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Abstract

A multi-dimensional electromagnetic particle simulation method which is suitable
for studying low-frequency plasma phenomena is described in the first part. Its appli-
cation to collisionless magnetic reconnection is shown in the second part. The present
particle code efficiently deals with nonlinear kinetic processes wherein ions and elec-
trons play their roles, since the code is implemented using the Maxwell equations and
the Newton-Lorentz equations. The drift-kinetic equations are used optionally. A sim-
ulation of collisionless reconnection shows that the joroidal electric field which directly
relates to reconnection is generated naturally in the kinetic study, and that a thin dis-
sipation region is formed whose width is a few electron skin depth. Thus, collisionless

reconnection is considered to proceed under the electron inertia.
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1. Introduction

In space and fusion plasma studies, there is a wide class of low-frequency, elec-
tromagnetic phenomena where the ions and electrons play significant roles in wave
generation and damping, plasma instability, and particle transport along the mag-
netic field. Well-known examples that belong to this "meso-scale” category located
between the micro and macro (magnetohydrodynamic)-scale regimes are the kinetic
Alfven wave!, the toroidicity-induced Alfven eigenmode?, the m=1 tearing mode®?,
and collisionless magnetic reconnection®. In these phenomena, either the polarization
drift or finite Larmor radius of the ions, Landau damping or finite inertia of the elec-
trons are indispensable elements to support the physical processes. Simulations of the
kinetic Alfven wave® and collisionless magnetic reconnection’ have been performed in
the recent years using the implicit particle scheme.

Since the aforementioned phenomena frequently develops into highly nonlinear
stages, the numerical simulation is considered to be quite a reliable, self-consistent
approach in theoretical studies. However, it was fairly difficult until recently to deal
with these low-frequency, kinetic processes by the conventional explicit particle scheme?
or the magnetohydrodynamic (MHD) fluid code. This was particularly due to disparity
of the time-and-space scales of the phenomena that we are actually interested in and
the micro-scales that the particle scheme has to resolve. Starting at the beginning of
1980’s, various types of advanced particle simmulation schemes were developed to remove
difficulties of this disparity. These are the implicit particle simulation techniques®~%
and the gyrokinetic approach'®.

The implicit particle schemes make only loose assumptions on the frequency, wave-
number and amplitude of the electromagnetic field. Thus, the methods are best applied
to nonlinear, low-frequency kinetic phenomena such as collisionless magnetic reconnec-
tion and edge plasma turbulence. Among the implicit particle schemes, the moment-
implicit method® ! and the direct-implicit method**** were developed in early 19807,
and the closely-coupled implicit method (”"macro-particle” code)!**® in the middle of

the decade. By contrast, the gyrokinetic scheme makes extensive assumptions on the



electromagnetic field to be treated. Owing to this ordering, the gyrokinetic scheme is
accurate and efficient when it is applied to studies of weakly nonlinear, low-frequency
plasma phenomena such as transport in magnetic fusion devices. Another class of the
particle scheme, the hybrid-pasticle code with massless electrons!” is applicable only
when the electron kinetic effects are ignorable.

The moment-implicit method®!® is a natural extension of the fluid concept to the
kinetic regime. It derives implicit moment equations to calculate the future electro-
magnetic field with the particle velocity moments as the source terms. The algorithm
is numerically stable, but, until recent development of the CELEST1D algorithm!?, the
scheme was prevented from exploiting the possibility of using very large time steps by
inability to solve the field equations, although the time step with the VENTUS code!®
was larger than with explicit schemes.

The direct-implicit method*®¥® constructs a high-accuracy low-pass time filter by
combining the electric acceleration of a few time levels to control numerical damping
of high-frequency waves in the plasma. The future current density is directly predicted
by pushing particles and later corrected implicitly in the field equations. In contrast to
its mathematical high accuracy, however, its numerical stability is actunally supported
by additional smoothing in the time domain.

The closely-coupled implicit method**?® uses fully time-implicit, kinetic field equa-
tions to determine the electromagnetic field. These equations are derived by combining
the Maxwell equations and the equations of motion. The current and charge densities
are expressed in terms of the present and future electromagnetic fields to make a clo-
sure of the equations. The time-decentering technique is introduced, but the equations
do not need additional prediction of the future fields. The algorithm is thus stable for
large time-and-space scales without an extra smoothing in time.

Important features of the "macro-particle code” - HIDEN®, which is based on the
above closely-coupled field-particle equations, are listed in Table I. The basic feature is
that the low-frequency electromagnetic waves with woAt < 1 are properly reproduced,
where wg is their characteristic frequency and Af is a time step of the simulation.

Since the ions and electrons are treated as charged particles, various particle resonance



and orbit effects are incorporated in the natural fashion. Moreover, the method works
numerically well both in the linear and nonlinear stages of the plasma phenomena
by virtue of the fully-implicit field equations. These features make the closely-coupled
implicit method suitable for studying nonlinear, kinetic plasma processes in large time-
and-space scales.

The outline of this article will be the following. In Section 2, the algorithm of the
closely-coupled implicit method will be described for both magnetized and unmagne-
tized cases. Numerical methods and techmiques including matrix inversion required
in the code implementation will be shown in Section 3. A simulation of collisionless
reconnection in a unmagnetized plasma will be presented ir Section 4. Finally, Sec-
tion 5 will conclude the article with a summary and future prospects of the implicit

simulation method.



2. Algorithm for the Low-Frequency Kinetic Plasma Simulations
2.1 Equations of the Field and Particles

The present implicit particle scheme adopts the Newton-Lorentz equations of mo-
tion and the Maxwell equations to describe an evolution of the kinetic plasmas!*?®,
like the standard electromagnetic particle simulation scheme. However, to realize a
large time-and-space scale simulation, a slightly backward time-decentering technique

is introduced. The Maxwell equations with time level suffices are written

n+1/2
1(%}]) = VB - e (1)
C c
n+1f2 .
! (%?) = _UxEe @)
c
V.E" = 4gprt! (3)
V.B* = ) (4)

Here, E and B are the electric and magnetic fields, respectively, ¢ is the speed of light,
and o« is a decentering (implicitness) parameter to be specified later. The current
density J and the charge density p are implicit quantities, which are not the simple
sums of particle quantities but are expressed in terms of the present and unknown
future electromagnetic fields.

