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Abstract

We performed a computer simulation of a magnetohydrodynamic dynamo
in a rapidly rotating spherical shell. Extensive parameter runs are carried
out changing the electrical resistivity. It is found that the total magnetic
energy can grow more than ten times larger than the total kinetic energy
of the convection motion when the resistivity is sufficiently small. When
the resistivity is relatively large and the magnetic energy is comparable or
smaller than the kinetic energy, the convection motion maintains its well-
organized structure. However, when the resistivity is small and the magnetic
energy becomes larger than the kinetic energy, the well-organized convection
motion is highly disturbed. The generated magnetic field is organized as a
set of flux tubes which can be divided into two categories. The magnetic
field component parallel to the rotation axis tends to be confined inside the
anticyclonic columnar convection cells. On the other hand, the component

perpendicular to the rotation axis is confined outside the convection cells.
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1 Introduction

In the previous paper we investigated the thermal convection in a rapidly
rotating spherical shell without the magnetic field. The velocity field of the
convection motion under a strong constraint of the Coriolis force was studied
in detail through a computer simulation. lu this paper, we proceed to the
next stage of our magnetohydrodynamic (MHD) dynamo research where the
behavior of the magnetic field is included. The numerical code is improved
so as to solve the MHD equations in the geometry of the spherical shell.
Using this code, we study the coupling between the thermal convection of
an electrically conducting fluid in a rapidly rotating spherical shell and the
magnetic field. Time development of the magnetic field as well as the fluid
motion is self-consistently followed including all nonlinear couplings. In this
paper we report our first results obtained by a full nonlinear MHD simmlation.

The MHD dynamo is an energy transformation process from the kinetic
energy of an electrically conducting fluid into the magnetic energy. The
earth’s magnetic field (geomagnetic field) and the solar magnetic field are
the well-known and fascinating examples which are thought to be caused
by the MHD dynamo. There are many simple but mysterious facts of the
geo- or solar-magnetic field which yet remain unresolved. For instance, why
is the geomagnetic field a nearly pure dipole? (It is the very question that
motivates us to this research.) And why did the dipole moment reverse many

times in the earth’s history? As for the sun, why does the solar magnetic



field exhibit the 22 years cycle? And why does the solar torcidal field migrate
to the equator as is exhibited in the butterfly diagram?

The slowness in the development of the geo- or solar-dynamo research
obviously lies in the intrinsic, strong nonlinearity of the MHD equations
which makes us difficult to reveal the dynamo problem purely by an analyt-
ical method. Historically, the main stream of the dyname study is confined
in the kinematic dynamo approach where the velocity field is prescribed ig-
noring the feedback effect from the generated magnetic field through the
j x B force. (The velocity field is prescribed in terms of a “proper” kinetic
helicity distribution, differential rotation, and meridional circulation.) This
approximation makes the electromagnetic induction equation knear. It is
obvious, therefore, that the kinematic dynamo approach is not physically
self-consistent. In order to reveal the real dynamo mechanism, obviously we
have to solve the full set of the MHD equations including all nonlinear terms.
The numerical simulation using a current supercomputer enables us to deal
with the full nonlinear MHD dynamo.

The numerical simulation of the full nonlinear MHD dynamo was pio-
neered by Gilman and Miller [1] in 1981. Their purpose was to reproduce
the characteristic features of the observed solar magnetic field, especially
the 22-years cycle and the equatorial migration of the toroidal field. They
showed for the first time that the magnetic field could certainly be generated
by the MHD dynamo in a self-consistently solved velocity field. Adopting

the Boussinesq approximation, they solved the equations in the spherical



coordinate system (15 (radial) x 50 (latitudinal)) with the Fourier mode ex-
pansion in the azimuthal direction (15 modes). They, however, did not solve
high latitude regions (> 75° N and S) because the concentrated grid points
near the north and south poles make the Courant-Friedrich-Levy (CFL) con-
dition qﬁte severe to fulfill. They determined the physical parameters (the
Rayleigh number, Taylor number, Prandtl number, shell depth) so as to
reproduce the characteristic features of the observed solar convection, espe-
cially the differential rotation profile on the surface. They carried out three
parameter runs with different electrical resistivities (the magnetic Prandtl
number ¢ = 0.1, 0.2 and 0.4). They showed that when the resistivity was
sufficiently small (g = 0.1 or 0.2), the seed magnetic field grew by the dy-
namo process. The maximum value of the magnetic energy was about 20%
for ¢ = 0.1 and three orders of magnitude smaller than the total kinetic
energy of the convection motion for ¢ = 0.2. The spatial resolution of their
numerical code was not sufficiently high to simulate the dynamo with smaller
resistivity or with stronger magnetic field. In both cases of g = 0.1 and 0.2,
the spectrum of the magnetic field in their simulation was broad. In other
words, the magnetic field had no particular structure.

