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Abstract

We study a two-dimensional Boussinesq fluid with the nonlinear interaction be-
tween the Rayleigh-Bénard convection and an externally imposed magnetic field.
We introduce a simplified model of fifth-order system of nonlinear ordinary dif-
ferential equations with five parameters and integrate it numerically in some pa-
rameter regions. We find various types of bifurcations from periodic solutions :
period-doubling bifurcation, heteroclinic bifurcation, intermittency and abnormal
transition to chaos. We also derive a normal form equation from our fifth-order
system, applying the center manifold theory to it, and give an expression for the
renormalized Holmes-Melnikov boundary to evaluate numerical results. By means
of the normal form equation, we show that each property of the two phase portraits
described by the Duffing equation and the van der Pol equation emanates from one
common attractor in the five-dimensional space of the fifth-order system.

Keywords: Boussinesq fluid, Rayleigh-Bénard convection , Bifurcation, Period-doubling,
Heteroclinic, Intermittency, Chaos, Holmes-Melnikov boundary



1 Introduction

A numerical analysis based on numerical computations may explode a part of the difficul-
ties of nonlinearity in physics. In the past about 30 years there have been two explosions
in nonlinear physics. One explosion is that Zabusky and Kruskal' found a concept of
soliton, the other Lorenz? did a concept of strange attractor(nonperiodic flow) by his sim-
plified model designed to represent the Rayleigh-Bénard convection. Soliton with stable
coherent structure represents order, while chaos does disorder with seemingly turbulent
state. Soliton may be twinned with chaos in the light of the Fermi-Pasta-Ulam® problem
related to the ergodicity due to the nonlinear effects.* If soliton and chaos systems with
any fluctuations are complementary each other, then one may find order within chaos and
chaos within order.>®

It is difficult to find a low-dimensional subspace confining a chaotic attractor for a gen-
eral infinite-dimensional dynamical system, which is usually described by a set of partial
differential equations. In the case of a perturbed soliton system, Nozaki et al.” succeeded
in reducing an infinite-dimensional (soliton} system to a four-dimensional system of ordi-
nary differential equations. However, in general, it is not easy to achieve such a reduction
as in a perturbed soliton system. Lorenz , therefore , studied a truncated model which
1s a three-dimensional system of ordinary differential equations instead of partial differ-
ential equations designed to represent the Rayleigh-Bénard convection. Knobloch and

8210 have extensively studied two slightly different five-dimensional systems

co-workers
of equations which reduce to the Lorenz system when one of the parameters is set to

zero. One set of equations is derived from a thermosolutal convection problem, the other

from a problem of two-dimensional convection interacting with magnetic fields, which we



call magnetoconvection. They thoroughly reinvestigated magnetoconvection in special
regions of jungle of parameters, and found that there was a bifurcation from symmetri-
cal to asymmetrical oscillations followed by a period-doubling leading to ¢ narrow-band
chaos after the accumulation point.!' While, in double-diffusive convection, Knobloch,
Moore, Toomre and Weiss'? showed numerically typical strange attractors, power spectra
and return-maps in some parameter regions. Knobloch and Weiss,!! however, did not
show them in magnetoconvection. In contrast to double-diffusive convection, Proctor and
Weiss'3 concluded that chaotic behaviour has not yet been found in magnetoconvection,
though bifurcations to asymmetry have been numerically observed for the full problem
described by a set of partial differential equations.!* Franceshini and Tebaldi!® studied in
detail two infinite sequences of orbits leading to turbulence in a five-mode truncation of
the Navier-Stokes equation for a two-dimensional incompressible fluid. Thus these bifur-
cations from periodic solution may offer a fascinating and tantalizing topic of research for
magnetoconvection. They may serve as a paradigm for the anomalous diffusion problem
of the magnetically confined high temperature plasmas'® in the light of the contribution
of the Lorenz model to nonlinear physics. Because the secondary bifurcations have been
numerically observed in the reduced magnetohydrodynamic (MHD) systems related to
the anomalous transport in tokamaks.1%2

The nonlinear interaction between convection and magnetic fields may explain some
prominent features on the solar surface. Busse?® showed that the finite amplitude onset
of steady convection became possible at Rayleigh numbers considerably below the values

predicted by linear theory.?! Magnetic fields within sunspots are sufficiently strong to

suppress convection on granular and supergranular scales.???  Yet we are far from a real



understanding of the dynamical coupling between convection and magnetic fields in stars
and magnetically confined high temperature plasmas.’® Therefore it is of great impor-
tance to understand how the energy transport and convection are affected by the imposed
magnetic fields; how the Lorentz force affects the patiern of convection in the sunspots
and magnetically confined high temperature plasmas. Magnetoconvection exhibits a rich
variety of behaviours when the magnetic Prandt! number (the ratio of the magnetic to the
thermal diffusivity ¢ = n/#) is small; { < 1. The condition { < 1 may be satisfied in the
solar convection zone near the sunspots?? and the magnetically confined high temperature
plasmas.'® The magnetic Prandt] number is significant parameter in magnetoconvection.
There is generally an arbitrary choice in the normalization of system, especially with re-
gard to the coefficients of fifth-order model contained (. The normalization employed by
Knobloch and co-workers®*! differs from our normalization in the present paper, and so
our fifth-order system is physically different from their system. Qur system is a straight-
forward extension of the Lorenz model® in the Boussinesq convection taken into account
the Lorentz force. In adition to (, moreover, there are four fundamental parameters in
magnetoconvection ; &, r, ¢ and w, where ¢ is the Prandt! number, ris a normalized
Rayleigh number related to the free energy source of system ( destabilizing effect }, ¢ is
a normalized Chandrasekhar number related to the magnitude of the imposed magnetic
field ( stabilizing effect } and wis a geometrical parameter related to the aspecto-ratio. It
is very difficult to find analytical solutions for the fifth-order system of nonlinear ordinary
differential equations in the jungle of the five-dimensional parameter space. Therefore a

numerical integration enables us to get numerical solutions in certain parameter regions.



