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ABSTRACT

General quasisymmetry condition, which demands the independence
of B2 on one of the angular Boozer coordinates, is reduced to
two equations containing only geometrical characteristics and
helical field of a stellarator. The analysis is performed for
conventional stellarators with a planar circular axis using
standard stellarator expansion. As a basis, the invariant
quasisymmetry condition is used. The quasisymmetry equations for
stellarators are obtained from this condition also in an
invariant form. Simplified analogs of these equations are given
for the case when averaged magnetic surfaces are circular
shifted torii. It is shown that quasisymmetry condition can be
satisfied, in principle, in a conventional stellarator by a
proper choice of two satellite harmonics of the helical field in
addition to the main harmonic. Besides, there appears a
restriction on the shift of magnetic surfaces. Thus, in general,
the problem is closely related with that of self-consistent
description of a configuration.
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1. INTRODUCTION

Stellarator optimization from the viewpoint of the transport
remains until now an actual problem. If it is not resolved, the
creation of reactor-stellarator with tolerable dimensions is
hardly possible. The main reason of the enhanced transport in
stellarators 1is the three-dimensional inhomogeneity of the
magnetic field, which, one would think, is an inherent feature
of the systems of such a type. However, even in the class of
three-dimensional systems it is possible to find those which
even at the absence of axial or helical symmetry possess some
"hidden" symmetry, which is expected to reveal itself finally in
the noticeable reduction of the transport coefficients f1-4].
Ideally, the condition, which is the foundation of quasisymmetry
concept [1-41, demands [5] from the strength of the magnetic
field B on the magnetic surface to be the one-dimensional

functien of angular variables in the Boozer coordinates I[6]
(a’eBJQB):

2

B? = B%(a,05 — NCp) . (1)

In three-dimensional configurations it can be satisfied only
approximately, but in some cases with high enough accuracy and
at quite acceptable geometrical restrictions [1-4]. These and
other known results are related to stellarators with a spatial
axis. But for the conventional stellarators with a planar
circular axis this attractive peossibility of optimization is not
yet studied.

In conventional stellarators the type of symmetry and

spatial dependence of torcidal and helical field are different,
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so it is impossible to demand the fulfillment of (1) in the
whole volume of plasma confinement. But, in principle, as in a
general case [31, a chance remains to satisfy the condition (1)
at some single magnetic surface. Such a supposition with respect
to conventional stellarators was expressed in Ref. T[41. To
investigate this possibility, as a first step it is necessary to
reduce Eq. (1) with account of the specific features of these
systems. The present article is devoted to this very goal.

The concept of quasisymmetry was discussed in details in
recently published excellent informative review-style articles
[3,41. It allows us to restrict ourselves by this brief
characteristic of the problem only and to turn directly to

solving the stated problem.

2. GENERAL RELATIONSHIPS

Qutwardly simple equation (1) requires knowledge of the
Boozer coordinates BB and CB’ therefore the full system of
equations must include besides Eg. (1) two additional equations
for these functions. However, the problem can be reformulated
and reduced to single equation when the differential consequence

of (1)
[Va Vo, - Np) ]-v32 =0 (2)

and two representations of the magnetic field in Boozer

coordinates [B]1 (for details see [7])
B = [vwch] + [V@VGB], (3)

AS_



2iB = J VaBB + F vaCB (4)

are used. Here, ¥ and & are the poloidal and toroidal magnetic
fluxes, J/ is the longitudinal current, F is the poloidal current

external to the magnetic surface, Va is the surface gradient:

(Va-V)
Va =V - Va . (5)
Val?
It follows from equations (3) and {4)
2T
[VaveB] - [FB+ [va]], (6)
2 r
<B“>V
2 n
[vavc3]=- [JB+ [BV@”, (7)
2 7
<B*>V
where <B2>V, = F’<I>I - J'wl. After substitution of these

expressions into the initial equation (2) it is transformed into

{[F + NI B o+ [Bv[w + N@]]}-VB2 - 0. (8

We have assumed, as usual in the theory, that Ilines GB =
const and CB = const form, correspondingly, the toroidal and
poloidal contours on a magnetic surface. If a new "poloidal®
angle ap = BB — NCB i1s 1introduced, then the appearance of
representations (3) and (4) at the replacement of 6p on ap will

not change, but instead of F and y the other quantities
Fy = F + NI, !IJN:w+N<I>, (9)

will stand there, and equation (2} in variables a,aB,QB will

look as a requirement that B‘2 must be independent on CB and will
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reduce to the
.gp? _
[FNB+ [BV!,(:N]]VB = (. {10)

In such a form the quasisymmetry condition was derived first in
Ref. [4] from the analysis of the drift equations of motion. It

is clear that (8) and (10) are equivalent.