Glatzmaier [2, 3, 4] improved the simulation model of the solar dynamo
by Gilman and Miller. He developed a new code [2] in which variables are
expanded by the spherical harmonics. The spherical harmonic expansion
excludes the numerical difficulty arising from the CFL condition near the

poles. Therefore he could solve equations in the full spherical shell. And he




used an anelastic approximation instead of the Boussinesq approximation.
The anelastic approximation makes it possible to include the effects of the
density stratification. He made an extensive analysis of the generated field
and obtained a lot of fruitful results. However, the generated magnetic fields
in his simulation were also very weak: The magnetic energy is about three
orders of magnitude smaller than the kinetic energy of the convection motion.

Tt should be stressed that the purpose of Gilman & Miller and Glatzmaier
was to reproduce the basic characteristics of the observed solar magnetic field.
Therefore they chose the physical parameters as close as the values of the sun.
We believe that this choice made their simulation results not so conclusive.

We performed a simulation of the MHD dynamo with rather different
purpose. Our purpose is to get essential and basic ideas of fundamental
MHD dynamo physics. In other words, we do not intend to compare directly
our simulation results with the actual geo- or solar-magnetic field. We be-
lieve that this is the necessary first step of the dynamo research. Therefore
we exclude all ad hoc assumptions. For example, we solve the full com-
pressibility of the fluid. (We adopt neither the Boussinesq nor the anelastic
approximation. )

We developed a new code in which the finite difference method is used
in all directions in the spherical coordinate system. Using this code, we can
solve equations in the high latitude region including the pole as well as the
low latitude region. The model and numerical techniques to overcome the

CFL condition problem near the pole will be described in section 2. We will



show in section 3 that the magnetic energy can reach more than ten times
larger than the total kinetic energy of the convection motion. As far as we
know, this kind of strong field generation has not been reported so far. New
findings obtained by the analysis of the strong magnetic field will be reported

and summarized in section 3 and section 4.

2 Model

2.1 Physical system and equations

The physical system, which is basically the same as that in the previous
paper except for the inclusion of the magnetic field, is briefly reproduced
here. We consider a spherical shell vessel bounded by two concentric spheres.
An electrically conducting fluid is confined in this shell. Both the inner and
outer spherical boundaries rotate with a constant angular velocity . We
use a rotating flame of reference with the same angular velocity. There is
a central gravity force in the direction of the center of the spheres. The
temperatures of both the inner and outer spheres are fixed; hot (inner) and
cold (outer). Since the temperature difference between them is sufficiently
large, a convection motion starts to be driven when a random temperature
perturbation is imposed at the beginning of the calculation. At the same
time an infinitesimally small “seed” magnetic field is given in the form of a

superposition of random perturbations of a vector potential.




The system is described by the following MHD equations:

dp
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Here the density p, pressure p, velocity v, magnetic field B are independent

variables. A, j and E are the vector potential, the current density and the

electric field, respectively. The ratio of the specific heats (= 5/3), the

viscosity p, the thermal conductivity K and the electrical resistivity 7 are

assumed to be constant. g is the gravity acceleration and # is the radial unit

vector. gg 1s a constant.



We normalize the quantities as follows: The radius of the outer sphere
To = 1; the temperature of the outer sphere 7'(r,) = 1; and the mass density
at the outer sphere p(r,) = 1. The normalization units of other variables
are given by combinations of these variables [5]. The gravity is inversely
proportional to the square force since we ignore the self gravity of the fluid.
We also ignore the centrifugal force in the equation of motion (2) by assurming

that it is absorbed into the gravity field.

2.2 Coordinate system and numerical method

The above equations are numerically solved in a spherical coordinate system
(r, ¥, p), where r is the radius, ¢ is the colatitude and ¢ is the longitude.
The polar axis ¢ = 0 is taken to be the direction of the angular velocity
vector £2. We call the plane J = 7/2 the equatorial plane.

It is well known that the velocity field of the convection motion without
any magnetic field is symmetric about the equatorial plane when the rotation
rate of the spherical shell is sufficiently high. This symmetrical motion is
confirmed in our previous paper. We have made several preliminary MHD
simulations in which the equations are solved in the full spherical sheil region
{0 < ¥ < 7). We have found that the generated magnetic field is always
nearly anti-mirror symmetric about the equator [3]. Accordingly, we solve
in this paper only a half hemisphere by assuming the anti-mirror symmetry
for the magnetic field and the mirror symmetry for other variables (v, p,

p)- Hence, the magnetic field on the equatorial plane has only the normal



(Iatitudinal) component (B, = B, = 0).

As we did in the previous paper we use the second-order finite differ-
ence in all directions (r, ¥ and ) and the fourth-order Runge-Kutta-Gull
(RKG) method for the time integration. The grid numbers are 30 (radial),

32 (latitude; 0 < ¥ < 7/2) and 128 (longitude; 0 < ¢ < 27), respectively.