The present paper consists of ten sections. In Sec.2 and Sec.3, the derivation of ba-
sic equations and linear analysis for two-dimensional magnetoconvection presented by
Chandrasekhar?! are briefly reviewed for the sake of the following sections. Section 4 is a
nonlinear stability of steady solutions , which is used to determine the upper limit of the
magnetic Prandt] number. In Sec.5, we derive a simplified model to truncate an infinite
degrees of freedom of system : a fifth-order system of nonlinear ordinary differential equa-
tions with five parameters. In Sec.6, analytical solutions of nonlinear steady convection
are given. These steady solutions complicatedly depend on the four parameters except-
ing o. In Sec.7, we reduce our system to a normal form equation ( the coupled Duffing
equation with the van der Pol equation ) by a perturbation technique® in order to explain
qualitatively numerical results. Section 8 and 9 are the numerical results and discussions.

Finally, Section 10 contains our conclusions.



2 Basic equations

In this paper we are concerned with a more restricted problem of convection taken account
of a nonlinear interaction between the Rayleigh-Bénard convection and an externally
imposed magnetic field,within the framework of magnetohydrodynamics(MHD). Here we
call its convection magnetoconvection.

Let us consider a horizontally stratified fluid layer of characteristic depth{length) &,
referred to a cartesian coordinate system with the z axis pointing vertically upwards
and the z axis horizontally rightwards in the two-dimensional case. We start from the

following equations:

du I p ., 1 2
ou Vu= -——Vp—Lgs+—(VxB) xB+sV7, 2-1
at+(“ Ju Pl p092+ﬂ0p0( ) xB+vViu (2-1)
—at—=Vx(uxB)+nVB, V.-B=0, (2-2)
%T = _V.(Tu) + &V7T, (2-3)

where in the Boussinesq approximation V-u =0 and p/py =1 — &(T — Tp); the density
p is equal to pg at the reference temperature T , a is the coefficient of volume expansion.
Here u is the velocity , 7' the temperature , B the magnetic field and p the pressure;
the constants », , &, gty and g are respectively the viscous,magnetic,thermal diffusivities,
the magnetic permeability and the acceleration due to gravity, Z being a unit vector in
the vertial direction. We assume that a fixed temperature difference AT is maintained
across the layer of fluid (plasma) heated below in an externally imposed magnetic field
Bo = Bgz.

Let us restrict our attention to two-dimensional magnetoconvection in the (z, z) plane,
for simplicity. Then the magnetic field can be described by a stream function ¢(z, z,t)

6



and a flux function A(z, z,t) such that

d¢ 04

= (_'b';ﬁ 0, E)’ (2 - 4)
~ 0A  0A
B= (_Es 0, a% (2 - 5)
where B=Hz+B,B=Vx(4y).
Equation(2-2) can be integrated to give
0A
5 HibA}=1V'A, (2-6)

The pressure in eq.{2-1) may be eliminated from the equation of motion by taking its

rotation, yielding the vorticity equation :

9
ot

oT 1 0]
2 241 4 = 2 2 _
Vi + {4, V4} = vV*¢ +ga—-—a$ + —pwo(Boan A+{A,V*A}). (2-17)

A particular configuration is specified by five dimensionless parameters for convection in

the region (0 < z < Ak, 0 < z < k) driven by a vertial temperature difference AT'; these

are the Rayleigh number
aATh®
R="1 (2-8)
KV
the Chamdrasckhar number
B2p?
=—2 (2-9)
Hopony
the two Prandtl numberes
o= vk, ¢ =1lk, (2 10)

and the normalized cell width A.

It is convenient to measure lengths in terms of the layer depth kA, time in terms of the



thermal relaxation time A2/k, temperature in terms of AT and magnetic fields in terms
of the imposed field By. From henceforth all the perturbed quantities will be expressed

in dimensionless forms. Then Equations (2-1),(2-2) and (2-3) become

1 0 _, d_, 2
~0V$+{6,V'8)) = Rp= + V6 + (Q(z-V'A+ {4, V4}), (2-11)
8.0+ {¢,6} = V0 + g—f, (2-12)
24, 99
A+ {$,A}=(V'A+ 3 (2-13)

afdg Aaf 0o
where {f,g} = 6_£8_g - a—fa—i and 8(z,z,t) =T — (1 - 2).

For convenience we adopt the illustrative stress-free boundary conditions ;

¢6=V3%=0(z=0,1; 2=0,1),

0=0(z=0,1), Z—i:O(z=O,A),
A=0(z=0,)\),%z0(z=0,1). (2-14)

This choice of boundary conditions has the appealing consequence that the eigenfunctions
of the linear stability problem remain proportional to exp(i-n7z) with an integer n.2
Even in the nonlinear regime the idealized free boundary conditions lead to solutions that

are periodic in 2.2



3 Linear analysis

For the idealized free boundary conditions(2-14) the system is marginally stable to in-
finitesimal perturbations of the following form;

é sinQz - SinnTz
0 | | cosaz-sinnzz |exp(s*t), (3-1)

A sin oz - cosnwz

where o is the horizontal wave number.

Substituting{3-1) into (2-11),(2-12) and (2-13}, we obtain the cubic characteristic equation
B+ B°)(s* + af)(s* + (F%) + o(QB n"n(s" + B7) — Roa’(s™ + (") =0, (3-2)

where A% = o? + n’zxl

A simple bifurcation (s* = 0) is sometimes referred to an exchange of stabilities, leading
to an exponentially growing solution (Re(s*) > 0).

Setting s* =0 (R = R®) in (3-2), we have

g _ B+ 0Qn'nf
R = (3-3)

1t is obvious that for a given value of a®, R is least when n = 1. Therefore we set n = 1
henceforth. When Q =0, R = Ry,
where

ﬂé B (3.2 +a2)3.

Ru(a) = EE - o? (3 - 4:)

The minimun value of Ry, namely 277%/4, occurs when a® = #%/2, Ry is critical Rayleigh

number for the onset of convection in the absence of magnetic field.



