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ABSTRACT

The role of singular currents in three-dimensonal toroidal equilibria and their
resolution by magnetic island formation is discussed from both analytical and
computational points of view. Earlier analytical results are extended to include small
vacuum islands which may, in general, have different phases with respect to pressure-
induced islands. In currentless stellarators, the formation of islands is shown to depend on
the resistive parameter D, as well as the integrated effect of global Pfirsch-Schititer
currents. It is demonstrated that the pressure-induced "self-healing” effect, recently

discovered computationally, is also predicted by analytical theory.
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I. INTRODUCTION

The computation of three-dimensional magnetohydrodynamic (MHD) toroidal
equilibria for finite-pressure plasmas is one of the principal theoretical problems of
stellarator research. The main purpose of this paper is to give a theory of pressure-induced
islands in a stellarator extending earlier analytical work!-2 on this subject, and to discuss
the predictions of this theory in the light of recent computational results from the three-
dimensional (3D) magnetohydrodynamic (MHD) equilibrium code HINT.? In particular,
we give an analytical demonstration of the phenomenon of "self-healing,” recently
discovered computationally,*> in which vacusm magnetic islands in a stellarator are
reduced and eventually eliminated by the effect of plasma pressure-induced currents.

The following is a plan of this paper. In Section II, we discuss the role of current
singularities (“current sheets”) in three-dimensional toroidal equilibria. Even though the
importance of current sheets is recognized in analytical theories, -2 they have not received
quite the attention they deserve in computational studies of stellarators. These current sheets
are resolved by allowing islands to open up at rational surfaces. Computational studies®3
using the HINT code have drawn attention to the importance of phase relations between the
islands due to the vacuum field and the plasma pressure-induced perturbations. In Section
HI, we derive an expression for the island-width at a given rational surface, extending
earlier work? to include vacuum islands. An important extension of this theory is the
derivation of an expression for the phase of the island which predicts qualitatively the
"phase-flip" seen in computational studies of pressure-induced self-healing. In Section III,
we compare the predictions of the theory with numerical results from the HINT code. We

conclude in Section IV with a summary.

II. ROLE OF CURRENT SHEETS
Unlike tokamaks, stellarators are intrinsically 3D devices, and in the absence of a

direction of continuous symmetry, MHD equilibria with nested flux surfaces are not



guaranteed to exist. Grad® argued that, strictly speaking, 3D toroidal MHD equilibria do
not exist. However, if one extends the class of admissible solutions to include current
sheets, then the question of the existence of equilibrium solutions with nested surfaces can
be resolved, at least in a mathematical sense.

In a 3D toroidal device like the stellarator with nested flux surfaces, it is well-
known that current sheets tend to occur at the rational surfaces on which field-lines close on
themselves. The current sheet is forced into the equilibrium solution because the
topological constraint of nested flux surfaces does not allow the solution enough room to
escape from the singularity.

It is useful to bear in mind that there are related examples of current sheets in
tokamaks as well. In fact, the first analytical demonstration of a o—fuunction current
singularity in a toroidal plasma equilibrium is due to Rosenbluth et al.7 who showed that
the ideal m=1, n=1 internal kink mode evolves from an initially axsymmetric equilibrium to
a neighbouring helical equilibium with a curent sheet. Furthermore, if an external helical
perturbation is imposed rapidly on the boundary of an axisymmetric plasma, a current sheet
tends to occur at the rational surface resonant with the perturbation.8-10 These examples
from tokamak MHD help us, in a way, to see why current singularities are unavoidable in
stellarators with nested flux surfaces. Since a 3D stellarator equilibrium can be viewed
qualitatively as a 2-D equilibrium with an intrinsic symmetry-breaking perturbation, it is
natural that a stellarator equilibrium will tend to develop current sheets for the same reason
that a tokamak with an externally applied perturbation does (if the flux surfaces are forced
to remain nested).