2.3 Initial and boundary conditions

The initial condition is given by a hydrostatic and thermal equilibrium state:

T(r)=1-F8+ g, (12)
p(r)=T(r)", (13)

with
v =0, (14)

and
B=0, (15)

where 8 > 0 is a constant and

m = %D -1 (16)

is the polytropic index.
The temperatures at both the inner (r = r,) and outer (r = r, = 1)

boundaries are fixed. A rigid boundary condition is given for the velocity:

v=0 atr=n,l (17)



For the magnetic field, we adopt the following boundary conditions which

ate exactly the same as those of Gilman and Miller {1]:

Ey=E,=0 atr=r, (18)

and

a 0
E,. = —T(T‘E,g) = E(TE‘IP) =0 at r=1. (19)

The condition (18) means that the inrer spherical boundary is a perfect
conductor. And the condition (19) means that the radial component of the
magnetic field can diffuse out through the outer spherical boundary. (By =
B, =0 but B, # 0 at r = 1). This implies that there is no Poynting flux
(E x B) through the outer boundary as is the case for the inner perfect
conductor boundary. By imposing this no Poynting flux entry condition
through the boundaries, we can definitely conclude that any magnetic field,
if generated, must be a consequence of the dynamo action in the bulk of the

spherical shell.

2.4 Physical parameters

The system has seven free parameters: r, (radius of the inner sphere), ,
K, 1, go, @ and m. It is practically impossible to perform a comprehen-
sive parameter study to cover the whole seven dimensional parameter space.
Therefore we confine ourselves to an extensive parameter run in one dimen-
sional subspace of the resistivity 7. This is because the resistivity is supposed

to be the most interesting and important parameter in the generation process
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of the magnetic field.

The other parameters are chosen so that they can be representative of the
following two principles for the convection motion with no magnetic field: (i)
The convection motion keeps a well-organized (non-turbulent) global struc-
ture and (ii) the convection motion is strongly constrained by the Coriolis
force. The latter condition (ii) can be visually confirmed when the colum-
nar convection cells, which we call in this paper “convection columns [5]”,
are regularly formed in the longitudinal direction and stand straight along
the rotation axis. The above two conditions can be rephrased as: (i’) The
Rayleigh number R should not be so large compared with the critical value
R.. (ii") The Taylor number T should be taken as large as possible.

The actual procedure to find a proper set of parameters is quite compli-
cated because the critical Rayleigh number R, depends on the Taylor number
T'. And both R and T are not independent parameters in the present com-
pressible convection system. Moreover, there remains a large freedom in the
choice of the parameters which satisfy the above conditions. Hence, we im-
pose one more condition which comes from a rather computational reason.
Evidently, the dynamo efficiency strongly depends on the convection velocity
(see equations (4) and (8)). If the convection velocity is too slow, it will take
a lot of calculation time to follow the time development of the system. If
the convection velocity is too fast (e.g., supersonic), on the other hand, the
role of the compressibility of the fluid would become sizable. The influence

of the compressibility on the dynamo action is another (and probably more
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difficult) subject of the MHD dynamo. This is beyond the scope of this pa-
per. At our own choice, therefore, we set the convection velocity to be about
10% of the sound velocity.

We have made a lot of parameter runs in order to find a proper set
of pa.rarﬁeters that satisfy the above conditions. The chosen parameters
are as follows: r, = 0.3, p = 2.829 x 107°, K = 2.423 x 1073, g, = 1.0,
8 = 7 and m = 0.25. In this case, the Taylor number and the Rayleigh
number are T' = 5.88 x 10° and R = 2.00 x 10*, respectively. Under these
fixed parameters, we carry out eight simulations with different resistivity »:
n=1x107,6x107° 8 x 1075, 1 x 107 1.2 x 107%, 1.4 x 107%, 2 x 10~*

and 4 x 107%.

2.5 Numerical techniques

There are two numerical difficulties in solving the finite difference equations
on the spherical coordinate system. One is the severe CFL condition on
the time step due to the concentrated grid points near the pole and the
other is the “singularity” onm the pole. The first difficulty is successfully
overcome by a devised smoothing procedure near the pole. This smoothing
procedure is described in the previous paper [5]. In this respect, it will be a
good place to explain the reason that we have used the vector potential A
in the electromagnetic induction equation (4). When we use the magnetic
field B in the induction equation as usual, the smoothing procedure has

to be applied to B. Then, the smoothing procedure produces an artificial
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magnetic monopole component (V - B # 0), although its magnitude is very
small. The numerical production of the monopole component should be taken
as a serious problem especially in the MHD dynamo study. When we use
the vector potential A in the induction equation, the smoothing procedure
does work quite satisfactorily. The magnetic field is then calculated by the
equation (6). This magnetic field exactly satisfies the equation VB = 0
because the equation V-V x A = { is rigidly satisfied in the finite difference
equation in the spherical coordinate system.