It is convenient to introduce a more compact notation by defining a normalized Rayleigh

number,

(3-5)
and modified parameters 7, s and g,
T=p% 5= q=1r—Q (3-6)
? 3 ﬁ4 -

These scalings take up all the geometrical factors so that the characteristic equation(3-2)

simplifies to
S+(l+o+ () +[o(l —r+{g)+{(1+0o))s+0o((1+q—r)=0. (3-1)
The condition Eq.(3-3) for a simple bifurcation is now rewritten by r = r{°), where
r® =144 (3-8)

In addition, there is the possibility of a Hopf bifurcation from the static solution, cor-

responding to the onset of overstability when s is complex and Re(s) = 0 (s = iwp),

at
1+¢ ¢
=0 = — 4= . -
r=r (0+C)( - +1+oq) (3-9)
The corresponding frequency of oscillations is given by
2__9C @0y 2 1-¢ _
wg 1+0+C(r rNy=—*+0( 5o, (3-10)

If (& >+ and ¢ < 1, then wy is real; there is a Hopf bifurcation at +() and convection
first sets in as an overstable mode. From (3-10), in this case the normalized Chandrasckhar

number g must be greater than

o
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This overstable case (wg > 0) is the one of principal concern and astrophysically relevant

(¢ < 1). For a perfect fluid (« = » = n = 0) the dimensional frequency of oscillation £

satisfies

2 2 2\ /2
=" (2 - 2 _2), o= B , vr = (ghaAT)'?, 3—12
r\4A gzt fiofo

where v, is the Alfvén velocity and v7 the trapped buoyancy velocity due to the temperature-
gradient in the Boussinesq approximation. Eq.(3-12) also represents the Alfvén waves
when AT — 0. When Q? > 0, magnetoconvection generally sets in as growing periodic
(oscillatory) solutions. The ratio of the normalized Rayleigh number to the Chandrasekhar

number is given by

2

_ 2 (”1)2 (3—13)

B’=? \vy

Eq.(3-13) is of course different from the plasma beta in a tokamak plasma!® because vr

I
q

is not the thermal velocity.
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4 Nonlinear stability

There exist non-trivial steady solutions corresponding to finite amplitude convection in

the neighbourhood of the simple bifurcation at +¢). The linear theory does not, however,

tell us whether these solutions will be stable.

First Eqs.(2-11)~(2-13) are written in the compact form :
Mo V+LV¥=N(¥V¥),

where

(V2 0 0 )

\ 00 (V)

[ $(z,2,7) \

-

U=| #z,z7)

\ A(z,z,7)
([ —EVt —rd, —(£8.V?)

L= rd; rV? 0 ,

\§%82V2 0 ci’%v* )

12

¢-1)

(4-2)

(4-3)

(4-4)



((—o1{8, V26} + ({4, V2A} )

N(¥, ¥) = r{$,0} ) (4 -5)
\ CEVH4, A} /
and Vi=d2+ &

Let us introduce a small parameter € such that

T =3 ¢e"Y,, (4 —6)
n=1
r=r® 43 e, (4-1)
n=1
and
L=Loy+) e"L,. (4-28)
n=1

If we substitute Eqgs.(4-6) and (4-7) into Eq:(4-1), and set the time derivatives to zero,

then at leading order in e, we obtain the following form

0
Lo‘plz((}), (4“9)
0

where from Eqs.(4-4) and (4-7) the self-adjoint differential operator Ly is defined by

( —~I1:,%3V‘1 —r() g, —-C%@zVQ\

Lo r®g, V2 0 : (4 — 10)

\ (2a.V? 0 CEvt

13



Equation(4-9) is just the two-dimensional form of the linear eigenvalue problem, and then

the eigenvector is given by

[ &1 ( sinaz-sinwz
U,=1 6 | = 2\/52 B%cos ar-sinTz |, (4 —11)
\ 41 ) \Eﬁgsina:c-COSWz

where the normalization is chosen for subsequent convenience to simplify the coefficient

of rge). Since the operator Lg is self-adjoint, we have the identity
<T@ Le¥, >=< T¥,_Ly¥, >=0, (4 —12)

for all natural number n, where the angle brackets denote averages over the domain
(0 <z <2n/a, 0<2z<1) and the superscript T denotes the transpose of the matrix.

To second order in &, we obtain

(1{90.0) — s-{d1, V2b1} + (Z{A1, V2A1}

Lo ¥, = {41, 61} : (4 —13)

\ (EVHé, Ar} )
From Eq.(4-11) it follows that the two Jacobians in the first row on the right-hand side of
{4-13) are identically zero. The compatibility condition on this inhomogeneous equation is
obtained by (4-12) to (4-13): it then follows that rf"’) = 0. If we impose the orthogonality
condition

<Te,¥,>=0 (n#1), (4 —14)

14



then the solution of (4-13) is

&Y (0
U=1| 6 |=| —isin27z |. (4 - 15)
A \ CQLZQ sin 2oz

At third order in ¢ , we have

000 + (Z ({41, V24s} + {4y, V241))
Lo¥; = r€{¢1, 65} : (4 —16)

(EV{41, As}

The solvability condition yields, from (4-12) and (4-16),

2 (o — %)

C2a2ﬂ2

(e) _

r)=1+g+ (4 —17)

This result was originally obtained by Veronis®® and quoted by Weiss.* It follows that
the finite amplitude solution is stable if r£°) > 0 and unstable if r;_(,e) < 0. Thus the finite
amplitude solutions favor a vertically elongated cell with { < 1 and w < 2.

Equation(4-17) is rewritten as follows :

(¢) V2, 1
ry’ <1+{1 +f2_(1 - ﬁ)z}q. (4 -18)
From Eq.(4-18), we can estimate the upper limit of ¢ ( (2 < v2(1 — 1/v/2)?) :
¢ < 0.35(\~064). (4—19)

Hereafter we take account of the above condition {4-19) with respect to (.