3. SIMPLIFICATION OF THE MAIN EQUATION

The method, which will be used here for simplification of
the equation (8), is closely related with the traditional for
stellarators approach based on "stellarator expansion" [8]1. We
will make all calculations in the cylindrical cocrdinates r,C,z,
wvhere ¢ is the toroidal angle. The standard notation will be
used:

21

A
f—<f> dec F=f—<f>g, ?:J'fdc. (11)

The principles of the method and examples of its praciical
application are described in details in [7]. Here we will
enumerate only briefly those matters which are the most
essential for further analysis.

In conventicnal stellarators with a planar circular axis the

magnetic field is the superposition of three components:



Subscripts ¢ and p denote, respectively, the toroidal and
poloidal components, E is the helical field of a stellarator, EC
is the unit vector along the V{. The second and the third terns
in the right-hand side of Eq. (12) are small. It can be used at
substituting B in such a form into Eq. (8). Besides, we will
need two known results [7,9] of stellarator theory obtained also
with using the smallness of these two values: the expression for
the derivative of & over the volume V 1inside the magnetic
surface
~2

dd F R? B F
e R , (13)

VoooaR? N\ B an?R?

12

allowing to exclude @t/F from Eq. (8), and the expression for ¥

o= W+ ¥ = Y - SV = Yr—dr), (14)

which 1is wvalid in linear approximation in small parameter

iEI/BO. Here i = @knz) is the function of two variables,

r

>
—_
w

or = .
B, g
Here and in the following R is the radius of stellarator
geometrical axis, BO is the toroidal magnetic field at this
axis. At low f {which is the ratio of plasme pressure to the
magnetic one) rB, = RB, = const, which will be also used below.
Finally, it is natural to assume for stellarators that pus/R « 1,
Q/m « 1, where p = — w’/@, is the rotational transform, & is
the minor radius of a configuration, £ is the multipolarity of

the helical field, m is the number of its periods along the
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major circumference of the torus.
The presence of small parameters in the problem allows to

represent the vector from Eq. (8) as
F\B + [vaN] - FBt[qO ;oay + q2], (16)

where q, and q, are the main terms of the expansion, and q,

includes all other smaller corrections of higher orders:

N [ W ] (17)
= ¢ + e ,
U 5 o LT
4 R
B N B N
= =+ == =Wl 22[eQVVI].(18)
Bt 4T“ R Bt 4n“ R
Here V) = V(§),
v, = Vi = -8ew,, (19)

and V(y), let us remain, is the volume inside the magnetic
surface Y = const. At this stage of calculations we use almost
linear dependence {(13) of & on V and take into account the
three-dimensionality of a configuration explicitly by making use
of Eq. (14).

The quantity B2

to (16):

can be expressed also in the fashion similar

2 2
B = 30[1 ;b 52]. (20)

Here b] and b2 are the small (as compared with unity) quantities

describing the helical and toroidal inhomogeneity of B2:
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2
r By By
~2 —2
2
R B B

by = — - 1 + — + 2 (22)

2 2 . 52

r 0 0

Now Eq. (8) can be reduced to the following system:

qy'Vo, = 0, (23)

<q0-Vb2 + qI-Vb]>C - 0. (24)

The first equation corresponds to separation of the terms
oscillating in C (in the main approximation in IEI/BO) in the

right-hand side of Eq. (8). Taking into account that at low B
the field E practically does not differ from the vacuum one, g =
V;, and disregarding toroidal corrections, we find that Eq. (23)
is reduced to the equation for the vacuum helical field

potential ¢:

[ec ; %[ecwa]]-vg - 0. (25)
4n“° R

The second equation, which appears at averaging Eq. (8),
represents the condition of the mutual compensation of main
nonoscillating terms in Eq. (8). This terms are related, first,
with inhomogeneity of B2 over the poloidal azimuth due to toroi-
dicity. In an expanded form Eq. (24) looks unwieldy, but, as it
is shown below, it can be reduced to a simple and convenient

form. For this it is necessary to reform the quantity qI-VbI.
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4. TRANSFORMATION OF EQUATION (24)

The goal of the transformation is clear: it is necessary to
pick up those terms in q,-Vb, which give a nonzero contribution
after averaging in { and to express them, finally, through E.

