed line ) normalized by their initial values. There appear two relaxation phases
in the temporal evolution, i.e., the first relaxation phase ( 18f4 < ¢ < 25t ) and the
second relaxation phase ( 35t4 < ¢ < 46t, ). The magnetic energy dissipates rapidly in
the relaxation phases in the time scale comparable to the Alfven transit time, while the
magnetic helicity decreases slowly in a resistive time scale without suffering any influence
during the whole simulation. In other words, the selective dissipation takes place in two
steps for the magnetic energy in the present example.

The selective dissipation can be explained in terms of the spectral transfer[6-8]. Figure
3 shows the temporal evolutions of the average wavenumber of the energy spectrum (
solid line ) and that of the helicity spectrum ( dashed line ). It is clear in Fig. 3 that
the energy spectrum is transferred to a higher wavenumber region ( normal cascade ),
while the helicity spectrum is transferred to a lower wavenumber region ( inverse cascade
). Because of these normal and inverse cascades for the magnetic energy and helicity,
one can apparently understand the selective dissipation for the magnetic energy and the
conservation of the magnetic helicity. These results are in good agreement with the
simulation results obtained in the previous papers|6-9].

The selective dissipation is closely related to the nature of magnetic reconnection in



real space. From the MHD equations (1)-(4), the total magnetic energy and the total

magnetic helicity decrease according to the following relations:

dw . .

- = —-n/_] jdPx, (10)
and

dK .

= -77/_] -Bd’x. (11)

If the force-free relation j = uB holds, both the magnetic energy and the magnetic helicity
must dissipate in a similar fashion. The existence of selective dissipation indicates, there-
fore, that the dissipation structure ( or the current profile ) during the relaxation must
be largely different from the force-free one. Figure 4 shows the temporal evolutions of the
total energy dissipation Dy and the total helicity dissipation Dy where Dy = [ (j-j)d*x
and Dy = [ (j- B)d®x. In the initial phase ( 0 < ¢ < 18t4 ) these quantities decrease
with the same dissipation rate. This means that the force-free relation approximately
holds in this period. The energy dissipation tends to increase drastically as soon as the
first and second relaxations set in, and its value becomes much larger than that expected
from the force-free state.

On the other hand, the evolution curve of the helicity dissipation drops abruptly tc a
much lower level than that expected from the force-free state as soon as each relaxation
phase starts. These phenomena are in good correlation with the normal cascade of the
energy spectrum and the inverse cascade of the helicity spectrum in the Fourier space,
which are both proportional to the square of the wavenumber. The stepwise drop of the
dissipation rate of the magnetic helicity gives us a new fact that the Taylor’s conjecture
of helicity conservation is, in a strict sense, not satisfied. lustead, the helicity dissipation
exhibits a slowing-down behavior, which is opposite to the acceleration of the dissipation
rate of the magnetic energy, as is evident in Fig.4.

Let us then examine how the dynamics leading to the selective dissipation is going on.

Figure 5 shows the vector plois of the poloidal velocity (v,,v,) ( top-left ), the contour
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maps of the toroidal magnetic filed B, ( top-right ), toroidal electric current j, { bottom-
left ) and pressure p ( bottom-right ) in the poloidal cross-section ( z = L,/2 ) at the time
of { = 18{4. We note that the contour with a negative value of B, or 7, and the contour
less than the average value of p are plotted by a dotted line. Magnetic reconnection takes
place at two positions in a poloidal plane , one at a contact point of two negative toroidal
fluxes and the other at a contact point of two positive toroidal fluxes, as is observed from
the directions of the induced flow arrows in Fig.5. The converging plasma flows directing
towards the two reconnecton points, which are created by an ideal kink instability, result
in the local enhancement of the electric current density (see, the bottom-left panel of
Fig. 5 ), thus increasing the dissipation rate of the magnetic energy. In this way the
kink flow-driven magnetic reconnection is stimulated and a fast transfer of the magnetic
energy to the thermal energy is realized.