To describe the particle motion, either the Newton-Lorentz equations or the drift-
kinetic equations are used. An advantage of the Newton-Lorentz equations is inclusion
of the full particle dynamics under the constraint of |w,,|At < 1, whete w,, = ¢,B/m,c¢
is the cyclotron frequency of the j-th particle. These equations must be used to simulate
a plasma with magnetic-null points. The drift-kinetic equations allow us to use large
time steps and are suitable for magnetized plasmas. These equations are optionally
used for the magnetized electrons.

The Newton-Lorentz equations of motion with the time level suffices are written

(%)W N (e_) [E*(x,) + (v) " /e) x B¥(x,)], (5)

m;
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(d_tj) = VJ 3 (6)



Solving Eq.(12) for the future velocity v*' using the linear interpolation v =

3
L{v™ + v*H) yields
n+l n € nta V? fnta fnta
vt o= VJ-{—Ai—{(E +-+xB )-i—@E"
m, C
+0 (En+a I V_J % Bn+a) X Bn-i-a}/(] + @2)’ (14)
C

Xt = XD+ Al v?“’lz, (15)

where Ej** = (Er+e - br+) b+, and O(x) = %At(ej/mjc)lfi’ol"“‘. The first term in

the right-hand side of Eq.(14), v}, which is independent of the future magnetic field
Br*e_ has been purposely separated out. In the [©] > 1 limit corresponding to the
guiding-center approximation, the first-order terms of Eq.(14) are

1

nt+l v n e_J nta
v & v +/_\.th {Ey™ + o

3

(E":’”“ + V?J x 13”“’) x b*te}. (16)

Decomposition of the parallel and perpendicular components in terms of the local

magnetic field direction b™** yields

VT;H v CEn+a % Bn+a/Bn+a’ (17)
n ~ n € pata  L.nta
'U"J+1 = 'U"J + Atgjj (E ta, b + ). (18)

These are obviously the leading terms of the drift-kinetic equations Eqs.(8),(9). The

drift-kinetic equations are similarly discretized in time and are written as

n+l n _eJ_ Fnta _;:1'_.1_ i fan-+c
I A ((mJ) I - (mJ) a"‘:IIB )’ (19)
X = x4 At Vv (20)

The perpendicular velocity is a function of the future eleciromagnetic field as specified
by Eq.(9), and the direction of the parallel velocity is defined by Eq.(11).

Also, the Maxwell equations are discretized with respect to time and are written

Ertl _ E* = AtV x B*™® — 47 At Jn+a’ (21)
Bn—!—l — B* = —cAiV x E“+a' (22)



To relax the Courant condition, we eliminate B**! from Egs.(21),(22) to obtain an
implicit equation of E**!. If we use for E*** the linear interpolation to the non-integer

time level

E*te = oE™! + (1-a)E", (23)
and a similar formula for B***, we obtain the equation of the future electric field E**?,

[ 14 (acAtP’V x Vx JE™ = [1- ol —a){cAt)*V x Vx] B*

(24)
+ cAIV x B* — 4x At Jie,

The functional form of the current density in the right-hand side of the equation will
be specified in Section 2.3. The future magnetic field is determined by Eq.(22) after
E™*! has been solved.
Mathematically, Eq.(24) is nearly decomposed into the magnetostatic component
V x B"** = (4n/c) 37+ and the electrostatic component E}*? = E? — 4rAt I+ if
(cAt/X)? > 1(Vx = 1/X) holds, where (T) and (L) denote the transverse (divergence-
free) and longitudinal (curl-free) parts, respectively. The unity terms in the square
brackets of Eq.(24) are the major terms of the electrostatic part and cannot be ignored.
Despite of apparent simplicity, the decomposed equations (Darwin algorithm)!” are
hardly used in the real space solution because a complete separation of the transverse
current Jp (V- Jz = 0) from the longitudinal current J5 (V x J; = 0) is almost
impossible.
Finally, it must be noted that the electrostatic equation which is equivalently trans-
formed by Eq.(3) into
(6" = )AL + VT3 =, (25)
disagrees with the continuity equation. This discrepancy contained in the solution to

Eq.(24) must be corrected later by using the Poisson equation V - E**! = 4xp™*!
(Section 2.3(b)).



2.3 The Closely-Coupled Field-Particle (CCFP) Equations

(a) Time-Implicit Equations for the Electromagnetic Field

In order to make a closure of Eq.(24), the current density must be specified. The
method of predicting the future current density constitutes the key of the implicit par-
ticle schemes. In the closely-coupled implicit method, the current density is expressed
plainly in terms of the future electromagnetic field with aid of the equations of motion.
The current density in the electron drift-kinetic code consists of totally different ion

and electron parts, as given by

I*x) = Z e, Ve S(x — %)

Iy Bn-{-a) +92Eﬁ.+a
C

= Ze, Vi + aAt—{(f}“+°‘+

1=t my

+ 6 (En-{—a + VTJ % ﬁn+a) % En+a}/(l + @2)] S(X _ i}ﬁa)

+ Y(-o)fey, + aAt((;—é) Brte - (“J) ai,an+a)}bn+a

1=€
+ vn-l—a( n+112)] S(x Xn+a)
— ¢V x) pbteS(x— X3+, (26)
1=

where 1_,—; and 3, denote summations over the ion and electron species, respectively.
The last term of Eq.(26) accounts for the magnetization current Jp, = —cV x (p(e)b /B)
of the electrons under the guiding-center approximation. As before, the electromagnetic
field with the tilde is evaluated with the weighting scheme Eq.{13). The basic unknown
quantities in the right-hand side of Eq.(26) are E**! and B**'. On the other hand,

the current density in the full-kinetics code is given by

~ v“
IHx) = Y M+ aAt;—’{(E"""" B"*"‘) + O]+
4 c

1=te

+ 0 (E“*“ + YCL X B“*") x b}/ (14 0%)] S(x — xrte). (27)