As for the pole singularity problem, we have adopted a more sophisticated
method than the previous one. The “singularity” of the MHD equations on
the pole in the spherical coordinate sysiem is removed by the use of the

following theorem [6}:

e - N 102 T i
if t]’;_11% f(d) = ],71“1}(1}9(19) =0 then 1]513% % = 1]’13(1} g’g_z?)l’ (20)

where the prime denotes the derivative. The MHD equations on the pole (J =
0) can be transformed into a non-singular form by this theorem. We place
grid points on the pole (¢ = 0) and solve the transformed MHD equations

on these grids by the finite difference method.
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3 Results

3.1 Magnetic field generation

We first make the “basis simulation” in which the convection motion is fully
calculated with no effect of the magnetic field included (B = 0). Then we
perform eight simulations with different resistivities.

Fig. 1 shows the time development of the magnetic energy (ME) with
different resistivities 7. The time development of the total kinetic energy
(KE) of the basis case is alsc shown (the solid line in Fig. 1). The magnetic
field is amplified in all the cases except for the largest 7 (= 4 x 107*). The
curve for n = 2x 107%, which is nearly horizontal, indicates that the threshold
of the resistivity for the field amplification is a little larger than this value in
the present parameter range.

It is evident that the smaller the resistivity, the larger the saturated
magnetic energy. This is of course due to the small resistive dissipation. The
most striking point discovered in our simulation is that the magnetic energy
for the smallest resistivity (1 = 1 x 107°) reaches more than ten times larger
than the total kinetic energy (see the upper most curve in Fig. 1). To our
knowledge, this is the first MHD dynamo simulation that has demonstrated
the generation of such a strong magnetic field.

It is also shown in Fig. 1 that the smaller the resistivity, the smaller the
time for getting a saturation level. There is an exponential growth phase of

the ME for each resistivity case. The relation between the growth rate -y and
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the resistivity is given in Fig. 2. This graph shows that the positive growth
rate, which means the field amplification rate, lies on alinear function of the
logarithm of the resistivity: v = —cilog n+cs, where ¢; and ¢ are constants.

For n < 1 x 107%, ME is larger than KE, while for n > 1 x 10~%, ME
is smaller than XE. The curve for n = 1 x 107 in Fig. 1 suggests that
this value is just “critical”. We will show later that the convection motion
exhibits a qualitatively different behavior depending on whether ME > K&
or ME < KE. It will also be shown that the convection motion with the

critical n = 1 x 107* shows an interesting behavior.

3.2 Convection motion with the magnetic field

The circles in Fig. 3 show the KE at the end of run for different resistivities.
For comparison, the KE of the basis case is indicated by the dashed horizontal
line. The asterisk mark in Fig. 3 denotes the ME. It is seen that the KE stays
the same level as the basis run even if the ME is larger than the KE. 1t is to
be noted here that we may be able to get alarger magnetic field for a smaller
resistivity than = 107°, but that such a strong magnetic field is practically
difficult to get by the present simulation because the numerical time step
At which is restricted by the magnetosonic velocity becomes impracticably
small.

Although the KE remains almost the same level for all the resistivity
cases, the qualitative character of the velocity field illustrates a remarkable

difference. When ME > KE (ie., n < 1 x 107*), the convection motion
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becomes turbulent, while when ME < KE, the convection motion keeps its
original laminar pattern. This is a kind of transition of the convection mo-
tion induced by the magnetic field. This transition is very sensitive to the
condition of whether ME > KE or not. One of the features of the transition
appears in the temporal fluctuation of the level of the KE. Note that there
appears no fluctuation for the level of the KE in the basis case (see the rigid
line in Fig. 1). We plot the kinetic energies at ten arbitrary times after the
saturation of the ME in Fig. 4. The dashed line denotes the KE of the basis
case. One can clearly see that when 7 < 1 x 107* (ME > KE), the temporal
fluctuation of the KE is quite large. On the other hand, the fluctuation is
very small for n > 1 x 107* (ME < KE).

The transition of the convection motion is more clearly visualized in
Fig. 5(a) to (f) where (a) basis case, (b) n=1x 107% (¢) n=8 x 1075, (d)
n=1x107* (e) n=12x10"* and (f) = 1.4 x 10~*. In these figures, the
temporal development of the convection columns are presented. The hori-
zontal axis of Fig. 5 is the longitude (0° < ¢ < 360°) and the vertical axis is
the time. The black region denotes the rising fluid (v, > 0} in the equatorial
plane at 7 = 0.65 and the white region denotes the sinking fluid (v, < 0).
The pairs of the black and the white regions at each time correspond to the
pairs of convection columns.

We first examine the basis case. After a short initial growing phase (¢ <
50) the convection motion reaches a stationary state and keeps its regular

motion thereafter. There are six pairs of convection columns which drift
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“westward”, i.e., the opposite direction of the spherical rotation.

In Fig. 5(b), the convection columns drift westward until ¢ ~ 3 x 10% at
~ which time the ME exceeds the level of the KE (see Fig. 1). Up to this time,
the behavior of the convection columns (the uniform westward drift) keeps
almost the same behavior as that of the basis case, since the j x B force 1s
too weak to affect the convection motion. However, at about ¢ = 3 x 10%
the magnetic field begins to change the drift velocity of the columns. The
direction of the longitudinal drift motion of the columns is reversed (eastward
drift) at about ¢ = 3.9 x 10°. The regular stripe pattern disappears after
{ ~ 6 x 10? at which time the ME almost saturates (see Fig. 1). The pattern
after £ ~ 6 x 102 suggests that the convection motion becomes turbulent.