15



5 Reduction to a simplified model

We are interested in the behaviour of nonlinear solutions in the neighbourhood of bifurca-
tions from static equilibrium. Although we should solve analytically the partial differential
equations(2-1), (2-2) and (2-3) ( or (2-11), (2-12) and (2-13) ), it is difficult, in general, to
do so. Hence it is instructive, also convenient, to introduce a truncated simplified model

8~11,13

with the following properties
i. the bifurcations at +(® and () are identical with those for Eqs.{2-11)~(2-
13)
ii. to second order in ¢ the finite amplitude solutions are identical with those
for Egs. (2-11)~(2-13) ;
iii. the solutions are bounded as functions of time for each value of the nor-
malized Rayleigh number r ;

iv. theform of the stable parts of the branches of periodic and steady solutions

is qualitatively similar to that for Eqs.(2-11)~(2-13).

These aims can be achieved by expressing ¢,8, A in terms of a restricted set of spatial
models and obtaining a system of ordinary differential equations that governs thier evo-

lution in time.?* Thus we write
¢ =a(r)é,
0 = b(7)0; + c(7)0x, 5-1)
A =d(r)A; +e(r)A;,
where ¢; ,0; and A; {i = 1,2) are given by {4-11) and (4-15). It should be noted that
a(t) represents the first order velocity perturbation, while b(7) , ¢(7) and d(r) , e(7)

16



are measures of the first and second order perturbations to the temperature and to the

magnetic flux function, respectively.

We then substitute these expressions into Eqs.(2-11)~(2-13) and neglect all terms gener-

ated that involve higher harmonics so as to obtain the system

a=a[_a+r-b—q-d(l+Me)], (5 — 2a)

(*(4-w)
b= —b+a—ac, (5 —2b)
¢=w(—c+ ab), (5—2¢)
d= “—C(d - a) - mae, (5 - Zd)
é=—((4 —w){e— ad), (5~ 2e)

where w represents the geometrical parameter related to the aspect-ratio
w=47/F (0<w<4), (5-3)

and dots denote differentiation with respect to 7.

This type of model was first presented by Veronis® in studying the effects of solutions
and rotation on convection. Our model is similar to that followed by Knobloch, Weiss and
da Costa® but the normalization is different from Refs. 8 ~ 11 since thier eigenvectors
did not satisfy Eq.(4-9) : the coefficient of the linear eigenfunction A; was 2v/2/8 instead

T
of 2\/§za—ﬂ.
The divergence of the flow in phase can be calculated from Eq.(5-2),

g, d8; o, 0; 0.
éga-i-ﬂb-l-géc a—d+£e_—[1+a+w+f(5—w)], (5 —4)

17



is always negative since 0 < w < 4. So trajectories are attracted to a set of measure zero
in the phase space; they may be attracted to a limit cycle, a fixed point (corresponding
to a steady convection) and a strange atiractor, which has not yet been found.

The system{5-2) possesses an important symmetry, for it is invariant under the trans-

formation

(a,b,c,d,e) = (—a,—b,c,—d,€) {5-35)

When g = 0 the first three equations of {5-2) decouple from the rest and can be trans-
formed to the Lorenz mode!,? which has been extensively investigated,®

Although the system (5-2) can display all the behaviour associated with the Lorenz model,
we shall be concerned with solutions in a different regime, for values of r sufficiently small
that the Lorenz attractor has not yet appeared.

It is convenient to introduce a normalized heat flux, given by the Nusselt number

1 o
Nu:xjo (1_5;)013. (5—6)

The Nusselt number is defined by the ratio of the total heat flux to the flux that there
would be in the absence of convection. For a purely conducting solution we have Nu =1

and for a finite amplitude convection, from Eqs. (4-15) and (5-1),
Nu =14+2¢(7), (5-T)

where the Nusselt number can be evaluated at z =0 or z = 1.

18



6 Steady convection

The simplified system (5-2) is more tractable than full problem (4-1)~(4-6). Steady finite
amplitude solutions can be readily obtained from (5-2);

2 2

a a pa pa

b: e = = —_
1+a2’c 1+a2’d p+az’e g+ a? (6-1)
where the parameter p is defined by
_ ¢t -w)
p= (6-2)
and
2 )l

(s +a?)?

It should be noted that p is always positive since 0 < w < 4 and that the solution of (6-3)

do not depend on o. Equation(6-3) is a cubic in terms of a* , which has two limits;

(i) the case of small a® (a® ~ 0)
r=14g=r®
(ii) the case of large a® (a® > 1)
)2
r~a2+(2(4 w) q
©
From above limits, in the case of small { and large a?, we have

la] ~ V7. (6—4)

The stability of the steady solutions can be linearizing equations (5-2) about the steady
solutions (6-1) and {6-3), and looking for solutions that grow like exp s7. The growth rate

19



is given by the roots of a quintic dispersion relation

S tdist+dps+dyf +dys+d5 =0, (6 —5)

d = l+o+tw+({(5-w),

Ca2+u(C+a+w+l)+0(1+w+0+a2+w+c+(w

d; = GC2(4—-w)[

opul o(4 - w)(?
+yq{wa4+a2(1ﬁ—8w+wp——w2)-{-p} _or 1
((a® + p)*(4 - w) 1+a? (4—w)]’

(p+az)(a+w-1)+a2+cr+w(a'+1)

i = ottt

ou o¢
_dq{a*((3 - w) ~ p(3+9( + 3w +2w)} r{w(l-d’)+((5-w)}
(a®+p)% (1+a?)(4 - w)(?
LGl QtolwruCtul  po{ddB-2wiw?)+1twp} @ —p)
(4 — w)¢? (@ + p)*(4 — w)( a?+p |’