Apparently, the full-kinetics (FK) algorithm is much less complicated than the drift-
kinetic (DK) algorithm. In fact, the computational cost per time step with the FK
algorithm is about two thirds that of the DK algorithm.
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Substitution of the implicitly-expressed current density Eq.(26) or (27) into Eq.(24)

yields the matrix equation to determine the future electric field E*+!,
A, B = S (E", B BV, B™1), (28)
The matrix A, on the left-hand side represents a vacuum response which is defined by
A, = 1 4 (acAt)(VV — 1V, (29)
and the source vector S, on the right-hand side is given by

S, = [1-al ~0a)(cAt) (VV = V)] E* + cAt V x B"

— 4wt {Z & [v] + alt(e,/m,) (E’H'“ + v?;‘ x f&"“’)
[(1+0%)] Sx~x*) + ... }. (30)

The symbol VV denotes a dyadic operator and 1 the unit tensor. The equations (28)-
(30) and (22) constitute a closed set of the Courant-condition-free, implicit equations
to determine the future electromagnetic field. These equations are named " closely-

coupled field-particle (CCFP) equations” after their nature of close coupling of the
fields and particles.

(b) A Correction to the Longitudinal Electric Field

The third and fourth Maxwell equations, Eqs.(3) and (4), are the conditions to
determine the initial value of the electromagnetic field, which need not be used math-
ematically for ¢ > 0. However, as demonstrated with Eq.(25), the electrostatic part of
Eq.(24) deviates from the charge continuity equation. Moreover, a discreteness of the
space grids introduces a small but finite error’® to the longitudinal (curl-free) part of
the area-weighted current density Eq.(26). Hence, a correction to the longitudinal part
of the current densily must be done in each time step'>=15.

For the correction, the true electric field E*+! is expressed as a sum of the electric
field before the correction E»*! (the solution of Eq.(28)) and a gradient of the scalar

function é¢,

E"t = B _ vy, (31)
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Substitution of Eq.(31) into the Poisson equation Eq.(3) yields
—V%p = 4mp*tt — V-EML (32)

Again, the charge density p™** which is not known at this moment needs to be obtained
in an implicit manner to be stable against a large time step. For this purpose, the charge
density is Taylor-expanded in terms of a small displacement due to the correction
electric field Ve,

P = Y oS-t

3

2 Y eSx-xF)-V- (Z e;6%,5(x — X5 ) : (33)

7 K

where the vector identity has been used®®. The displacement is defined by éx, =

x;"“ — x?&')l with x;”'l being the true particle position at ¢ = t**', and x;"(?)l the
pivoting position predicted using the known electromagnetic field En+l and B"*. The
displacement corresponding to the Newton-Lorentz equations Eq.(5),(6) is calculated

to be
S —%Q(At)ZT%—{V5¢+ Vép x Bb™ + €2V 5p}/(146%), (34)
3

where the vector operator is defined by V) = b™** (b™**-V). Since the final magnetic
field is already determined together with E™+! at this stage, the displacement 6x,,
hence the charge density g"*!, is solely a function of . By substituting Eq.(33)
into Eq.{32) and shifting the ¢-dependent terms to the lefi-hand side, we obtain the

completely implicit equation to determine é¢ in the electron drift-kinetic code,
1
Vo + ia(m)zv : (wg,.(x){vaga +0%Vydp + OVSp x b}/(1+ 6%
+ W2, (x) Vybp) + dr(—e)catrt V-(Vép x (b/B) ne(x))
= —4xptl 4 V. B (35)

In the full-kinetics code, we have

1
Vip + Sa(At)V- (Z W (x}H{Vép + @V Sp + OVp x b}/(1+ @2))

1=t

= —dxp"tl 4 VB (36)
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Here, 7" (x) = T, ¢,S(x — x]3)) and 2 (x) = 4mn, (x)e2/m,. In these equations, the
vacuum response V2§y is mostly shielded by the plasma dielectric response, Ja{A¢)?V-
(~---- ) due to w{DAI > 1.

Before concluding this section, it is emphasized that the full-kinetics code is worth-
while despite of its comparatively small time step w, At 2 1. First, if the electron
cyclotron frequency corresponding to the largest magnetic field is less than the plasma
frequency, wee < wpe, we have a definite gain over the explicit schemes with the time
step wpAt > 1 and large grid size Az > A, (the Debye length). Second, due to less
complexity of the algorithm, the computational cost per time step with the full-kinetics
code is two thirds that with the electron drift-kinetic code. Therefore, large space-scales
and a moderate time step make the macro-particle code much more economical than
the explicit electromagnetic particle scheme. {A detailed comparison will be made in

Section 4).

3. Numerical Methods for the Coupled Equations
3.1 A Key Approximation to the CCFP Equations

To facilitate solution of the coupled field-particle equations derived in Section 2,
we need to separate the unknown electromagnetic field from the particle quantities in
the summations of Eqs.(26) and (33). For this purpose, we introduce an accuracy-

preserving approximation to the CCFP equations,

> HE(x)S(x = x,)
)
= Z fJ{a(ﬁn+1(XJ) - El(xj)) + Eﬂ(xj)} S(x-x,)
3
= oF (x)(E" (x) — Bg(x)) + 3 f,Eo(x;) S(x —x,), (37)
i
where E; can be any quantity that would well approximate E**!| E; = oE; +(1-«)E",
and F(x) = %, f,S(x — x,). For E;, we usually use the electric field of the last time

step. Note that (E**! — E;) is paired in Eq.(37) to minimize an error associated with

this approximation, and that the tilde has been removed from this term. Using this
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prescription, Eqgs.(28)-(30) given in Section 2.3(a) are rewritten
Aln;,ng; B*) E"*' = S(E*, B B"™). (38)
Here, the matrix A consists of the vacuum and plasma terms as defined by
A = 1+ {0cAt)(VV-1V?) + D. (39)
The plasma dielectric response term is given by

DPR) = (aaf)? (wi(x){1 — Ob™* x 1+ ©°(bb)**}/(1 + ©7)
+ wpe(x)(bb)"*)
—4m(—e)calrt (n(x)/B) b*** x 1 {40)

for the electron drift-kinetic code, where {bb) is a dyadic tensor. For the full-kinetics
code, the D matrix is replaced by
DFE) = (aAt) Y Wl (x){1 - Ob™*" x 1+ ©*(bb)"**}/(1+0%). (41)
j=te