The vector qq is represented in (18) as a sum of three
terms. Let us consider separately the corresponding
contributions from qI-VbI intc the left-hand side of (24).

To transform the first term we use the identity

~ 8 A abI A
B'Vbl = — d&’bIB — div — B . (26)

ac ac

A
If we put here the vector B in the form

B A
= L& + Bee (27)
O

r

™ 2>

where or is the vector (15), we get as a result

B 18 A1 A e | 8
—Vb, = — — div b;B — — div By a—— ec - 1 dw[ec'Vbj] ~ (28)
B, B, ¢ B, C
In the second fern
[BVVO]-V.&] - [ec Wa]'[ec [Vbj B]] (29)

because, by definition, eQ'VVO = 0.
In the third term



[ e W, ]-Vbl = r div vj[ Vo, V¢ ] . (30)

When the explicit expression (19) for Vj via dr and VO is
substituted here, one can get:

_ or
[ec W, ]-Vbj - [ e W, }'V[(Sr'Vb]] . dw[[ e W, ]-Vbl] ~

(31

The meaning of all these transformations becomes evident

after combining all given expressions together in the left-hand
side of Eq. (24):

or ~

— + [+

;

(32)

4;}22 [eC W, ]-{Vb2 + V[ﬁr'Vbj] + ;—t [ec [VbI B ]] } .

Here f is the function oscillating in ¢ which gives zero when
averaged in C:

~2
~ 8 | B 1A 1A e,
f = — —2+—dwbIB ———dec———eC.
aC L rBy B, B, aC

It can be easily checked that for the last term in the

right-hand side of (32) the next equality is valid:

[ec [0 B )] = = {7fore) - 96 = fos3) - ol e T ]} o0
o¢

r



Here we used representation E = Biin for the magnetic field
with a summation over the repeated index; ’; = rot E is the
current density component oscillating in &. At B « 1 (the
condition which 1is always satisfied in stellarators) the
contribution due to the term with ? is vanishingly small, hence
in the following it will be disregarded.

If condition (23) 1is fulfilled, the first term in the
right-hand side of Eg. (32) vanishes. Besides, when Eq. (32) is
averaged over {, the function ? disappears also, and, as a

result, Eq. (24) takes a simple form

N2 ~
9
R B b.B
[ec VVO]-V — + {5 3r-Tb, + 17¢ - 0 .(30)
r BO Bt C

Here we used relationship (33) and definition (21) of Q2 and
dropped out the small quantity Bi/Bg.
For further simplification of this already more compact

equation we represent Br-VbI as

A
T d r A r A

A
B, ac Bt B,
where, after substitution of the explicit expression (21) for

bI’ the last term takes the form:

A

A T

- — Bp'VbI = — - r2 B'V-—g ] = —75 [ BC - B ]. {36)
2

BO r BO

Here we disregarded a small toroidal correction and replaced BC
by its vacuun value.
Finally, after substitution of (36) into (34) and averaging



over ¢ we get:

2 ”‘-’2 N2
R B .Eg
[e VV]-V A = 0. D
¢ 0 2 22 B2
0 s

This equation must be solved together with (25). Both equations
have been obtained here by the expansion method. They correspond
to separation in the right-hand side of Eg. (2) of the
dominating contributions from terms oscillating in ¢, which
order of magnitude is determined by the valueNQEQEC, and from
the terms independent on ¢ related with B and toroidal

inhomogeneity of B2.

5. EQUATIONS OF QUASISYMMETRY IN THE MODEL OF CIRCULAR SHIFTED
MAGNETIC SURFACES

To solve quasisymmetry equations, it is necessary to know
the shape of magnetic surfaces determining the vector VVO
entering Egs. (25) and (37). The simplest model which is widely
used in analytical theory of toroidal systems is the model of
circular shifted magnetic surfaces. In this model the transition
to flux coordinates is prescribed by the relationships

r = R—-pcosu=R+A- acos 8,
(38)
2 = psinu=a sinf .
Here p,u,C are quasicylindrical coordinates attached to the
circular axis r = R of the system. Outward shift corresponds to
A > 0. In our case (38} should be -considered as a

parameterization of averaged magnetic surfaces ¥ = const.