It is interesting to note that magnetic reconnection develops in a saddle point of the
toroidal magnetic field where it is null. A careful examination of the results reveals that
the direction of the foroidal electric current is antiparallel to the direction of the toroidal
magnetic field in the vicinity of the reconnection point ( j,B, < 0 ), although the initial
value of j, B, is positive everywhere in the force-free configuration. This ensures that the
dissipation rate of the total helicity is reduced. Incidentally, it should be noted that the
contours of the reconnection current clearly exhibit an X-type structure.

Figure 6 shows the bird’s-eye views of the profiles of j - j { top ) and —j - B ( bottom) in
the poloidal cross-section ( z = L,/2 ) at the time of ¢ = 20.43t,, where only the negative
part of j - B is displayed in the bottom panel for clarity. One can see the value of j-} is
anomalously large in the vicinity of the reconnection points, but j - B has negative peaks
there. It is also noted that the height of the highest peak of negative j - B is larger than
that of positive j - B. This ensures that driven reconnection acts to anomalously enhance

the dissipation of the magpetic energy, but, on the contrary, to reduce the dissipation of



the magnetic helicity, which is consistent with Fig.4. It should be noted that reconnection
can take place at a saddle point of the toroidal magnetic field intensity contour between
the facing positive islands or the negative islands. In either reconnection the reconnection
current is opposite to the toroidal current, hence, the toroidal field of the reconnection
islands, so that, j - B < 01in the vicinity of the reconnection point. This result is important
and new in the sense that the Taylor’s conjecture of the magnetic helicity conservation

during the relaxation process is not valid, in a strict sense.

B. Finite 3 self-organization

Let us now go on to the study of the self-organized structure in a finite pressure (£)
MHD plasma. Let us examine the simulation data with particular attention to whether
the Taylor state is realized in the final state or not. Figure 7 shows the contour maps of the
toroidal magnetic field (top), and the pressure (bottom) at { = 19.014 (left), t = 32.414
(middle), and ¢ = 71.3¢,4 (zight} for 8 = 0.6 and n = 5 x 107* ( Case C ) where the red
color stands for a contour larger than the average value of the pressure(lower part) and
the positive torcidal magnetic field (upper part). 1t is evident that a clear structure is
created in the pressure distribution as the magnetic structure is deformed, exhibiting a
good resemblance between the two.

We note that there are two processes that lead to the increase in the thermal pressure;
the first one is the fast heating process which is assocoated with driven magnetic recon-
nection, and the second is the slow heating process which is governed by the resistive
diffusion process prior to the onset of reconnection. In the early phase ( 0 <t < 18t, ),
the magnetic field intensity decreases in the resistive time scale, while keeping the same
spatial pattern as the initial current pattern j || B, hence, the magnetic field one. There-
fore, the spatial structure of the pressure created through the ohmic heating becomes

similar to that of the initial current pattern and , equivalently, to that of the magnetic



field pattern (left panels ). This heating process is the slow process in which the amount
of the enhanced heat is determined by the value of the electrical resistivity.

The development of an ideal kink instability deforms the magnetic flux tube in a
helical fashion and increases the electric current at the contact point{or line} between
the approaching magnetic flux tubes. Driven magnetic reconnection sucessively combines
two negative flux tubes into one negative flux tube and two positive flux tubes into one
positive, and, subsequently. the four original negative tubes are merged into one big one in
the central part and the five original positive tubes become four tubes on the four corners
in the first relaxation phase( upper middle panel in Fig.7). This process is the fast one
in which a rapid transfer of the magnetic energy to the thermal energy is carried out.
Since reconnection takes place at a local minimum point of the original force-free current,
the pressure profile generated by this driven magnetic reconnection process is peaked at
the local minimum point of the pressure profile generated by the early slow process. The
enhanced pressure-gradient force(slow shock) generates fast outflows whereby the thermal
energy and the reconnected magnetic flux are carried away along the field line from the
reconnection point, thus, the pressure structure is aligned along the field line.