The new source vector S is now written only by known quantities,

S = [1-afl —a){cAt)}(VV — V¥)] E" +cAt V x B”

.V
+ DE; — 47t {3 e; [V} + alt{e,/m;) (Eo + TJ X B”""")

1=t

J140%] S(x~x2) + --0n- } (42)

7

It is extremely important to note with the aforementioned approximation, that a
major contribution to the summation ¥ f;E*t*S(x — x,) is contained in the second
term of £q.(37) for which the "double summation” is taken accurately, well preserv-
ing the kinetic flavor of the original equations (first summation for E). The accu-
racy of this approximation was numerically proved in the previous literature' for the
thermal eigenmodes in the 2-D magnetized plasma and for the kinetic Alfven wave
in the warm {finite temperature} plasma. The present approximation greatly con-
tributes to minimize a degradation of energy conservation. A simpler approximation,
ie, ¥; HE(x,)S(x — x;) @ F(x)E"™ results in a rapid and monctonic decrease

in the kinetic energy, especially that of the electrons.
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3.2 Solution of Nonlinear Implicit Equations

We first notice that the closely-coupled field-particle (CCFP) equations are solved
in the real (configuration) space. This is because the coefficients of the CCFP equations
are highly space-dependent, thus the convolution of Fourier modes is quite inefficient.
Second derivatives in the real space cause a coupling of only three points in one di-
mension, and 27 or less adjacent grid points in three dimensions.

Following the above argument, we consider the closely-coupled field-particle equa-

tions in the form of an implicit matrix equation:
AT = 5(0). (43)

Here, ¥ is an unknown column vector representing the electric field to be solved, A
the matrix which includes both the plasma dielectric response and the vacuum term
(V x Vx), and S the source vector. Since the source S depends on ¥ nonlinearly
to ireat the ponderomotive force, we need to use an iterative method for the solution
of the matrix equation (43). First, all the W-linear terms in S(¥) are shifted to the

left-hand side to treat the equation as implicitly as possible,
LY = Q). (44)

This equation is solved assuming that Q(¥) is known to obtain ¥ = [-1Q(¥(").
The superscript (r) denotes the last cycle of the iteration. The new value of the (r-+1)-
th cycle is given in a Newton-Raphson manner, ¥{™+Y) = ¢ U 4 (1 — ¢) U with
0 < ¢ < 1. The new value &1 is then back-substituted to Q(¥) in the right-hand side
of Eq.(44), and the iteration is resumed until convergence. When the U-nonlinearity of
@ is not strong, the value ¢ = 1 can be used. However, even when the U-nonlinearity
is weak, the back-substitution should be executed once at least and Eq.(44) be solved
twice; in the first cycle of the iteration, the unknown B™*! is replaced by B” in Fq.(38).

It is known that an accurate inversion of the matrix L in the core equation (44)
is essential to the solution of the nonlinear equation (43). The Gaussian elimination

method was successful in one-dimensional simulation as I is a sparse band-matrix.
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However, it is unrealistic for a huge matrix in multi-dimensions. A successive over-
relaxation method with only the diagonal terms retained in the left-hand side and the
new solution back-substituted to the right-hand side of the equation failed eventually
due to accurnulation of an error.

Alternatively, to obtain an accurate solution of Eq.(44), the recenily developed
bi-CGSTAB method?! which iteratively solves unsymmetric linear systems has been
introduced. In this iterative method, orthogonality of correction vectors is used to up-
date the solution. The procedure of solving the linear equation, Az = b, is summarized

as follows:
For i=0: zy — an initial guess,

?"ozb—A.Eg,
LU()=,0(320£=1,

vo=pp=0.

For general i: p; = (F,ric1);

B = (pi/ pi-1)(efeia);

pi = Tic1 + Bpic1 — wicavica);

solve p from Kp = p;;

v, = Ap;

a = pif (T, vi);

§=ri — Qv

solve § from K§ = s;

t = AS;

w, = (£, 5)/(t,1);

Z; = T,y + P+ w,$;

=8 — wt.
Here, K is a pre-conditioning matrix and 7 is arbitrary such that (7, 7o) # 0. The right
choice of 7 has a dramatic influence on convergence, but a serious breakdown of the
iteration sometimes occurs if the denominators of the coefficients approach zero®!. For
the CCFP equation (38), the bi-CGSTAB method converges generally well for the choice

of 7 = E”. Convergence is judged by the residual error |r;| < elb], typically with the

16



tolerance of € = 107°. The pre-conditioning of the matrix A is required to have a good
convergence in a small number of iterations. The 3 x 3 small matriz corresponding to
the diagonal element ¥;;; = (E,, E,, E,),;x should be pre-conditioned simultaneously
as a block; the three components of the electric field in Eq.(38) are physically related,
or more precisely, the skewed symmetric elements of the small matrix arising from the
E x B drift are predominant over the diagonal elements. The accuracy of solution of
the CCFP equation (38) has drastically been improved by the bi-CGSTAB method,
and its influence on the whole simulation is found to be quite satisfactory.

However, the bi-CGSTAB method occasionally failed in the d¢ equation (35) even
with a sophisticated pre-conditioning. This incident known as a wild (non-) conver-
gence occurs abruptly without a specific relation to the physical condition of the plasma.
As a cure, the conjugate residual (CR) method has been introduced®>?*. The CR
method uses two (or more) previous correction vectors and imposes orthonormality

(pi, AT Ap,) # 0 for ¢ # j. Its procedure of solving Az = b is summarized as follows.

Fori=0: zo — an initial guess,
po=r9=b— Az,

go = Apo, foz = 0.