Some recent analytical theories!-2 of pressure-induced islands in stellarators have
emphasized the crucial role of current sheets. It is possible to demonstrate the existence of
current singularities by representing the magnetic field B in the so-called "straight field-
line" form,

B=V®xV(6-1¢) ) - ()



where @ is the toroidal flux function that labels flux surfaces, 8 and ¢ are the poloidal and
toroidal angles, respectively, parameterizing a given flux surface, and 1 = (@) is the
rotational transform. The Jacobian J = (V@.VOx V@)™ can be expanded in a Fourier

series,

J=>J_ (D)exp(imb —ing) i (2)

‘The magnetostatic equilibrium condition can be written as,
J=0B+BxVp/B*=],+], , 3)
where J is the current density and p = p(@) is the plasma pressure. If we represent the

parallel current term Q = J.B/ B* in a Fourier series, ie.,

Q=Y 0, exp(imb — ing) ; 4)
it follows from V.J =0 that
, ~
Q=P —=—+Q,(d-D_) , (5)
i—n/m

where (m,n)+ (0,0). Equation (5) incorporates the condition that the toroidal current
within a flux surface is zero. The first and second terms on the right of (5) are the
inhomogeneous and homogeneous parts of the solution for the magnetic differential
equation B.VQ =-V_J , respectively.

It is clear from Eq. (5) that a 8-function current singularity is a generic feature of
the general solution to the three-dimensional MHD equilibrium problem, although the
procedure given above leaves the amplitude Q undetermined. The current sheets can be
resolved by allowing islands to open up at rational surfaces. The determination of O, was
the main goal of the boundary-layer theory of Cary and Kotschenreuther! (hereafter, CK)
and Hegna and Bhattacharjee? (hereafter, HB). Earlier, Solov'ev and Shafranov!! and
Boozer!2 had considered the physical consequences of the first term on the right side of
Eq. (5). In a seif-consistent plasma equilibrium, the first term represents a part of the

Pfirsch-Schliiter contribution to the parallel current. Reiman and Boozer!3 gave detailed




asymptotic estimates of the island-width in a stellarator caused by this term, but they did
not consider the effect of the current sheet. As shown by CK and HB, and discussed in
Section IIT of this paper, this term plays a significant role in determining the island-size in a
stellarator equilibrivm.

We comment here on the implications of current sheets for numerical solutions of
three-dimensional MHD codes!4-17 which assume the existence of nested flux surfaces.
Though it is evident that current sheets are a part of the equilibrium solution in these codes,
there has not been, as yet, much numerical effort to find them. (But see Ref. 17 for a useful
discussion of the characteristics of the equilibrium equations and a possible numerical
strategy to find current sheets in the context of the variational spectral methods.!3-17) On
the other hand, the part of the parallel current represented by the first term on the right of
(5) has been numerically computed!8:19 by making explicit use of the analytic formula.
While this procedure has drawn attention to the importance of near-singular currents in
numerical equilibrium and stability studies for stellarators, it neglects a priori the current
sheet contribution to J, (arising from the homogeneous part of the solution).

We remark that since three dimensional codes such as BETA and VMEC!3 use
variants of the relaxation method which seeks minima of an energy functional, the global
features of a numerically relaxed solution may not appear to be sensitive to the presence of
current sheets which are extremely localized and thus need a fine spatial grid. Nonetheless,
the presence of these current sheets in 3D codes may be reflected in the local force-balance
condition which is generally satisfied less accurately in the vicinity of a rational surface than
itis in the exterior region. This is due not only to the difficulty in obtaining adequate
spatial resolution in the vicinity of the rational surfaces, but also because current sheets tend
to form nonfinearly at a rather slow rate, with algebraic time-dependence.”-1 Hence, it can
take a long relaxation time (in 3D MHD equilibrium codes with artificial viscosity) to

satisfy the magnetostatic equilibrium condition in the vicinity of rational surfaces.