Thereafter, the second relaxation takes place and the four positive flux tubes are
merged into one flux tube through the driven magnetic reconnection process occuppying
the upper-left half region, while the big negative flux tube is pushed towards the bottom-
right corner( the right panelin Fig. 7). It is important to point out that even in the final
stage the pressure maintains a clear structure similar to the magnetic structure.

Since the kink and reconnection flows transverse to the field lines are relatively small
and decay after the second relaxation, the localized structure of the thermal pressure
obtained is sustained for a fairly long time. Figure 8 shows the temporal evolution of the

pressure deviation from the average §p defined by

p = {< (p—<p>) >}1l2 (12)

<p>?
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for three different resistivities, namely, Cases A (solid line), B (dashed line), C(dot-dashed
line)in Table 1, where < f(x) > stands for the average of f(x) over the whole volume. The
pressure deviation increases slowly in the early quiet phase and its rate becomes enhanced
suddenly as soon as the first relaxation sets in. This sudden increase is due to the fast
relaxation process and its time scale is a few times of the Alfven transit time. It is worthy
to note that the enhancement of the pressure deviation becomes more conspicuous as the
resistivity decreases in the fast process, in contrast to the fact that the pressure deviation
is enhanced in proportion to the resistivity in the slow process. This phenomenon can be
easily explained by considering the nature of driven reconnection.

In driven reconnection|[16-18] the reconnection current .. is roughly given by equating
the reconnection electric field n7,.. to the driving electric field £;. The transfer rate of
the magnetic energy to the thermal energy, nj2,., is given as E%/n, which indicates the
inverse proportionality to the resistivity, since £; which gives the convection flow of the
ideal kink instability is almost independent of 7. The energy transfer rate of the fast
process is consequently enhanced and is proportional inversely to the resistivity, while
that of the slow diffusion process is proportional to the resistivity, as is evident in Fig.8.

After the second relaxation, the pressure deviation decays gradually according to the
resistive diffusion time scale. The pressure deviation dp, however, keeps a finite level even
in the final period of the simulation, as is seen in Fig.8. It is to be noted that the magnetic
energy is much smaller than the thermal energy in the final self-organized state. Thus,
the pressure deviation remains sizable and meaningful, though apparently small.

We shall now exarnine the effect of the pressure gradient and clarify whether the
force-free condition is satisfied in the relaxed state of the finite beta plasma. Let us
split the electric current into the force-free { parallel ) component and the perpendicular
component. Figure 9 shows the temporal envolutions of the normalized parallel component

Jyj and the normalized perpendicular component J, of the electric current for Cases A
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(sclid line), B (dashed line), C(dot-dashed line), where Jy =< jy|/li| >, Jo =< [is|/li| >,
Ji=0-B)B/(B-B), and j; = j— jj- The perpendicular component increases rapidly in
accordance with the growth of the ideal kink instability in the first relaxation phase. After
some period it increases again in the second relaxation phase and reaches comparable to
the parallel component. The amplitude attained is almost maintained during the entire
period of simulation run. This result suggests that the system relaxes to an equilibrium

state that is absolutely different from the force-free state.

C. Non-Taylor relaxation

We are now in a position to elucidate the structure which is realized in an MHD
plasma in the presence of the thermal pressure, and the nature which is different from
what is predicted by the Taylor’s conjecture for the zero § case. Figure 10 shows a
three-dimensional display of the isosurfaces of the toroidal magnetic field at £ = 0t =
19.0t4,t = 32.4¢4, and ¢ = 71.3t, for Case C where the yellow and red isosurfaces stand
for the positive toroidal flux and the negative toroidal flux, respectively. There exist
five positive flux tubes and four negative flux tubes at ¢ = 0. This spatial structure is
deformed into an intermediate one with one negative helical flux tube and four positive
flux tubes throngh the driven magnetic reconnection process in the first relaxation phase.
Finally, the system self-organizes into a helically symmetric state of the toroidal mode
number n = 1 in which one positive helical flux tube and one negative flux tube exist.
At a glance this simulation result may appear similar to the self-organized state expected
from the relaxation theory for the zero beta plasma.'® As mentioned above, however, the
spatial structure of the thermal pressure is not uniform even at the final stage and hence
the final equilibrium state is considered to be different from the force-free one.