For generali: o; = (ri—1, i1}/ (gi-1, Gi21);

Ti=Tioy T piey;

T8 = N1 — Cafiy;

Bie1n = —(Ar,, g1}/ (g1, Gi1),

Bi12 = —(Ar,, gia)[(gi2, Giz2);

pi =1+ fic11pic1 + fim1,2Pi-2;

i = Ap;-
An additional use of s, = Ar; in the above procedure eliminates one of the two matrix-
vector product calculations. The CR method converges rather slowly, as it does linearly
with the iterations. But, its convergence is robust since the denominators of the coef-

ficients stay positive definite.
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3.3 Normalization

The normalization of physical quantities comsists of four basic units, the length:

¢/wpe, time: w;!, mass: m, and electronic charge: e (absolute value). The non-

pe)
dimensional quantities used in the simulations are,

- . m N
L i=muwt, = g =2 (45)

¢fwpe Me e

I —
Other quantities such as the velocity, frequency and electromagnetic fields are normal-
ized by combining these basic units:

{b:i,ﬁ}z ¢B 7}::,.: eB

v= .
Wpe MeCWpe M eClpe

(46)

!

a -

With this normalization, the constant in the field equations is transformed as {47) —
(1/no) and the light speed (c} disappears everywhere (no: the average particle number
density per unit-length cube).

3.4 Procedures of Parameter Choice

As stated in Section 2, the implicitness parameter « in the equations of motion
and the CCFP equations must be in the range 2 < o < 1. For example, damping
rate of the light mode and the Langmuir oscillations are given, respectively, by'**’
w; 2 —{a— 1)(ck)?At and w; 2 —%(a — 3)w2 At. Thus the choice of & > § damps the
light waves and the Langmuir oscillations.

The change in the system energy is also written as the function of the decentering
parameter . The change in the system total energy for the electron drift-kinetic code

is defined by
AW = AWp + Y AWk, (47)

which is a sum of the change in the electromagnetic field energy and that in the particle
kinetic energy. Each term of Eq.(47) is defined by

1
AWr = ™ /[En+1/2 . {En-l-l _ En) + B2, (Bn+1 _ Bn)] dx
Mg = Yomi (v - ),
PES
7 n n 1
AW, = 3 [maf P —of) + A(Emetﬁ] + 11, B)], (48)
1=e
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where AU = U™+ — ¥*. The thermal energy 3mc.v?,, = 11, B is added to the kinetic
energy of the electrons because only the drift motion is included in the guiding-center

velocity vy . After some algebra, the change in the system total energy is written®

At
AWy = =22 / V- (E™* x B™) dx

- (e [(B B 4 (B - B o

n+a nta n+1f2
_ At /E+ (@mte — Jn) gy
1 n k)
+ Z "z"me{(UJ.-;l)z - (U_LJ )2}1 (49)
J=e
where J, = J, + J|.. The second and third terms are negative definite for o > :
since in the integrand of the third term J*** — J2+1/2 o (o — 1)At [(e2 /my)E™* +
(e*/ me)Eﬁ"""}. The first term of Eq.(49) is the Poynting flux which occurs physically.
The second term is the energy loss associated with the numerical damping of the
oscillating electromagnetic field. The third term occurs due to imbalance in the joule
heating. Therefore, the choice of o & 7 is desired to have a good energy conservation,
and o > % for damping of high-frequency waves. Actually, @ = 0.55 ~ 0.6 is chosen in
the simulations.
For choosing the suitable simulation parameters, it is useful to clarify the restrictions

to the present simulation method with respect to the time step and the grid size. First,

the time step should be small enough to resolve the cyclotron motion,
wy AL < 0.2, (50)

Even for w,At 3> 1 cases, the "real” particle drifts are recovered®. But, the mag-
netization current which arises {from spatial difference in Larmor orbit density is lost
for that choice. Secondly, a transit time condition to resolve the structure of the scale

length A = 27 /ky| g, yields,
by mazvy A < 0(0.1), (51)

where v is the fastest speed along the magnetic field. The third restriction appears in

combination of the time step and the grid size,

00.1) < 'U“At/A.Z‘ < O(1). (52)
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The lower inequality arises from an aliasing due to the coarse grid instability'®, and
the upper inequality to keep accuracy of the Taylor-expansion in Eq.(33) and that of
the predicted particle position X +/2 45 evaluate the electromagnetic force.

A slight difference of the predicted particle position X /2 from the true particle

12 in the force evaluation may also be a source of numerical heating of

position X,
the plasma. The difference of the two positions for the electrons, which can be more

relevant than the ions because of their large thermal velocity, is written as

x;H'l[Q o )—{;Z-I-l,’? (53)

> (3 At)?( )(E"*"—E) + 1m( e —vh). (54)

éXD

M

The restriction may be given in the form of the accuracy condition

|6xp)] At 1 ) nta _ mta _ g
For a monochromatic sinuscidal wave, £ ~ e“A we have Eﬁ"”"‘ — B m 1awit B,

|6xp| can be made negligibly small compared with the cell size if the value (v, At/Axz)
is chosen to be of the order of unity since wAt < 1 for the physically resolved modes
(e EyAt/m, < vy). However, with too few particles per cell, the deviation due to the

fluctuating electric field may be as la,rge as

|6Xp,n| = )

—_— At E 56
e |{ 5+ Vil (56)
To make this quantity small compared to unity, one has to choose the time step such
that

At |(efm)Ef| € vg. (57)

The following procedure may be used for the choice of the simulation parameters.
We first notice that there are often characteristic spatial scale-lengths in the plasma
phenomena such as the wavelength and Larmor radius. The grid size is determined
from a resolution requirement. Next, if we specify the magnetic field strength and the

electron beta value, the eleciron thermal speed is determined by

[ (58)

(.u'pe_
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Referring to the conditions Eqs.{51} and (52), the range of allowable time step is
determined for the already chosen space-grid size. Here, woAf € 1 must be satisfied
with wq the characteristic frequency of the phenomena. The condition Eq.(57) should
be kept in mind to reduce artificial heating of the plasma, with which the upper limit
of the time step or the minimum number of simulation particles are estimated. Finally,
the condition Eq.(50) is referred to in order to determine the lower limit of the mass
ratio (m;/m.). At this stage, all the parameters may have to be reshuffled to expand
their allowable range of variation or to fit the simulation into the given computing
esources.