III. ISLAND WIDTHS IN 3D EQUILIBRIA

The current sheets, discussed in Section II, can be resolved by allowing magnetic
islands to open up at rational surfaces. In this Section, we generalize the results of HB to
allow for vacuum islands which may not, in general, have the same phase as pressure-
induced islands. To resolve the current singularities near the rational surfaces, it is
neccessary to solve the magnetostatic equilibrium condition (3) in the vicinity of rational
surfaces by relaxing the requirement that the magnetic field lines lie on surfaces of constant
@. The analytical caiculation of CK and HB involves asymptotic matching of two regions
: the exterior region in which the paraliel current is described by (5), and the interior region
where the singular solution is resoived and one essentially carries out an asymptotic
analysis very similar to earlier work on resistive instabilities of axisymmetric plasmas,20
An important technical step involved in the calculation is the derivation of a nonlinear island
equation in the vicinity of a resonant surface by solving Ampere's law Vx(VxA)=],
where A is the perturbed vector potential. In order to solve this equation in the exterior
region, CK and 1B assume that the flux surfaces are nearly circular and the plasma has
low B. This simplifies the metric coefficients involved in the analytical inversion of the
operator V x(V x and decouples the different helicities. In the interior region near a
rational surface, where islands open up to resolve the singularity in the current, itis
assurned that the "single-harmonic approximation” holds, i.e., the contribution of the
resonart part of the vector potential dominates all other contributions. This is a reasonable
approximation if island widths are smaller than the characteristic distance between rational
surfaces. In this approximation, it is also possible to neglect the spatial variation of the
equilibrium quantities and the perturbed fields across the width of the island, analogus to
the "constant @ " approximation of resistive MHD theory.

We consider an island at the rational surface 1 =n_/m,, and transform to angle
coordinates, & =6—(n, /m, )¢ and { = ¢. In the new coordinates, the perturbed vector

potential can be written as




A:z[Agm(cp)VmAm(qa)Va]exp[immi{m(n,/m,)—n}g}] . (6)

where we have chosen the gange condition A, =0. Since at a given rational surface, the

resonant component of A c gives the largest contribution to the island, it is useful 1o define
an average over the angle { that selects only the resonant term.! Representing the
averaged resonant component by A, the helical flux function in the viciity of a given
rational surface, ® = @, can be written as!.2

=[NP -D Y —A=( /)’ - A, (7)
where 1” is the derivative of 1 with respect to @ at the rational surface.

In the exterior region, assuming near-circular flux surfaces, Ampere's law can be

wiltten as

[a riR, 9 1aZ]A_gg_ Jo

TR, Wdrt~r1/m

LA LA _O8r—r) . (8
ar 1+ (mr | RY Or TR, 36° Qo =rn) ®)

where we have dropped the subscript 7 on the integers m and # for notational convenience.

Equation (8) can be solved using the Greene's function G(r,7"). In the presence of a

resonant vacuum perturbation, the real part of the general solution can be wriiten as

|Alcos(m8 —n{ + ¢,) = A, cos(mb —n{)+

Jdr'G(r,r’}{%)— lnlcos(mb —né + ¢,) ~
n

|Q‘Cos(m9—n§+¢0)5(r—rm)} , {9

i-nfm
assuming that a single harmonic is dominant. Without loss of generality, we take the phase
of the vacuum perturbation to be zero. The angle ¢, is the phase of the current sheet as
well as the island that resolves it, whereas ¢, is the phase of the island caused by the
Pfirsch-Schliiter currents. Asymptotic evaluation of the Greene's function iniegral 2

yields

R, dp{di"
|Ajcos(m@ — n& + ¢,) = A, cos(mf —n&) - ﬁﬁb—i) W olcos(mB —né + ¢))

+—IS'-9~lQA]cos(m9—n§ + 0y} . (10)
2m



The island half-width, for a given A, can be written w = 21/|A/ t'| which, expressed as an
extent in the rotational transform, is 8t =|i[w. We have
St =24v'A} . (11)