Fig. 5(c) shows the case for = 8 x 107°. The initial temporal evolution of
the six pairs of columns remains the same as that of the basis case (Fig- 5(a))
until ¢ ~ 7 x 10% at which time the ME reaches to the same level of the KE
{see Fig. 1). As is observed in the case of Fig. 5(b), the drift motion of the
columns becomes eastward after the ME exceeds the KE. The stripe pattern
in Fig. 5(c) indicates that the number of convection columns decreases from
six to five at ¢ ~ 1.1 x 10%. It is also seen that the column number changes
several times, though the drift direction keeps eastward. The convection
motion also becomes turbulent, although the fluctuation is not so large as is
seen in Fig. 5(b). A similar behavior is observed for the case of n = 6 x 107°,
which is not presented here, though. The major difference is that the drift

direction is reversed at ¢ = 6 % 10% when the ME reaches the KE (see Fig. 1).
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It 1s interesting to examine the case of the “critical resistivity” (n =
1 x 107% Fig. 5(d)). The effect of the magnetic field appears at ¢ ~ 1 x 10
when the ME reaches the KE. The “column number transition” is recognized
at ¢t ~ 1.1 x 10% in Fig. 5(d). At this time the convection columns, which
initially consists of six pairs, are divided into eight pairs. The eight pairs
of columns are almost the same in size and they drift westward with the
same phase velocity as that when they used to be six {compare the angles
of the stripe patterns). It should be noted that the ME rapidly drops at
t~1.1x 10° (see the graph of n = 1 x 107* in Fig. 1). This seems to suggest
that the reconstruction of the convection columns consumes the ME. Fig. 1
indicates that the ME reaches again the same level of the KE at ¢ ~ 1.6 x 10°.
The second column number transition takes place at this time (see Fig. 5(d)).
The number of the column pairs becomes seven after this transition.

Fig. 5(e) shows the behavior for n = 1.2 x 10~ in which case the ME
1s always less than the KE (see Fig. 1). The stripe pattern in Fig. 5(e) is
almost identical to that of Fig. 5(a), i.e., for the convection motion without
the magnetic field. The time development of the ME for n = 1.2 x 10~* in
Fig. 1 indicates that the ME reaches about 10% of the KE after ¢ ~ 1.4 x 103,
Although the ME is certainly less than the KE, such a magnetic field may
have some effect on the convection motion. However, any distinct indication
of the effect of the magnetic field is recognized after ¢ ~ 1.4 x 10°. (One can
find, however, from a detailed comparison between Fig. 5(a) and Fig. 5(d)

that the column drift velocity is a little slowed down by the magnetic field.)
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Tt will be confirmed later that the convection motion for n = 1.2 x 107* is
almost identical to that of the basis case.

The observed robustness of the convection motion against the presence of
the magnetic field in our study makes a contrast with the results of Gilman
and Miller [1]. They found that the convection motion was very sensitive
to the presence of the magnetic field. Even a very weak magnetic field (by
three orders of magnitude smaller than the kinetic energy) does significantly
affect the convection motion in their simulation. The robustness in our sim-
ulation apparently comes from the choice of the high Taylor number. The
rapid rotation makes the Coriolis constraint on the fluid flow quite strong.
Therefore the convection motion is quite stable in our case. On the other
hand, Gilman and Miller chose a relatively low Taylor number comparered
with their high Rayleigh number. This must make the fluid motion sensitive
to the existence of the magnetic field, whatever small it is.

In order to visnalize the three dimensional structure of the velocity field,
the isosurfaces of the axial component of vorticity wy = w-/$ are illustrated
in Fig. 6. The panels (a), (a’) and (a”) show the isosurfaces for n = 1.2x107%.
The three panels show the same object but viewed from different directions;
(a) from the north pole ¥ = 0, (2’) from ¢ = 45° and (a”) from & = 7/2, i.e,,
the equator. The panels {b) to (b”) and (c) to (¢”) show the isosurfaces for
n=1x10"* and n =1 x 107°. The viewing angles are the same as those of
(a) to (a”). The six pairs of convection columns are clearly seen in Fig. 6(a)

to (a”). We have plotied the isosurface for the basis case to find that it is
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identical to those of Fig. 6(a) to (a”). This provides another evidence that
the velacity field of the convection motion for # = 1.2 x 10™* is almost the
samne as that of the basis case.