Two remarks are stated concerning modification of the algorithm. First, the iden-
tical formula must be applied to the equations of motion and the corresponding parts
in the CCFP equations. Second, the same area-weighting scheme should be used both
in the evaluation of the electromagnetic field and in the assignment of the particle
informations to the space grids®. A violation to these rules causes poor momentum

and energy conservations and will probably result in numerical instabilities.
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4. A Simulation of Collisionless Magnetic Reconnection

Reconnection of magnetic field has attracted much attention as an effective agent of
releasing magnetically stored energy to accelerate or heat the space and astrophysical

%2 In magnetic fusion, reconnection causes a drastic topology change in

plasmas
the magnetic surfaces which leads to another stable equilibrium or sometimes loss of
plasma confinement. To date, the global study of magnetic reconnection relies on the
magnetohydrodynamic (MHD) equations with the Ohm’s law which includes ad hoc
dissipation of the plasma current nJ. However, an origin of anomalous resistivity (i.e.,
dissipation) remains a key question of collisionless reconnection for decades.

A possible role of electron inertia in the collisionless reconnection was first inves-
tigated in the MHD framework® and was considered in the kinetic viewpoint with
the electromagnetic fields being assumed®. Later studies focused on the m=1 tear-
ing mode in connection with tokamak sawtooth crash phenomena wherein the MHD
(fluid) equations and the generalized Ohm’s law with electron inertia current dJy/dt
were adopted” . Nonlinear growth of magnetic island was studied analytically*-3¢
and numerically by particle simulations®”—39.

Nevertheless, the mechanism of collisionless reconnection seems to be still in the
mist due to the fluid (MHD) approach. In order to clarify the process from the kinetic
standpoint, we study a coalescence of two magnetic flux bundles in the two-dimensional
geometry by means of the "macro-particle code” (HIDEN) described in this article. A
pair of the same-directional currents in the flux bundles produces both the poloidal
and toroidal magnetic fields. The plasma has no externally imposed magnetic field as
it often occurs in the solar corona®. Thus, a magnetic-null point exists in the present
simulation, in contrast to the other particle simulation of collisionless reconnection”.
Combination of these two studies will make our understanding of collisionless reconnec-
tion more complete. It is noted in passing that the coalescence of flux bundles results
in the forced reconnection without an external electric field, E§°) = 0. This makes
1t easier to identify a generation of the electric field during the collisionless magnetic

reconnection.
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Because of the presence of the magnetic-null in the plasma, the full-kinetics version
of the macro-particle code must be used. To have a better spatial resolution of the
so-called ”dissipation region” which is characterized by a current sheet to be formed
around z = 2L, spatially-fixed uneven meshes are introduced in the z-direction.
Furthermore, to keep the particle fluctuations in a low level, one gitant particle is split
into a few small particles with the (g,/m,) ratio being fixed when it has entered the
fine-mesh region. On the other hand, the small particles once split are not coalesced
to the original size. A reliable technique would be preferred to artificially coalesce the
particles in a two-dimensional domain to reduce the computation time and memory?!.

A charge-neutral plasma is initialized using the same number of ions and electrons
(64 ions/cell) which are homogeneously loaded in a doubly-periodic Cartesian system
of two dimensions. The system size is [, = 400c/wy, and L, = 300¢/w,, with 160 x 72
cells (the electron inertia length c/w,, is the unit of length). The grid interval is
Agl®) ~ 1.1¢/wp. for the central part (53 cells) and Az & 3.2¢/wy, for the rest, and
Az 2 4.1c/wp. in the z-direction. Three components of the particle velocities are
generated according to the Boltzmann distribution of given temperatures. The ions
that reside in two square areas are assigned the initial drift Viife = 0.01 in the positive
y-direction. All the electrons drift at the same speed initially in the y-direction so
that the plasma system has no net de-current. The maximum strength of the initial
poloidal and toroidal magnetic fields are BI()O) = 0.25 and Bfo) 2 0.07, respectively.
{The electromagnetic field is normalized like e E/ MeCwpe.} The physical parameters are
the mass ratio m;/m, = 100, electron thermal speed v./c = 0.2, and the temperature
ratio 7, /7. = 1. The Larmor radius for thermal ions becomes p, & 8c/w,.. The time
step 1s wpe At = 5.

Before showing the simulation results, a saving of the computer time with the
implicit particle simulation is mentioned. As well-known, the spatial grid size and the
time step of the conventional electromagnetic particle-in-cell (EM-PIC) scheme must
be the Debye length A, and wre At = 0.2, respectively. Since ¢/wpe = 7, in the present
run, we need 2800 x 2100 grids. If we use four ions per cell (minimum) for EM-PIC,

it requires 8.0 x 10? tirnes more integration to advance particles for the same physical

23



time interval. Although the computing time per integration is about three times less for
EM-PIC, we need about 270 times more computing time with the conventional particle
scheme. For the magnetized electron case’, the use of w,. At = 50 in the implicit particle
simulation achieves the gain of two thousand times in the computer time. Moreover,
we have to remember that the EM-PIC scheme is subject to exaggerated inter-particle
collisions due to high-frequency wave oscillations.

Now, the simmilation results are described below. Figure 1 is time snapshots of the
poloidal magnetic flux and the ion current at ¢/74 = 0, 1.6 and 3.1. The poloidal flux
¥ is connected with the poloidal magnetic field by B, = V x (¥g). The Alfven time
is defined in terms of the initial separation d = 160c/w,. of the flux bundle centers
and the poloidal Alfven speed Vy, = B{"/ (47m;n)*/?, such that 74 = 1d/Vi4,. In the
run, the same-directional currents of the flux bundles attract each other by magnetic
force, and the isolated poloidal flux contained in either of the flux bundles begins to
merge, starting in Fig.1(b). Reconnection of the magnetic flux is roughly identified by
counting the number of the isolated contours in the figure since the poloidal magnetic
flux is almost a conserved quantity. A substantial amount of the flux reconnection
takes place for ¢ > 1.574. In the lower panels of Fig.1, the ion currents contained in
the two square areas first adjust themselves to a more round-shaped profile to have
the pressure balance. The centers of the ion currents approach as already seen in the
upper panels. But, the merging is not complete, and the contact surface remains rather
elongated.