Multiplying Eq. (10) by ', we get
81 cos(m@ —nl + ¢,) = 81,2 cos(mb — n&) + Ccos(mb — né + ¢,)

+Dcos(mG—né + ¢,) . {12)
where 81, = 2+/|t’A,| is the half-width of the vacuum island,
2
C= _%@ &_%ﬁ , {13a)
By dr) r m'|Jy
and
p=2% dys; (13b)
m Byr dr

As shown by CK and HB, the amplitude of the current sheet, IQ , is determined by the

physics of the interior region. The solution of the interior region equations, using the
Obm'’s law of resistive MHD, has been carried out by HB under the approximations
discussed at the beginning of this section. (We do not repeat the calculation here, but refer

the reader to Ref. 2.) Following the analysis given in HB, we obtain

D=Gor =2, &5, , (14)
m Y

r

where Dy is the well-known resistive stability parameter due to Glasser et al.2! In Eq.
(14), the pressure profile is determined by assuming that it s constant within the island
separatrix, and that the particle flux due to finite resistivity is constant outside the
separatrix. Away from the island, the pressure gradient is matched to its value in the
exterior region. Equating terms proportional to sin(m@ — nd) and cos(m8 —nl) in
Eq.(12), we get,

(81— Gé1)cos g, = 81, + Ccos g, , (15)

and

(512 - G&)sin ¢, = Csin g, , (16)




respectively. If we set &1, =0, we obtain ¢, = ¢, and the result,

S51=G[2+~(G ]2 +|C] , (17)

given earlier by HB. More generally, solving (15) and (16) for 6t and ¢,, we get

51=G/2+(G/2) +(81' +C* +251,Ccos ¢ : (18)
and
Csin ¢,
tan ¢, = —5————— 19
% 81, +Ccos ¢, =

In Egs. (18) and (19) , the quantity C represents the globally integrated effect of the
first term in (5). Far from an island, this term describes the effect of slowly varying
exterior currents that produce resonant fields and islands. In the terminology of Hayashi et
al.22, this is a "global” effect, and though induced self-consistently by plasma pressure, it
is similar in ways to the effect of an external coil on an axisymmeltric equilibrium. Reiman
and Boozer's!3 treatment of islands deals mainly with this so-called "global” effect. The
principatl result of the analysis of CK and HB is that this "global" effect accounts for only a
part of the expression of the island width, and that another crucial part of the expression
comes from the second term in (5) which is much more singular than the first term. In fact,
it is the current sheet in the exterior region solution that brings in the term G (proportional
to the parameter D, = E + F + H? defined by Glasser et al.2!) in the expression (6) for the
island width. [Strictly speaking, HB use a -ordering in which E+ F >> H 2, but we
have included H? in the formula (6) for greater generality.] In the terminology of Ref. 22,
the term G represents a "local” effect. The principal difference between CK and HB lies in
the description of the term . Whereas CK identify G with the so-called "well-hill"
property, HB identify G with the parameter Dy, as discussed above.

Equations (18) and (19) permit a number of interesting possibilities, of which Eq.
(17), explored earlier by HB, is one. Equation (17) describes the case in which one begins
with nearly perfect vacuum surfaces, and the magnitude of G dominates C' to the extent

that G controls the quality of the magnetic surfaces almost entirely in a finite-beta



equilibrium. Since this case has been discussed extensively by CK and HB, we move on
here to consider other possibilities that are of considerable practical interest.

A second possibility is when the resonant vacuum perturbation has the same phase
as the perturbation caused by the Pfirsch-Schliiter currents. In our phase convention, this

corresponds to ¢, =0, whence Eq.(18) gives

S1=G[2+-/(G/2) +C|+ 81 : (20}
We consider, for simplicity, a case in which there are small vacuum islands but the device
has been so optimized in the presence of plasma pressure that G (i.e., D,)is negative and
C <<|G]| . Then the analytical formula (20) predicts that the vacuum istands tend to heal in
the sense that the magnetic island widih decreases as the plasma beta increases (and D,
becomes more negative).23  On the other hand, if D, is positive, then Eq. (20) predicts
increasing island-size with increasing plasma pressure.