We saw previously in Fig. 5(c) that the number of the convection column
pairs became seven when n = 1x 107* after the second transition. The
seven pairs of the convection columns are visualized in Fig. 6(b) to (b”).
The profile of the convection columns in Fig. 6(b) to (b”) are quite similar
to that in Fig. 6(a) to (2”). The velocity structure is essentially the same as
that of the basis case. The only difference is the longitudinal mode number.
A remarkable point to be noted in Fig. 6(b) to {(b”) is that the convection
motion is still laminar in spite of the presence of the strong magnetic field
(ME ~ KE). The temporal fluctuation of the KE for 7 = 1 x 10~* shown
in Fig. 4 comes from the rapid energy rise and fall phenomena which appear
only when the “column number transition” takes place. The same behavior is
also seen in Fig. 5(d). On the other hand, the KE of the cases for p < 1x 10~*
fluctnates rather randomly after the ME becomes larger than the KE.

In Fig. 6(c) to (¢”), it is observed that the regular structure of the convec-
tion columns is destroyed. This figure indicates that the convection motion
becomes more or less turbulent, although there still remain some residuals
of the columnar structure of the convection motion.

From the above results we can conclude that the convection motion is
largely dependent on the condition of whether the ME > KE or not. As far

as the ME stays less than the KE, the convection motion remains almost
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the same as that for no magnetic field. When the ME grows larger than the
KE, however, the convection motion is greatly disturbed and becomes more

turbulent.

3.3 Structure of the magnetic field

We are now at the position of examining the structure of the generated
magnetic field. By having examined the structures for all cases, we have
found that the basic characteristics of the magnetic field structures are almost
the same except for the magnitudes of the generated fields. In what follows,
therefore, we concentrate our attention to the results for n = 1 x 107, since
the generated magnetic field is the strongest. The results for n = 1.4x 107 in
which the magnetic energy is less than the kinetic energy, are also presented
for comparison.

The latitudinal component of the magnetic field B; in the equator at
the end of the run for n = 1 x 107° (¢ = 1.76 x 10%) is shown in Fig. 7(a).
Note that other components of the magnetic field are absent owing to the
boundary condition. For comparison, the velocity field is shown in Fig. 7(b)
where for brevity the velocity arrows are plotted only on every four grid
points. Examination of the radial distribution of the magnetic energy density
indicates that thereis a thin layer of the concentrated magnetic field between
r = 0.3 (inner boundary) and r ~ 0.33 which is sandwiched between the
inner envelope of the convection columns and the perfectly conducting inner

spherical boundary. However, the contribution of the magnetic energy in
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the boundary layer to the total magnetic energy is only 5.5% of the total
magnetic energy in the system. For clarity, therefore, the magretic field in
the boundary layer is not shown in Fig. 7(a).

By comparison between Fig. 7(a) and (b) one notices that there are three
magnetic fluxes which are confined in the centers of the anticyclonic con-
vection columns. (Fluids in an anticyclonic column rotate in the opposite
direction of the spherical shell; clockwise in Fig. 7.) Let us then investigate
the three dimensional structure of the magnetic field. For convenience, we
divide the total volume of the spherical shell V into two regions V; and V5.
Here V; is defined as the region R < 0.3 where R is the distance from the
rotation axis. (In what follows, the cylindrical coordinate system (R, ¢, z)
1s used, where the z-axis coincides with the ¥ = 0 direction in the spherical
coordinate system.) Thus, the region V; is the “polar region”. The magnetic
field in V; is relatively weak and complicated. Thus, we are not interested
in it. On the other hand, the magnetic field in V; has a distinct structure.
It is organized as discrete flux tubes. A careful examination of the simula-
tion data tells us that there are two kinds of the flux tubes, which can be
distinguished by the z-component of the magnetic field. Accordingly, we di-
vide the magnetic energy W into two parts: W = B?*/2= W, + W, where
Wz = Bz*[2 and W, = B,%/2 = Bp?/2 + B,%/2. Then, the two kinds of
flux tubes can be visualized by the isosurfaces of W; and W, .

We first show the flux tubes of the magnetic field parallel to the z-axis.

Fig. 8(a) and (b) illustrate the isosurfaces of Wy = 0.03 at ¢t = 1.76 x 10°
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(n = 1 x107%), which are viewed from two different angles; (a} from ¢ = 45°
and (b) 90° {equator). The gray disk in Fig. 8 denotes the equatorial plane.
The maximum value of W5 is 0.989 and the region in which Wy > 0.03 is
1.13% of ihe total volume of V5. In order to elucidate the relative position
of the isosurfaces to the convection columns, they are colored with yellow or
blue depending on the value of the z-component of the vorticity wz. It shouid
be noted that the amplitude of wz is large in convection columns, particu-
larly, a strong positive {negative) wz corresponds to a cyclonic (anticyclonic)
convection column. The isosurface with wy; > 04 (w < —0.4) is colored
with blue (yellow) and others are white. One can recognize from Fig. 8 that
the blue region is almost null but that the most part of the isosurfaces are
yellow and are nearly parallel to the z-axis. There are three yellow columnar
magnetic flux tubes. The “yellow” color means that they are confined in the
anticyclonic columms. The magnetic fluxes shown in Fig. 7(a) correspond
to these three flux tubes. The phenomenon of the B, flux confinement in
the anticyclonic columns is also seen in other resistivity cases. For example,
there are four confined flux tubes for n = 1.4 x 10™%.