Time development of the y-component of the electric field and current in the gap
between the flux bundles is shown in Fig.2 (the signs are reversed). This electric field
component, which is purely electromagnetic (no electrostatic part), directly relates to
magnetic reconnection via the Faraday’s law,

9B,

=2 = —oV x(B) # 0. (59)

As shown, both the electric field E, (solid) and the current J, {dashed) at the x-
point undergo an exponential increase with the same growth rate for £ > 0.774, and

they saturate around ¢ = 2.574. We see the proportionality relation, £, « J;, in
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the saturation stage. The time history of the isolated poloidal flux A¥ measured in a
macroscopic fashion is shown in the lower panel of Fig.2; the isolated flux AV is defined
as the difference of the ¥ values at the flux peaks and the x-point. If we subtract an
oscillatory part, a flux merging is observed to be time-linear which begins at t ~ 1.57,4.
This Sweet-Parker type behavior is the same as the case with the ambient magnetic
field".

Particle quantities at { = 1.674 are displayed in Fig.3. The panels correspond to (a)
the poloidal (z, z-component) current, (b) the toroidal (y-component) current, (c) the
charge density, and (d) the particles that were initially located in the two square regions.
The upper panels are for the jons, and the lower panels for the electrons. In the upper
panel of Fig.3(a}, we can see a distinct poloidal current of the ions toward and off the x-
point. The outward current spreads to the full width of the gap sandwiched by the two
flux bundles. On the other hand, the electron poloidal current is spatially confined in
the narrow channel (dissipation region) where the magnetic field almost vanishes (also
see Fig.6). This point sharply differs from the simulation with the ambient magnetic
field", B§°) # 0. Another remarkable observation in Fig.3 is a generation of the toroidal
current of the electrons J* (panel (b)), which is opposite and stronger than the flux
bundle current Jt(i) carried by the ions. The maximum velocity in the y-direction
reaches U;e) ~ 4.9 x10~2%¢ > V,,. The spatial extent of the Jt(e) current is again limited
to the narrow dissipation region.

The charge density of Fig.3(c) peaks at the centers of the flux bundles and the dissi-
pation region. This adjustment occurs to maintain the pressure balance; the magnetic
field is weaker in these regions. This again differs from the B® # 0 simulation. Com-
parison of n®*) and n'®) shows that the net charge separation is very small. The panels
(d) show that the current-carrying ions in either the flux bundles are beginning to meet
at the dissipation region. On the other hand, the two populations of the electrons have
merged owing to large mobility along the helical magnetic field.

The electric and magnetic fields are shown in Figs.4 and 5 for ¢t = 1.674 and 2.274,
respectively. We first notice that the toroidal component of the electric field E; in

both the figures stays negative in a wide X-shaped region covering the x-point and
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extending to the outskirts of the two flux bundles. This negative profile has become
apparent early in the run for ¢ > 74. However, the poloidal electric field E, does
not have a distinct structure in Fig.4. A converging E, field appears only after the
reconnection has started as seen in Fig.5. (More details will be shown in Fig.6.) The
poloidal magnetic field B, is being compressed in the dissipation region even between
the times of the figures. The width of the dissipation region defined by the poloidal
magnetic field for ¢/7, = 2.21s Lp 2 3c/uwpe (half-width).

A quadrupole structure is observed in the torcidal magnetic field of Fig4. This
structure arises from the dominance of the poloidal ion current in a large scale as has
been shown in Fig.3{(a). In the middle of the reconnection process, there appears an-
other smali-scale quadrupole structure in the B; field of Fig.5 which is embedded in
the large-scale structure and has opposite signs. This is atiributed to that the electron
current in Fig.6 is quite concentrated to the narrow channel (dissipation region) and
locally supersedes the wide-spread ion current. The electron current profile coincides
with the region of weak poloidal magnetic field. This reveals that the incoming elec-
trons into the dissipation region can be ejected only through the narrow unmagnetized
channel between the two flux bundles. The maximum outflow speed of the electrons
off the dissipation region is v;e) ~ 2.6 x 1072¢, which is a few times that of the ions
and exceeds the Alfven speed V4, ~ 1.8 x 107%¢ (B, ~ 0.22 and n/ng ~ 1.5).

Qutside the dissipation region the plasma is magnetized. The current patterns at
t = 2.27, (Fig.6) show that the ions and electrons follow the £ x B drift due to the
E, and B, fields. In the E, field of Fig.6, we can see the converging electric field E;
toward the x-line along z = %LI. This electric field arises from less ion population
than that of the electrons in the dissipation region which is due to large Larmor radii
of the ions comparable to the dissipation region width. But, it is emphasized that this
electric field appears only after the reconnection process has started. Therefore, the
charge-separation electric field due to the finite Larmor radius effect plays a secondary
role in the collisionless magnetic reconnection.

A few statements should be mentioned about the mechanism of collisionless mag-

netic reconnection. When the present simulation is compared with the previous cne
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with the externally imposed toroidal magnetic field’, it is found that the x-point elec-
tric field E, is generated much in the same way irrespective of the finite Larmor radii

of the ions. Figure 7 shows that the quantity that is equal to the displacement current,

dE,
ot

= ¢(V xB), — 4rJ,, (60)

becomes negative in the region between the two flux bundles when the growth of the
toroidal electric field E, is observed in Fig.2. This spatial extent is alsc consistent with
the region of the toroidal electric field shown in Fig.4.

However, since the displacement current is a small quantity, the evolution of the

toroidal electric field E, (purely electromagnetic) is actually governed by

VzEy & (4—71-) 3JT!,

o (61)

2
In the derivation, V x B = (4n/c)Jr has been used, where Jz includes only the

divergence-free part of the current J. {This separation is almost impossible except in

the Fourier space.) An observed development of the toroidal current,

J(z,t) = Joe™/cosh®(z/L), (62)
produces the electric field,
E(z,t) & (%) JoL?e" logcosh(z /L) + F(1), {63)

which agrees with the exponential growth of the toroidal electric field. It can be
proved that the response to the electric field is amplified by the plasma compared to
the displacement term, ie., (8J,/01)/(°E,[8t%) = (w,T)?, where 7 is the growth
time. This explains the observation in Fig.7. Also, Eqs.(62),(63) are consistent with
the observation that the toroidal current is confined in the dissipation region while the
toroidal electric field isn’t. This is attributed to that the toroidal electric field is not
shielded electrostatically where the poloidal magnetic field almost vanishes, and that
the electrons are effectively accelerated under such a geometry.