A third possibility is the case ¢, = # when the vacuum perturbation and the
perturbation caused by the Pfirsch-Schiiiter currents are exactly out of phase. Then Eq.

{(18) becomes
BL=(G/2)+(G/2)* +]|61* —(] . @21

We first consider an equilibrium with G <0 (i.e., D, £0). For § = 0, we have

61 =61, and ¢, =0. As fB increases, the term C causes a reduction in the island-size. A
critical value of beta (denoted by f3,) is determined by the condition 8t,> =C. At f=0..

the two terms inside the modulus sign in Eq. (21) cancel each other exactly and the island-

width obtains its smallest value, i.e., 61 =0. As f increases beyond f3_, the term inside
the modulus sign in (21) increases with 8. Furthermore, Eq. (19) predicts that there is a
"phase-flip" of the island from ¢, = 0 for f < f_to ¢, = wfor > B, . This phase-flip
was discovered by Hayashi in a computational study 4 that provided the stimulus for the

present paper.
On the other hand, if G > 0 (i.e., D, > 0), Eq. (21) predicts that the island width

cannot be reduced to zero for any value of the plasma 8. If G>>0 and G>>C, the island-




width increases monotonically with increasing 8. If G>0 and G > C, the island-width
typically exhibits a non-monotonic dependence on f3, in that the width at first decreases to a
non-zero, minimum value, and then increases with increasing values of 8. In contrast to
the case G <0 (i.e., D, £0), it is impossible to achieve complete self-healing 1f

G>0 (i.e, Dy >0).

The analytical results discussed above are depicted schematically in Fig. 1, where
we plot the island width &t as a function of the plasma 8 using Eq. (21). We take
81,=0.05, C=0.058 and let G take three values equal to —0.58, 0 and 0.58 ,
respectively. (The value of G is taken to be somewhat larger than neccessary for the sake
of clarity in the graphs, but the same qualitative behavior is obtained for lower values of
G.) Self-healing occurs in the first two cases, but not in the third case. The island goes
through a phase-flip in all cases. We note that at any given value of 3, the island-width is

the least in the case G < 0.

IV. COMPARISON WITH NUMERICAL RESULTS

In Fig. 2, we show a case-study of the Helias device!8 from the HINT code. In
Fig. 2(a), we show the Poincare section of the vacuum field, where a chain of magnetic
islands exists on the 1 =5/ 6 raticnal surface in the region of closed magnetic surfaces. In
Fig. 2(b), we show the flux contours in a finite-beta equilibrium with a peak value of
B(0)=9% on the magnetic axis. (This corresponds to a volume-averaged beta of
approximately 3%.) It is seen that the 5/6 island chain in the vacuum field heals almost
completely. When the plasma beta is increased further to 3(0)=12% (corresponding to a
volume-averaged beta of approximately 4%), the 5/6 island reappears again in Fig. 2(c),
though now in a somewhat different radial location, and with a different phase than the
islands in Fig. 2(a). Inspection of Figs. 2(a) and 2(c) indicates a phase-flip, with X-points

of the vacuum isfands in 2(a) replaced by (-points in 2(c}.



To test the analytical results discussed in Section I1I, it is neccessary at first to
calculate D, for the equilibria described by Fig. 2. The parameter D, is defined for
equilibria with nested surfaces. The appropriate place to calcuiate the relevant D, is in the
exterior region, outside the island. (We note that in the analytical theory as well as the
HINT code, the pressure profile is flat inside the istand region.)