We shall move onto the other kind of the flux tube. Fig. 9(a} to (d)
show the isosurfaces of W, = 0.03 for the case of n =1 x 107°, i.e., the flux
tubes of the magnetic field perpendicular to the z-axis. The viewing angles
of Fig. 9(a) to (d) are as follows: (a) from ¢ = 0 (north pole), (b) 30°, (c) 60°
and (d) 90° (equator). The isosurfaces in Fig. 9 are also colored with blue or

yellow depending on the vorticity wyz at each point. The threshold value and
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the meaning of the colors are also the same as those in Fig. 8. Fig. 9 shows
that the most part of the isosurfaces are white. This means that these flux
tubes are located outside the convection columms.

The radial profile of the magnetic energy density in a stationary state for
n=14 x 10~* is given in Fig. 10 (dashed line) which indicates that a rather
strong magnetic field exists near the outer spherical boundary {r > 0.7).
From equations (4), (6) and (8), the time development of the magnetic energy

density can be written as follows;
9 2 . )
5 (B /2)=-v-(jxB)-V-(ExB)-nj". (21)

The solid curve in Fig. 10 denotes the profile of the energy transport due to
the Poynting flux in the radial direction, which is given by integrating the
second term in the right hand side of the equation (21) over ¥ and . The
solid curve is negative in r < 0.7 where the dynamo term —v-(j xB) is positive
(see the dotted line in Fig. 10). This indicates a tendency that the generated
energy is transferred from this region to outside by the Poynting flux. On the
other hand, the solid curve becomes positive in 7 > 0.7, where the dynamo
term rapidly decreases. This implies that the transferred magnetic energy
is accumulated in r > 0.7. Consequently, one can conclude that the strong
magnetic field near the outer spherical boundary is maintained by the energy
transport from the inner region r < 0.7.

Let us briefly summarize the above results. The strong magnetic field

generated by the MHD dynamo is organized as discrete flux tubes. The
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magnetic fields parallel to the z-axis are confined mainly in the anticyclonic
columns, while the magnetic fields perpendicular to the z-axis are confined
outside the convection columns. We shall discuss in section 4 the mechanism
that makes such a difference in the generation of the flux tubes and attempt
to find the reason that the flux tubes are confined selectively in anticyclonic
colummns, not in cyclonic columns.

In connection with the mean field MHD dynamo theories [7], it is inter-
esting to examine the longitudinally averaged magnetic field B. Tig. 11(a)
shows B, and By by arrows in the meridian plane and Fig. 11(b) shows B,
by contour lines. It should be remarked thai no strong toroidal flux is ob-
served in Fig. 11(b). As can be seen from Fig. 11(a), there appears a definite
structure in the meridian plane for the averaged poloidal field, though the
magnitude is not so strong as expected.

Here, we shall briefly comment on the dipole component emerging from
the outer boundary r = 1 to the outside space. The magnetic field on
the outer boundary is expanded into the spherical harmonics. The analysis
indicates that there exists a definite amount of the dipole moment. The
energy of the dipole moment is roughly 10% of the total energy for n =
1.4 x 107* at the end of the run.

Finally we consider the distribution of the angle ¢ between the velocity

v and the magnetic field B in the spherical shell (Fig. 12):

= CCOs v—'B_
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The rigid line denotes the distribution of the angle for n = 1 x 10~ at the
end of the run and the dotted line for the run of = 1.4 x 10™. If v and B
distribute independently, the distribution of the angle must approach to a sin-
function which is shown by the dashed line in Fig. 12. The resulis show that
the magnetic field has a tendency to become parallel or antiparallel to the
convection motion. This tendency can be understood as the magnetic field
stretching effect subject to the flow of highly conducting fluids. The efect is
especially strong for the case of n = 1.4 x 107*, because the magnetic field
for 7 = 1.4 x 107* is so weak and hence is strongly dependent on the fluid

motion.

4 Summary and Discussion

We have performed a computer simulation of an MHD dynamo in a rapidly
rotating spherical shell. Extensive parameter runs have been carried out by
changing the resistivity. New results obtained by the present simulation are

sumrnarized as follows:

1. When the resistivity is sufficiently small, the magnetic energy (ME)
generated by the dynamo can become larger than the kinetic energy
{KE) of the convection motion. It reaches more than ten times larger

than the KE.

2. The KE keeps nearly the same level irrespective of the generation of

the magnetic field. This is true even for the case when the ME becomes
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more than ten times larger than the KE.

3. The growth rate of the ME is well represented by a linear function of the

logarithm of the resistivity. The physical process is under investigation.

4. The structure of the convection columns become quite different depend-

ing on whether the ME is larger than the KE or not.

5. When ME < KE, the convection motion keeps an almost identical
motion to that of the convection motion with no magnetic field. The
convection motion in this case is so robust that it is not affected by the

existence of the magnetic field.