In view of the fact that the pressure is not uniform, notwithstanding its apparent

similarity to the Taylor state, there must exist some crucial difference from it. In spite
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of the apparent similarity between some of the present results for finite § with those
expected from the Taylor state {zero f), there exist some critical difference between the
finite § self-organized state and the Taylor state. We now portray these points which
differentiate this state from the Taylor state. As a representative parameter to manifest
the difference, we focus on the Taylor consiant y, given by u = (j-B)/(B - B). Figure
11 shows the temporal evolution of the deviation parameter Sy from the averaged one

< p >, which is defined by

/2
<(p—<p>P>)
5#:{ (<u>2 } (13)

for three different resistivity cases (Cases A, B and C). Since the Taylor constant y is
spatially uniform, &4 is expected to vanish for the Taylor’s minimum erergy state.)) Two
drastic increases of 6u in accordance with the first and second relaxation phases indicate
that the spatial structure is largey altered from the force-free one during the driven
magnetic Teconnection process. After the second relaxation 6 decreases monotonously
and approaches to a small but non zero value. It should be emphasized that the value of
8 4fim, oI the deviation from the force-free profile, becomes more evident as the resistivity
decreases.

Fignre 12 shows the temporal evolutions of < |j x BJ? > ( solid line ) and < |Vp|* >
dashed line ) for the same cases as Fig. 11. Two peaks appear in the evolution curves in
accordance with the excitation of magnetic reconnection in the first and second relaxation
phases for Cases A and B. The behavior of < |Vp|> > exhibits an almost complete
coincidence with that of < |j x B|? >. This result ensures that the thermal pressure
structure is created in such a way that the pressure-gradient force is balanced with the
j x B force. As the quantity of < |j x B|* > is regarded as representing a deviation
from the force-free profile of the magnetic field, the final state definitely deviates from
the force-free one, particularly for a weaker resistivity condition. This assures that the

fast process, ”driven magnetic reconnection”, is again a key process in the present finite
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£ MHD relaxation as was the case for the Taylor relaxation.
We have seen in Fig. 12 that the force-balance relation is satisfied in the relaxed state.
Let us see more elaborately how the force balance relation, Vp = j x B, is satisfied over

the whole simulation domain. To do this we introduce a new quantity B* defined by
B" =B - (jx B-Vp) xj/(j-J)- (14)

We note that this quantity B* becomes exactly equal to the real magnetic field B when
the Vp force is balanced with the j x B force. Figure 13 shows the vector plots of the field
B* and the magnetic field in the (z,y) plane { left-top and left-bottom panels) and in the
(z, z) plane ( right-top and right-bottom panels ) at ¢ = 73.1¢,4 for Case A. One can notice
that the spatial profile of the field B is very similar to that of the magnetic field. In
other words, the spatial profile satisfying the force-balance condition Vp = j x B over the
whole simulation domain is really realized in the final stage of the energy relaxation. It
is concluded therefore that in the presence of a finite thermal pressure the plasma relaxes
to a state with a definite pressure structure, which is described by Vp = j x B, not to
the Taylor’s force-free minimum energy state. The deviation from the Taylor’s force-free

state becomes more definite for a weaker resistivity condition.

D. Independence of the initial plasma beta

The existence of a finite thermal pressure makes the relaxed state different from the
Taylor’s force-free one. We here examine the dependence of the deviation from the Taylor
structure on the 7 value of the thermal pressure. Figure 14 shows the temporal evolutions
of the total magnetic energy W and the total magnetic helicity A for three cases with
different initial plasma betas given in Table 1, namely, for Case B (4 = 0.6), Case D
(8 =104), Case E (8 = 0.2).