The calculation of D, is done by mapping the equilibria computed by HINT to the
VMEC code. In Fig. 3, we show the result of this calculation for a sequence of equilibria
with increasing values of 3. Figs. 3(a) and 3(b) show D, for equilibria prior to the healed
state, and the healed state (Fig. 2(b)) itself, respectively. We note that in the vicinity of the
5/6 surface, DJ,is negative. Thus, the self-healing effect is qualitatively consistent with the
prediction of formula (21). Fig. 3(c) shows D, for the equilibrium in Fig. 2(c). Itis
found that D, still has a negative sign, but its magnitude is much smaller than it is in Figs.
2(a) and 2(b). As the system approaches the marginal point with respect to D,,, the so-
called "global” effects embodied by the term C become increasingly important,

The analytical formula (21) predicts complete self-healing at a critical value of beta.
Beyond this critical value, the islands reappear but with a flipped phase. This is accord with
the behavior seen in Figs. 2(b) and 2{c).

Though the comparative study given above is helpful in establishing a connection
between analytical theory and numerical computation, there are some caveats. The
computation of D, for low-shear systems is a difficult numerical problem. This problem is
complicated the presence of singular currents in equilibria computed with codes such as
BETA or VMEC (which assume that the magnetic field-lines lie on nested flux surfaces).
Careful convergence studies are neccessary to calculate D, accurately under these
conditions. Figure 3 is the result of such a study, but we cannot be sure that the HINT
code can resolve the "local” spatial scales accurately. It should be noted that even if we set
Dp=0, Eq. (21) predicts complete healing (see Fig. 1}. Thus, it is possible that HINT

finds complete healing with no sensitivity to D, (or the current sheets that bring D, to play




in Eq. (18)). This calls for some caution in the interpretation of the results on self-healing
from HINT if D, is large and positive (which is not the case in the example discussed in
Ref. 5). The analytical theory shows that complete self-healing would not be possible
under these conditions, but computational results that do not resolve the near-singular
currents (and neglect the effect of D,) may arrive at more optimistic predictions.

Another difficult theoretical issue is to find a rigorous basis for mapping equilibria
from codes such as HINT which allow for islands and stochastic regions to codes such as
VMEC which are neccessary to calculate the Mercier parameter D, or the resistive
parameter D,. This issue has deeper underpinnings than we have addressed here because
it has to do with the fundamental problem of defining near-invariant KAM torii in cases of
weak departures from integrability. Fortunately, this is an area of ongoing research in

which some progress has been made recently. 24

V. SUMMARY

In this paper, we have extended earlier theoretical results!-? on 3D MHD stellarator
equilibria to allow for vacuum islands and different phase relations that might exist between
vacuum and pressure-induced islands. We have compared the predictions of theory with
recent computational results-> on pressure-induced islands in currentless stellarator
equilibria. We have established that the presence of current sheets at rational surfaces
(which are resolved by the presence of islands) as well as the integrated global effect of
Pfirsch-Schiiiter currents, play an important role in determining the island widths in three-
dimensional equilibria. In particular, the phenomenon of seif-healing, discovered
computationally, is also shown to be predicted by analytical theory. These results are likely
to be of relevance to the interpretation of experimental results, as work by Nakamura et al.
indicates.25 Tt should be borne in mind, however, that long mean-free-path effects,26
outside the scope of the analytical and computational methods used in this paper, may

change qualitatively some of the conclusions arrived at here.
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FIGURE CAPTIONS

Figure 1 : Plot of island width versus B given by Eq. (21). The solid curve corresponds to
G =-0.58, the - - ~ curve to G =0, and the — curve to G =0.58. Note that
the island heals completely in the first two cases, but not in the third.

Figure 2 : Poincaré plots of magnetic field lines showing the process of self-healing for

Helias from the HINT code. (a) A vacuum field with a 5/6 island-chain. (b) A self-

healed state is realized as 3 increases, with 8, =9%. {c) As [ increases further,

the 5/6 island- chain reappears (at a different radial location), but now with a

flipped phase with respect to the vacuum island (8, = 12%).
Figure 3 : The radial profile of D, for a sequence of equilibria with increasing values of B.
(a) corresponds an equilibrium prior to the healed state (Fig. 2(b)), (b) for the

healed state, and (¢) for an equilibrium after the healed state.
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