The aforementioned simulation results support the equivalent dissipation to conform

with the MHD theory. The x-point electric field £, accelerates the finite mass electrons
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during their transit through the dissipation region. The velocity gain of the electrons
will be 5v§e) & ((—e)/m.)EyTir, and the x-point current Js(f) & (ne*/m.) Eyn,, where
7, is the electron transit time through the dissipation region. This relation yields the

collisioniess Ohm’s law,
Ey 2 Teady (64)

with the inertia resistivity® given by n., = 47/w2 7. Theoretically, Eq.(64) and the

R} Ao
g)zc/wpe.

It is mentioned before making the conclusion that the reconnection rate observed

Maxwell equations yield the width of the dissipation region to be L

in the implicit particle simulation does change according to the initial magnetic profile.
Generally speaking, the reconnection becomes faster when the poloidal magnetic profile
is more peaked, and the reconnected flux scales quadratically in time*, A¥ ~ ¢,

To summarize, the electron inertia effect was confirmed to make collisionless mag-
netic reconnection possible both in magnetized” and unmagnetized plasmas. The finite
Larmor radii (FLR) of the ions was found to affect the electron current and cause the
quadrupole structuze in the toroidal magnetic field. However, the toroidal electric field
which directly relates to reconnection was generated independent of the FLR effect,
and the FLR effect on the reconnection rate was not observed. A further study is
required to know whether this conclusion applies only to the Sweet-Parker regime with

AV ~ ¢t or to more general situations.

5. Conclusion

In this article, the algorithm of the closely-coupled implicit method was described
which is best applied to the low-frequency, nonlinear kinetic plasma processes. This
is because the algorithm filters out high-frequency, small-scale waves, and it makes no
intense assumption on the amplitude of the electromagnetic field. Also, the algorithm
includes the gyromotion effects, parallel pressure and inertia effects {summarized in
Table 1). Numerical methods for the solution of the coupled implicit equations were

mentioned in Section 3.
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As an application of the algorithm to physics problems, simulation of collisionless
magnetic reconnection in the two-dimensional unmagnetized plasma was shown in Sec-
tion 4, in which the electron inertia was found to play a decisive role. Quantitative
comparison of the implicit method and the conventional particle scheme was also made
in the section.

Future prospects of the implicit particle method are briefly mentioned. The first
issue is an improvement of numerical accuracy which will occur in two folds. One is a
use of more sophisticated spatial grids, discretization techniques and matrix inversion
method. The other is noise reduction by particle number (size) control by splitting
[coalescence procedures, and by introduction of new techniques such as the § f-method
which was proven successful in the gyrokinetic scheme*®.

The second issue is to increase the computational ability using massively parallel
processors. By domain decomposition of the particle and field quantities, the particle
push and summation parts will be rather straightforwardly implemented®. However,
the method of the field solution differs among the particle schemes. The closely-coupled
implicit method currently adopts the bi-CGSTAB and CR methods to invert the matri-
ces of coupled implicit equations. The bi-CGSTAB method involves two matrix-vector
multiplications and three scalar-product calculations per iteration cycle. These sum-
mations can be taken separately and simultaneously in the processors, and the data
transferred among them. With ultra high-speed data link, we will be able to take fuil

advantage of massively parallel processors in the 21-st century.
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Table

e Large time-and-space scales: wp At > 1, and Az > cfwp,.

¢ Electromagnetic.

¢ Multi-dimensions in any geometry (Cartesian, cylinder, torus).

¢ Inhomogeneous plasma density and magnetic field.

¢ Kinetic ions; kinetic or drift-kinetic electrons:

[ Resonance effects {Landau, cyclotron, bounce resonances) ‘

Orbit effects: Finite Larmor radius effects
Diamagnetic and magnetization effects .

- 9 » included.

Complicated particle trajectories

Electrostatic shielding

| Electron inertia — Finite speed relaxation

Table 1. Characteristics of the HIDEN Simulation Code
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Figure Captions

Figure 1. The poloidal magnetic flux function ¥ and the toroidal ion current Jé‘) in
the upper and lower panels, respectively, for (a) wyt =0, (b) 1.6, and (c) 3.1. The
dashed contours correspond to negative values; ¥,,,, = 13.6 and ¥,,,;,, = —9.2 for the
upper panels, and J{4), .. = 0.69 for (a), and F) oo = 1.5 for (b) and (c) of lower

panels.

Figure 2. Time history of the electric field (solid) and the current (dashed) measured
at the x-point in the upper frame, and that of the isolated poloidal flux AY in the

lower frame.

Figure 3. (2){b) The poloidal and toroidal currents, (¢) the charge density, and (d)
the scatter plot of particles that initially resided in the square regions. The upper
panels are for the ions and the lower panels for the electrons at ¢ = 1.674. The

dashed contours correspond to negative values, and the maximum norms are (a)

JO = 1.0, JO = 1.4, (b) 1 = 1.5, Ji = 2.6, and (c) n® = 134, n(® = 135.

Figure 4. The poloidal and toroidal components of the electric field for ¢ = 1.674 in
the upper panels, and the poloidal and toroidal components of the magnetic field in
the lower panels. The dashed contours correspond to negative values, and the
maximum norms are £, = 3.6 x 1073, F; = 1.7 x 107, B, = 0.19, and

By =12x%107%
Figure 5. The format is the same as in Fig.4 except that the time is { = 2.274. The

maximum norms are 5, = 3.8 x 1073, E; = 1.4 x 107%, B, = 0.20, and

B, =83 x107%
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Figure 6. The magnified plots of the poloidal quantities in the central region around
the x-point at ¢ = 2.274 (the vectors are plotted in every other grid-points in the
z-direction). The electric and magnetic fields are displayed in the upper panels, and

the ion and eleciron currents in the lower panels. The maximum norms are

E,=47x1073, B, =022, J%) =0.72, and J{¥ = 2.5.

Figure 7. The y-components of (a) V x B,, and (b) [V x B, — (4n/c)J] for t = 1.374.

The dashed contours correspond to negative values.
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