As a whole, no significant difference is observed among the three cases except that the

onset time of the relaxation phase is slightly delayed as § increases, though very faintly,
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for the £ value range of 0.2 - 0.6. For any case the selective dissipation of the magnetic
energy takes place in two steps. In contrast, the total magnetic helicity decays slowly
compared with the magnetic energy. It is to be noted, however, that the decay rate is in
reality slowed down in two steps, when we carefully look at its decaying behavior.
Figure 15 shows the temporal envolutions of the parallel component Jy and the per-
pendicular component J; of the electric current for the same cases as Fig. 14. The
perpendicular component, which is generated during the two relaxation phases, remains
finite even in the final relaxed state and the amplitude is comparable to that of the parallel
component regardless of the value of g for § = 0.2 — 0.6. Figure 16 shows the temporal
evolution of the time scale function R(t) for the same cases as Fig. 14, which is the ratio of
the time scale for the magnetic helicity dissipation 75 to the time scale for the magnetic

energy dissipation Ty g, where R(t), Ty and 7yx are defined by

T -
R(t) = % (15)
_ [/B-Bdx
TME - 2nfj -jd‘?’x’ (16)
_ JA-Bdx
TME — Qﬂfj -Bd3x' (17)

One can see that all the results are essentially superimposable with an exception of a
slight delay in the onset times of the first and second relaxation phases for a high initial
beta plasma. Thus, it is concluded that both the behavior of the plasma during the
relaxation phases and the final relaxed state are almost independent of the amount of
the thermal pressure. This conclusion suggests that unless some process to pump out
quickly the produced thermal energy can operate, or if the plasma is thermally insulated

perpendicularly, the system will experience a non-Taylor{non-force-free) self-organization.



IV. Summary and disscusions

With a three-dimensional simulation study we have investigated the self-organization
process of a finite § MHD plasma under the condition that the plasma is thermally
insulated perpendicular to the magnetic field. It is confirmed that driven magnetic re-
connection plays a crucial role in the self-organization process. It is driven magnetic
reconnection that actuates the selective dissipation of the magnetic energy and gives rise
to the inverse and normal casecades of the magnetic helicity spectrum and the magnetic
energy spectrum respectively. These features are consistent with our previous simulation
results{7-10].

On top of these features, the present elaborate study has revealed a new finding. The
finding is that during the two-step relaxation process subject to driven reconnection the
decay rate of the magnetic helicity is critically slowed down. This implies that the helicity
conservation is not a substantiated property for the MHD self-organization, though it has
been widely believed so far.

It is also found that the onset time of driven magnetic reconnection is almost indepen-
dent of the electrical resistivity. For a large electrical resistivity case, however, magnetic
reconnection is obscure because most of the free magnetic energy dissipates before the first
magnetic reconnection takes place and the process becomes almost diffusive. This indi-
cates that a "weak electrical resistivity” condition, or a collisionless condition, is necessary
for a clear-cut self-organization to take place.

We have demonstrated that a finite § MHD plasma system relaxes toward a state with
a minimum magnetic energy which is similar to the pressureless case. This is because the
most important physical process in self-organization is the driven magnetic reconnection
process and the pressure is not the primary cause of reconnection. However, the magnetic
field configuration is not described by the Taylor’s force-free minimum energy state. The

driven magnetic reconnection process produces an extremely heated plasma in the vicinity
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of the reconnection point. The locally heated plasma modifies the magnetic field. As a
result of the produced pressure gradient, the perpendicular electric current is generated
to balance the pressure force. It is confirmed that the new self-organized state of a
finite pressure MHD plasma is an MOD equilibrium j x B = Vp, instead of the Taylor’s
minimum energy state where jj = uB with a spatially uniform z. We have also confirmed
that there is no significant effect of the initial plasma £ on this conclusion. This suggests
that as far as the thermal energy produced by the relaxation process is confined within
the system where no fast thermal conduction exists, the MHD plasma does not obey the
Taylor relaxation, but experiences a non-Taylor process which leads to the force-balanced

minimum energy state.
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Table 1. Simulation parameters
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Figure Captions

Fig.1: The vector plots of the poloidal magnetic field ( right ) and the contour plots
of the toroidal magnetic field ( left ) in a poleidal plane (z,y) at {==0 where a contour

with a negative toroidal field is plotted by a dotted line.