(o )+ ) +olp— o 1) | (@ +0)(5 )
op (4 —w)
+pq{a4(3 — 5w+ w?) + ¢*(1 + 16w — 8w? + w} + wu}
@+ W u)
_gfat(4 +w—w® —3p) + 3a*(w + wp + wip — 3p) — p® —wp?}
(a? + p)?
_rlpt a®)  rw(l—a?)(5- w)]
I+e?p  (1+a)d-w) ]|’

dy = o(}4—w)

o +w)(p+a®)  dlqlat(l —w)+a®(3w + 3wp — v — 3y) — Ypw}
2 (@ +p)?
) el

al+p (1+a*)n

d5 = UC2(4—W) (

20



The coefficient d; is related to Eq.(5-4). The dependence of the growth rate on the
amplitude is not clear from Eq.(6-5) since the coefficients d;(i = 2 ~ 5) contained the
Rayleigh number are generally so complicated function of the amplitude a?®. The growth
rate may be obtained by solving Eq.(6-5) numerically. However, in the present paper, we
proceed to the direct numerical computations of Eq.(5-2), rather than studying Eq.(6-5)

in detail.
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7 A normal form equation

It is difficult to find analytically the general nonlinear solutions of Eq.(5-2). In the neigh-
bourhood of the Hopf bifurcation point r® < 79, however, it is possible to obtain
finite-amplitude periodic solutions by means of a perturbation technique.

We assume that r is close to r® and ), and that ¢ is also close to qdo;

cg+(

r:a(l_c)+m-52 (1-1)
= g((ll-*—-g + & (7-2)

where m is an arbitrary parameter m ~ O(1). Substituting (7-1) and (7-2) into {(5-2),

taking account of the ordering (4-6), we have

sa'=o~[—a+b{ il +m~62}-d{c—(l—ﬂ)-+ez} (1—|—3;we-52)], (7 — 3a)

A=0) o(=0)
e = —b+a(l—c. &), (7 - 35)

ec’ = w(—c+ab), (T 3¢)
sd’z__C(d—a-i-%ae-sz), (7—3d)

e = —((4 - w)(e ~ad), (7 - 3¢)

where the prime denotes differentiation with respect to the time ¢t = e7. The leading

order amplitudes yield

a~b~d,c~ab, exad. (7T-4)

Here we set

b=a+eg,d=a+ch,c=d*+ek, e=a’}¢l, (7-5)

22



where k is the perturbed term of the magnetic flux d(t), but the context should prevent

any confusion with the fluid layer of characteristic length. From (7-3b) and (7-5), we have

g=—b — eac.
Eliminating b from (7-6), with repeated use of {7-3), we get
g=—d +e(a” —a®) - *(ak + o — 3aa’) + O(®).
The same procedure applied to k gives
, 2
k= —aa (1 + —) + O(e).
w
Substituting (7-8) into (7-7), we obtain
[ n 3 2 ) m 2 2.7
g=—d +¢e(a"—¢a’)—¢ {a — (4+;)a a}.

Similaﬂy we have from (7-5),

_ 1, 6(” w 3) Ez{m [ ( 2 )2!}
h——Ca +C2 . & e 4+4—w a‘ad },

Substitution of (7-8)~(7-11) into (7-3a) yields

et { GG l-es -2

2 3
—(q+¢?) {a - %a' + % (a” - ;;_tf—wa?’) - -Z;A}

X [1+523;w{a2—§(1+4_2w)aa’}] ,

where

(7-6)
(1-1)
(7-8)
(7-9)
(7—10)
(7-11)
(7-12)



Finally we obtain a normal form equation

a" —g(e; — pa?)a’ + {ca + cza® = eeya” + O(e?), (7-13)
where
_ o(l-m)
G = 1+0'+C,
_ ¢ f14e (¢ 20 +¢)
o = 1+a+c{au—c)(ﬁ) 5=~z (2+ )}
_ o { 2 a+( 1
3 1 {(e+ ) 3-w (21+a
“ = 1+0+C{ i—¢ 7% ),u}
= 1+g:+c{(,,)+__(1 q°)}
o = Hlto+C+ (o)}
i 1+o+( :

Here the coefficient ¢, represents physically 2 measure of stabilizing effects and ¢3 a mea-
sure of total destabilizing effects. Equation (7-13) is called the coupled Duffing equation
with the van der Pol type equation { CDP) , and may explain some qualitative properties
of Eq.(5-2). The coefficients ¢; (2 = 1 ~ 4) of Eq.(7-13) are different from those of Refs.
8, 26 and 27 for lack of the second term of ¢3, {3 — w)(1 — go)/p, and so forth. Also,
Eq.{7-13) has two limits ;

(i) the case of small a?, corresponding to small m (0 < m < 1) ;
a’ - e(|ey| — e2a®)a’ + Clei]a ~ 0, (7-14)
(ii) the case of large a® (m > 1);

a" — Clerta + cad® ~ O(e), (7—15)
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where ¢; is assumed to be positive and O(1) , in fact, c3 = 2.41 for the typical parameters
with ( =0.1, 0 =1 and w =0.8. When ¢ =08 (m =1), Eq.(7-13) has a double-zero
eigenvalue, we call its point a codimension-2 point X,? which was considered by Takens®
and Bogdanov.® Particularly, when ¢ — 0, Eq.(7-13) reduces to the Duffing equation,
which has a single-parameter family of periodic solutions that depend on the value of the
Hamiltonjan

1 1 1
Hy(a,d) = E(a')2 - -2—C|clla2 + Zc3a4. (7-16)

The periodic solutions of the Duffing equation can be expressed in terms of Jacobian
elliptic functions, which were extensively discussed by Knobloch and Proctor.®

Since the coefficient ¢; becomes negative for the large amplitudes, the normal form
equation (7-13) possesses a homoclinic orbit and a hyperbolic saddle point where the
stable manifold W* coincides with its unstable manifold W*. The unperturbed system
(7-16) has two homoclinic orbits I'j which can be determined by integration from the
Hamiltonian Hy, and also two centers E, and E_. Any small perturbation will lead to
a change of the stable and unstable manifolds of the saddle point so that the curve no
longer closes because a homoclinic orbit is not structurally stable.?® A small perturbation
can result in the emergence of an unstable fixed point and a stable fixed point emanating
from the centers E, and E_. If the stable and unstable manifolds intersect, then a map
in a Poincaré section %;, leads to the Smale’s horseshoe map.? The existence of such a
map is equivalent to the impossibility of long-term prognoses. The behaviour of stable
and unstable manifolds can be determined by calculating the Melnikov function® for the

perturbed systems. The Melnikov function is the O(¢)-term in a power series expansion
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of ¢ for the distance between W} and W¥. From Eq.(7-15), we have two centers