It follows from (38)

a[I—A’cose]Va = ep[p+Acosu]—euAsinu, (39)

so vector [ er VVO ] entering the quasisymmetry equation takes

the form

Yy |
[eCVVO]: - e, [p+Acosu)+epAsmu.(40)
a[I — A cos G]

Multiplier before the bracket is necessary only for the first

equation. For circular torii

Vo = 2[R+ b]e®, v, = 4’Ra. (41)
in Vé toroidal corrections are dropped out. They could be
essential at |A|/a <« a/R. It 1s desirable to satisfy
quasisymmetry condition somewhere at the finite distance from
the magnetic axis. There for estimates one can use the
approximation |A|/a « I. In this case p 2 a — A cos u, and if
only terms linear in |A|“a and A’ are taken intc account, the
difference between g and p in them can be disregarded. At that,
for example, in (40) A cos 8 = Al(p) €oS U.

At mentioned assumptions the first quasisymmetry equation is

reduced to the

1 G¢ A ’ J¢ do
T . 1+[—+A]cosua—+ﬁsinu——-—:0,(42)
0

and the second one to



A d d o]
[1+—cosu]—+As[nu—~ H = -2 — sin v, {43)

P du ap R
where
B’ 5
H = — - 4—? . (44)
By By /¢

At small |A|/a the potential ¢ satisfying equation (42) must
look 1like

$ = @y + 9, (45)

where P9 is the main component, and oy is the "correction" of

the order of A.a. Correspondingly

H = Hyp) + H/p) cos u . (46)

For the function ;0 it follows in this case from (42):

_—— + — = 0. (47}
a

As it could be expected, in the lowest approximation the
quasisymmetry condition reduces just to the condition of helical
symmetry: equation (47) can be satisfied by any function go(p,u
— NC). But in the next approximation in A a we get a nontrivial
condition which, at given main helical field, demands special

choice of the additional one:

~s ~ ~ o~

de g
0 _ A sinu—2 (48)

du dp




The main field can be often approximated by a single
harmonic wgrusuulu — m¢{), which corresponds to N = m.£. Then
o must be a superposition of two satellite harmonics

Py f(P)sinf(£ X 1)u — mC ], which amplitudes must be selected to

satisfy simultaneously two conditions:

’ A p

29, ; = 9,5 + &pg[; + A ] (49)
, A ,

20p,; = 0,50 — &, [5 + A (50)

Fulfillment of (48) and (50) would mean that it is possible
to preserve the dominating type of the symmetry (that of the
helical field) even at the presence of significant shift of
magnetic surfaces. Accompanying requirement of the absence of
the toroidal asymmetry, Eq. (43), 1s satisfied if

dH ,

Hy - A—= = 2 E—. (51)
dp R

At }{é > ¢ the contribution from the second term in the left-hand
gide of (51) is favorable if A < ¢, that is at the inward shift
of magnetic surfaces, into the region of stronger toroidal
field. But at such a shift the stability of a plasma can
deteriorate. A hope remains to make the condition on A, which
follows from (51}, weaker due to the function H} depending
itself implicitly on A.

The shift A in (48) - (51) is not a free parameter. In the
general case it depends on the configuration of vacuum field and
equilibrium distributions of plasma parameters. The problem of

quasisymmetry  becomes closely related, therefore, with



equilibrium problem. And what’s more the =self-consistent
noncontradictory solution of the problems requires an accuracy
in imposing boundary conditions when amplitudes of satellite
harmonics are varied. That is why even the analysis of vacuum

configurations turns out into an independent problem.

6. CONCLUSION

Equations of quasisymmetry (25) and (37), derived in a
general form for conventional stellarators, can be used without
limitations for analysis of any configuration in this class of
systems because nothing more than natural and reliable (which is
generally acknowledged) stellarator expansion was used in
deriving these equations. The equations are written in an
invariant form, so there is no problem of their compatibility
with any numerical code or analytical method for calculation of
vacuum or equilibrium configurations. Equations (42) and (43},
derived from the general ones under some simplifying
assumptions, show that even in a simple model of circular
shifted magnetic surfaces the analysis of (quasisymmetry
condition needs self-consistent calculation of  magnetic
configuration because for making B2 "quasisymmetrical" in the
order, which 1is determined by toroidicity, the shift A is
necessary. At A # ¢ to maintain the quasisymmetry in the main
order in |E|/BO is possible only if besides the main harmonic of
helical field there are some "satellites". But they themselves
produce the shift, so the problem becomes strongly nonlinear. A

separate paper will be devoted to its analysis.
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