Fig.2: The temporal evolutions of the total magnetic energy W ( solid line ) and the
total magnetic helicity K ( dotted line ) for case A where both the energy and the helicity

are normalized by their initial values.

Fig.3: The temporal evolutions of the average wavenumber of the energy spectrum (

solid line ) and that of the helicity spectrum ( dotted line ) as the same case with Fig.2.

Fig4: The temporal evolutions of the total energy dissipation Dy and the total
helicity dissipation Dy as the same case with Fig.2, where Dy = [ (j- j)®x and Dg =

[ (G-B)d*x.

Fig.5: The vector plots of the poloidal velocity (v.,v,) ( top-left ), the contour maps
of the toroidal magnetic filed B, ( top-right), the toroidal electric current j, ( bottom-left
) and the pressure p ( bottom-right) in the poloidal cross-section { z = L,/2 ) at ¢ = 18¢4
for Case A where a contour with a negative value of B, or j, and a contour less than the

average value of p are plotted by a dotted line.
Fig.6: The bird’s-eye views of the profiles for j- j ( top ) and —j - B ( bottom) in the

poloidal cross-section ( z = L,/2 ) at t = 20.43t, for Case A, where only the negative

part of j - B is displayed in the bottom panel.

21



Fig.7: 'The contour maps of the toroidal magnetic field (top ), and the pressure
(bottom) at ¢ = 19.0¢4 (left), ¢ = 32.4t,4 (middle), and ¢ = 71.3, (right ) for Case C
where the red color stands for a contour larger than the average value of p or the positive

toroidal magnetic field.

Fig.8: The temporal evolution of the average pressure fluctuation ép.

Fig.9: The temporal envolutions of the normalized parallel component Jj and the
normalized perpendicular component J) of the electric current for Case A {solid line),

Case B (dashed line), Case C(dot-dashed line), where Jj =< |ji|/ljl > and J, =<

lcl/ll >

Fig.10: A three-dimensional display of the isosurfaces of the toroidal magnetic field

and the pressure at t = 0, = 19.0¢ 4, ¢ = 32.4t4, and £ = 71.3¢4 for Case C.

Fig.11: The temporal evolutions of u for Case A ( solid line ), Case B ( dashed line

) and Case C ( dot-dashed line ), where 6y is defined by Eq.(13).

Fig.12: The temporal evolutions of < |Vp|?> > ( dashed line ) and < |j x B|? > ( solid

line ) for the same cases as Figure 11.

Fig.13: The vector plots of the field B* and the magnetic field in an (z,y) plane
( left-top and left-bottom panels ) and in the (z, z) plane ( right-top and right-bottom

panels ) at ¢ = 73.1¢4 for Case A, where B* is defined by Eq.14.

Fig.14:  The temporal evolutions of the total magnetic energy W and the total
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magnetic helicity K for three cases with different initial plasma betas where both the
energy and the helicity are normalized by their initial values, and the solid, dashed and
dot-dashed lines correspond to those for Case B (§ = 0.6), Case D (§ = 0.4), Case E

(8 = 0.2), respectively.

Fig.15: The temporal envolutions of the normalized parallel component Jj and the

normalized perpendicular component J, of the electric current for the same cases as Fig.

14.

Fig.16: The temporal evolutions of the function R(t) for the same cases as Fig. 14,
where R(t) is the ratio of the time scale for the magnetic helicity dissipation to the time

scale for the magnetic energy dissipation.
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