Ey=(E/(|la|/e,0). (7-17)

While, Eq.(7-16) yields

a(t) =+ (ié“ﬁﬂ [(%g%guzmk], (7-18)

where k is the elliptic modulus (0 € k < 1). When k — 1, the double homoclinic orbits

I'f are given by

(a0 (t),00 (1)) = (Ihv 2(|CI sechy/(les| £, Flex “SeCh (lesf t- ta.nh\/g’[cllt)

(7-19)
The Melnikov function for Eq.(7-13) can be defined by

Mmy4f ay(t) {lerle(t) - caad()ab(t) + cali(1)} . (7 — 20)

From Egs.(7-19) and (7-20), we obtain an expression for the Holmes-Melnikov boundary®
where the bifurcation situation (occurrence of a double saddle connection) is given by
M (to) = 0,

563-4(62-7(6384 = 0. (7—21)
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In the neighbourhood of the codimension-2 point X, it is convenient to introduce a renor-

malized Chandrasekhar number § and a renormalized Rayleigh number 7 as follows :

Y 5o oot L _
q-{(u) 5-u) (2+w>}qo, (1-2)

140

e 3"‘
5=Tg)+Tw(1—QO)- (7-23)

Here § or 7 is a kind of renormalized expression contained the parameters (, ¢ and w in
the neighbourhood of the codimension-2 point X. Substitution of (7-22) and (7-23) into

(7-21) yields

Tto+( (T-24)

Since the right-hand side of Eq.(7-24) is negligible because {* < 1, Eq.{7-24) becomes :
§=Buym ¥, (7 — 25)

where By is related to the slope of the renormalized Holmes-Melnikov boundary and a

universal constant in the neighbourhood of the codimension-2 point X : Bya = 5/4.
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8 Numerical results

The fifth-order system (7-3) is equivalent to Eq.(5-2) since the small parameter ¢ can be
set to unity for the truncated model. Therefore we may use ¢ as time variable instead of 7.
The choice of parameter-regions in the five-dimensional parameter space is crucial to the
numerical integrations. Although the periodic solutions depend on all the five parameters,
the steady solutions are independent of the Prandtl number 0. These steady solutions
still complicatedly depend on the four parameters.

Since the aim of the present paper is to investigate how the branch of steady solutions
is nonlinearly affected by the presence of finite amplitude periodic solutions, first of all,
let us consider the relation between the Rayleigh number and the amplitude of steady
solutions, which is given by Eq.(6-3). This relation plays an important role in the search
after chaos. Figures 1 ~ 6 are the amplitude-Rayleigh number diagrams of steady so-
lutions of one coordinate a(t) for the different parameters. They show that the sign of
r§°) given by Eq.(4-17) does not always determine whether the branch of steady solutions
is supercritical or subcritical in the magnetoconvection though it has vital information
about the steady solutions in the duble-diffusive systems.® Figure 1 (a)~(g) indicates a
relation between the amplitude of steady solutions and the Rayleigh number with { = 0.1
and w = 0.8 when ¢ is increased. In the case of Fig. 1 (a), the simple bifurcation point
¢ is supercritical due to ¢ = 0 and equivalent to that of the Lorenz model. As q is
increased, the branch of steady solutions becomes subcritical at ), as is shown in Fig.
1 {b) ~ (g). From Eq.(5-3) and A = 27/a, we have the following relations between w and
Ajw=01081(A=1/6), w=02353(A=1/4),w=08(A=1/2),w=2(r=1),

w=8/3(A=v2),w=32(A=2),w=36(A=3) w=37647 (A =4).
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Figure 2 (a)~(g) indicates a relation between the amplitude of steady solutions and the
Rayleigh number with ( = 0.1 and ¢ = 5 when w is increased. As w is increased, the
branch of steady solutions besomes subcritical from supercritical at (). Figure 3 (a)~(g)
indicates a relation between the amplitude of steady solutions and the Rayleigh number
with w = 0.8 and ¢ = 5 when ( is increased. As { is increased, the branch of steady
solutions becomes supercritical from subcritical at #® . Figure 4 (a)~(g) indicates a
relation between the amplitude of steady solutions and the Rayleigh number with w =2
and ¢ = 5 when ( is increased. As ( is increased, the branch of steady solutions becomes
subcritical for { < 0.6 and supercritical for { > 0.6, which we are not concerned with,
because of the condition (4-19). Similarly, Fig. 5 (a)~(g) indicates a relation between
the amplitude of steady solutions and the Rayleigh number with w = 3.2 and ¢ = 5 when
¢ is increased. Figure 6 (a)~(g) indicates a relation between the amplitude of steady
solutions and the Rayleigh number with w = 3.6 and ¢ = 5 when ( is increased. As ( is

increased, the branchs of steady solutions in Figs.5 and 6 are always subcritical for { < 0.5.