6. When ME > KE, the convection motion is strongly disturbed by the

magnetic field and becomes turbulent.

7. The generated magnetic field is organized in discrete flux tubes.

8. There are two kinds of the magnetic flux tubes which can be distin-
guished by the contained field component. One is the Bz—flux tube
and the other is the B flux tube; here z-axis is the rotation axis and

the B, denotes the magnetic field perpendicular to the axis.

9. The By flux tubes are confined in the anticyclenic columus.

10. The B, flux tubes are confined outside the convection columns.

The last observation can be explained by the flux expulsion effect of the

MHD fluids by the convection motion parallel to the magnetic field. It is well
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known from the previous two dimensional magnetoconvection studies that
initially uniform magnetic field is expelled from the centers of the convection
cells to the cell boundaries [8]. Magnetic field lines near the center of a
convection cell are strongly wound up by the convection motion. And then
the resistive disspation rate becomes quite large owing to the reduced scale
lengths. Therefore the field in the center of the cells is expelled from the
center of the cell. In our spherical shell convection, the fluid flow in the
convection columns is almost perpendicular to the z-axis [5]. Therefore the
magnetic field perpendicular to the z-axis is expelled from the convection
columns.

On the other hand, the magnetic field parallel to the z-axis does not
feel the flux expulston effect by the fluid flow perpendicular to the axis in
the convection columns. Then, we come to a question why the Bzflux
is confined selectively in the anticyclonic column. In order to understand
this phenomenon, we have to remember another component of the fluid flow
in the convection columns, i.e., the flow parallel to the z-axis or along the
colurnn axis [5]. The flow component along the axis is always in the direction
toward the equator in the cyclonic columms. On the other hand, the flow
component along the axis is always in the direclion away from the equator
in the anticyclonic columns. Therefore there is a fluid transport near the
equator from the cyclonic columns to the neighboring anticyclonic columns.
The anticyclonic columns absorb fluids near the equator and convey them

toward the high latitude regions by the flow along the column axis. (This
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is analogous to a cyclone on the surface of the earth.) The magnetic field
parallel to the z-axis is collected and confined by this absorbing flow near
the equator in the anticyclonic columns. This also explains that the B,-flux

tubes are observed only near the equator (see Fig. 8).
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Figure Captions

Temporal development of the magnetic energy for eight different resistivities 7. The
kinetic energy (KE) of the basis case, in which the magnetic field is not included, is also

shown for comparison.

The circle denotes the growth rate of the magnetic energy in the initial linear growing
phase for each resistivity case. The positive growth rate lies on a linear function of the

logarithm of the resistivity.

The kinetic energy (circle) and the magnetic energy (asterisk) at the end of each run.
The dashed line denotes the kinetic energy of the basis case (without the magnetic field)

in the stationary state.

Fluctuations of the kinetic energy in the resistivity domain. The circles are the kinetic

energies evaluated at ten different time steps after the saturation of the magnetic energy.

Temporal development of a cross sectional pattern of the convection columns. The black
(white) region at each time denotes the rising (sinking) fluid in the equatorial plane at
7 = 0.65. Each panel shows (a) basis case, (b) n=1x 1075, (c) 8 x 107%, (d) 1 x 107%,

(¢) 1.2 x 107* and (f) 1.4 x 107,
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Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

Three dimensional structure of the conveclion columns visualized by the isosurfaces of
the axial component of the vorticity wz. (a), (2’) and (a”) show the same object viewed
from different angles (n = 1.2 x 107*); (a) from ¥ = 0, i.e., the north pole, (a’) from
¥ = /4 and (27) from J = #/2, i.e., the equator. (b) and (c) are data of = 1 x 10~*
and 7 =1 x 107>, The panels (c) to (¢”) indicate that the convection motion becomes

turbulent.

(a) The latitudinal component of the magnetic field By in the equatorial plane at the
end of the run for 7 = 1 x 1075, (b) The velocity field in the equatorial plane. Three

magnetic flux tubes are confined in the anticyclonic columns.

Magnetic flux tubes visualized by the isosurfaces of W; = B%/2 = 0.03 when =

1 x 10™°. The color denotes the axial vorticity wy at each point on the isosurface.
The surface where w; > 0.4 (wz < —0.4) is colored with blue {yellow) and others are
white. The flux tubes colored with yellow mean that these B; fluxes are confined in the

anticyclonic columns.

The flux tubes of the magnetic field perpendicular to the z-axis visualized by the isosur-
face of W = 0.03 when =1 x 107°. The meaning of the colors are the same as those
in Fig. 8. Major part of the isosurfaces is white. This means that these fiux tubes are

out of the convection colnmms.

The 1adial profiles of the magnetic energy density and the energy transfer rate.
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Fig. 11  Meridian cross section of the longitudinally averaged magnetic field for n =1 x 107° at

the end of the run.

Fig. 12 Distribution of the angle between the velocity and the magnetic field for n = 1 x 107°

(solid line) and n = 1.4 x 107* (dotted line).
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