There is a Hopf bifurcation at r(® when w? > 0 with r® < r(& and ¢ < 1. The
branch of linear periodic solution bifurcates from the static solution at 7 = +{%). However,
in general, nonlinear periodic solutions with five parameters cannot be found analytically,
and we therefore integrate Eq.(5-2) numerically as an initial-value problem. As an initial
condition, we take usually a = 0.1 and b=c=d =e=0 att=0. Since numerical
results do not depend at all on our choice of initial condition if we ignore initial transient

period. We use the fourth-order Runge-Kutta scheme with appropriately chosen timesteps

( At =0.01, 0.05, 0.1).
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Since our fifth-order system reduces to the Lorenz system in the limit of the absence
of magnetic field (¢ = 0), we can expect that our system exhibit a similar property to the
Lorenz model. In fact, Fig.7(a) indicates a typical stange attractor of the Lorenz type
projected onto the be-plane from the five dimensional space (a, b, ¢, d, €) with the typical
parameters: ( = 0.5, 0 =10, w = 2, ¢ = 5 and r = 30. Although this strange attractor
is similar to the Lorenz attractor, as is shown in Fig.7(b), its return-map of the succesive
maxima of ¢(t) is not equal to the Lorenz map because of the presence of magnetic field
(g =5) and becomes equivalent to the Lorenz map in the limit ¢ — 0 (See Fig.7(c)). We
are interested in the different bifurcations from those studied in the Lorenz system, and
hereafter we are restricted to the case of the smaller Prandtl number and the sufficiently
small Rayleigh number that the Lorenz attractor has not yet appeared.

We specify the amplitude of the periodic solution by the maximum of |a| after the
solution has settled to a periodic state. The periodic branch can then be represented
by plotting the amplitude as a function of the normalized Rayleigh number r. The rela-
tionship between the periodic and the steady solutions is shown in Fig. 8, which is the
amplitude-Rayleigh number diagram with ( = 0.1, ¢ = 1, w = 0.8 and ¢ = 5, where we
have r©® = 1.485 from Eq.(3-9) and ¢o = 0.222 from Eq.(3-11). In Figures 8 ~ 13, these
four parameters((, 7, w, ) are fixed. According to the linear theory reviewed in Sec.3, the
branch of periodic solutions denoted by the open circles appears at r 2 ~(® = 1.485. The
amplitudes of periodic solution are small when r is close to (%, and so the periodic so-
lution behaves like a linear pendulum, because the normal form equation (7-13) becomes
a” + {leila ~ 0 when &€ — 0. For the linear stage (r® $ r $ 1.7), the phase portrait

projected onto the e — @’ plane from the five-dimensional space is a limit cycle of small
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ellipse. As r is increased with the fixed parameters: { =0.1.0 =1, w =08 and g = 5,
the amplitude of periodic solutions grows and becomes more obviously nonlinear. For
the nonliear stage (1.7 $ r £ 3.0), the limit cycle of sinusoidal oscillation is transformed
into that of the relaxation oscillation described by the van der Pol equation, where the
transition to it can be qualitatively explained by Eq.(7-14). For the strong nonlinear stage
(3.0 £ r 5 3.4), the limit cycle of the relaxation oscillation is transformed into that of
the elliptic functional oscillation described by the Duffing equation, where this transition
can be also explained by Eq.(7-15). However, even in this stage, the amplitude of the
magnetic flux d(t) is always small because |d| ~ O{¢?) when { < 1, if the amplitude of
periodic solution can be estimated by that of steady solution Eq.(6-1). It followed from
(7-14) that d(t) is approximately described by the van der Pol equation. At r = 3.43,
a transition from the periodic solution to chaos ( denoted by A ) is found through the
period-doubling cascade, as is shown in Fig. 9 (a) ~ (j), plotted by the one-dimensional
Poincaré return-map of the successive maxima of a(t) : @,41 = f(a.). These results were
checked by obtaining more accurate solutions with At = 0.01 and 1 x 10° ~ 1 x 105
iterations. We find the Period-5 window at r ~ 3.437 (g), the unfolded chaos at r = 3.44
(h), repeatedly the Period-5 window at » = 3.445 (i) and the more unfolded chaos at
r = 3.446 (j). At r ~ 3.448, the Period-2 appears again, and the branch of chaotic solu-
tions terminates on that of the nonlinear steady solutions which can be calculated from

Eq.(6-3).

Two types of strange attractors are shown in Fig.10 (), which is corresponding to

Fig. 9 (h) with r = 3.44. One type of these two strange attractors is projected onto
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the @ — o’ plane and the other type projected onto the d — &’ plane from one attractor
in the five-dimensional space of the fifth-order system. It should be noted that each
phase portrait of the a — @’ ~ e — ¢ planes represents a part of projections from the
one common attractor in the five-dimensional space. It folllows from Eq.(7-13) that this
attractor possesses the properties described by both the Duffing equation and the van der
Pol equation. The phase portrait of the a — a’ plane is Duffing-like and that of the d — &’
plane van der Pol-like. In regard to the Duffing equation, Ueda ** has studied the forced
Duffing equation most extensively and shown its strange attractor, which is different from
our attractors because he considered the external force of forced oscillation. The Period-
5 window is found with r = 3.4375, corresponding to Fig.9(g) because this window is
stable for 3.437 5 r £ 3.4375. A set of time-evolution of typical chaotic solutions is
shown in Fig.11,corresponding to Fig.9(h)} and Fig.10(a). It can be clearly observed that
a measure of magnetic flux d(t) shows the relaxation oscillation described by the van der
Pol equation because of [d(t)] < |a(t)] ~ O(1) where d(t) is the first order perturbation
to the magnetic flux function. Also the Nusselt number can be evaluated from Eq.(5-7) :
Nu ~24.

There is no periodic solution without the magnetic fluctuations. Although d(t) is
small for the typical parameters, it plays a vital role in Eq.(5-2). In comparison with
Fig.7(a), Fig.12 shows considerable difference in the phase portrait projected onto the
b — c plane. A Poincaré section of magnetic flux d(t) projected onto the d — d'plane is
shown in Fig.13, which is corresponding to Fig.9 (h) and Fig.10 (a). Figure 14 shows
the stability diagram for the Chandrasekhar number plotted by the log-scale versus the

Rayliegh number plotted by the linear-scale with ( = 0.1, 0 = 1 and w = 0.8. The X
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point is defined by (r{(,o} , Go), where r‘(]o) denotes the r(® with q = go and g, obtained from
Eq.(3-11):

=122, =022

In region I, all perturbations are damped on a linear basis, in region II the periodic modes
are stable, and in region III the steady convections are stable. The linear stability bound-
ary XV is given by Eq.(3-9). It is extremely difficult to obtain analytically a nonlinear
stability boundary XW. Therefore we show the nonlinear stability boundary XW obtained
by numerical integrations:

g=dgo+Bn(r -1, (8-1)

where By is related to the slope of the boundary obtained numerically ( ¢ is plotted by
the log-scale in Fig. 14 ) : By ~ 2 in this case. For some parameters we can find a
chaotic solution (denoted by A) on the nonlinear stability boundary XW extrapolated
from the point X. The amplitude-Chandrasekhar number diagram is shown in Fig.15.
Figure 15(a) is corresponding to L; and Fig.15(b) to L, in Fig.14. Also, Fig. 8 is
corresponding to Lz in Fig. 14. There is no chaos on the XW for r = 2 (L,): it is
denoted by A . Figure 15 (b) is consistent with the numerical simulations on the original
partial differential equations (2-11) ~ (2-13).™ We find a chaotic solution with ¢ = 5
in Fig.15(a). The fixed parameters used in Figs.16~18 are { = 0.26, ¢ = 1, w = 0.8
and ¢ = 5. A sequence of heteroclinic bifurcations?® from periodic solution is shown in
Fig.16 (a)~(h) projected onto the a — a plane when r is increased. The phase portrait
is van der Pol-like in Fig.16(a) because |a| < 1, and becomes Duffing-like in Fig.16(b)
and (c). Figure 16(c) can be regarded as the saddle-connection of homoclinic orbits in

the Duffing equation. The phase portraits in Fig.16{a)~(c) are symmetric but the phase
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portrait in Fig.16(d) becomes asymmetric when r = 7.4. It is clear from Fig.16 {e}~(h)
that the symmetry in the phase portrait is recovered for 7.5 < r £ 7.65. We find a
narrow-band chaos for r = 7.6485 (g) and the Period-3 window for r = 7.65 (h) that is
corresponding to Fig.18(b). Figure 18(a) corresponds to Fig.16 {e). These heteroclinic
bifurcations are due to the well-known phenomenon of hysteresis. In order to explain it,
we show Fig.17: the amplitude-Rayleigh number diagram with { =0.26, ¢ =1, w = 0.8
and ¢ = 5. In this case we have r(® = 2.41 from Eq.(3-9) and gy = 0.7 from Eq.(3-11).
The maximum amplitudes of periodic solutions are denoted by () and those of the steady
solutions are denoted by @ . The analytical steady solutions given by Eq.(6-3), whickh
is already shown in Fig.3(d), are denoted by the dotted line in Fig.17. The branch of
steady solutions has two turning points (|a] ~ 0.5 and 1.0) for 7.5 $ r 5 8.0. There are
four stable steady solutions for r = 7.6. Therefore a stable limit cycle coexists with the
four stable steady states (a ~ £0.5 and +1), and a kind of extended hysteresis can occur.
Such a coexistence of multiple stable steady states and stable limit cycle gives birth to an
extended hysteresis. The fixed parameters in Figs.19~23 are ( = 0.1, 0 = 1, w = 0.2353
and ¢ = 5 . Figure 19 shows the time-evolution of a(t) for an intermittency® with
different r. The periodic soluton is interrupted by bursts which become more frequent as
7 is increased: (a)r = 6.838, (b)r = 6.88 and (¢)r = 7.2. The time-record of oscillation of
a(t) in Fig.19(c) is similar to that of the density of cesium-ion in the Belousov-Zhabotinski
reaction.” The channel corresponding to the laminar phase of intermittency® is clearly
observed in Fig.20 at r = 7.2. A strange attractor projected onto the b — ¢ plane for the
intermittent chaos at r = 7:2 is shown in Fig.21. Figure 22 is the amplitude-Rayleigh

number diagram for the intermittency, where the branch of steady solutions denoted by
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the dotted line. A Poincaré section projected onto the d —d plane for the intermittency is
shown in Fig.23. When the aspect-ratio w is decreased, an abnormal transition to chaos
from a marginally stable periodic solution is observed in Fig.24 with { = 0.1, 0 = 1,
w = 0.1081, g = 5 and r = 12.9 . This transition to chaos ( Fig. 24 ) is different from the
intermittent transition { Fig. 19 ) which was studied by Pomeau and Manneville * in the
Lorenz model for the sufficiently large r. Figure 25 shows the amplitude-Rayleigh number
diagram with { = 0.1, ¢ = 1, w = 0.1081 (A = 1/6) and ¢ = 5. The branch of steady
solution is already shown in Fig.2(a) which is denoted by the dotted line in Fig.25. The
secondary Hopf bifurcation is clearly observed at r ~ 12.896 on the branch of nonlinear
periodic solution in Fig. (25).

Thus our fifth-order system shows almost all the typical routes to chaos in the dissipa-
tive dynamical systems : period-doubling bifurcation, homoclinic bifurcation, heteroclinic
bifurcation {an extended hysteresis), intermittency and abnormal transition to chaos. It
is significant to construct a simple model whose solutions are qualitatively similar to those

of the original partial differential equations. Qur fifth-order system may be such a model.
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9 Discussion

Since our normal form equation(7-13) has a double-zero eigenvalue, the X point in Fig.14
can be regarded as a codimension-2 point® {¢; = 0) : X ( r[()o) ,Go ) - When rg]) <r and
go < 1 under the condition (4-19) with the appropriate w, for the fixed r we have the

following cases ( See Figs. 14 and 15 ) :

i.g<go+Bn(r- r((,o) } : steady solutions (region III),

ii. g~go+Bn(r-— r[(,O) ) : chaos if there exists (the boundary XW),

1
iii. g+ Bnx(r— rc(,o) }<g< C (a-l:l-ag’)( r-— r‘(]o) ) : periodic solutions (region
11),
. l+o @ . i
iv. ¢ > (ot C)( r—ry ) : stable region L

Let us consider a relation between the nonlinear stability boundary XW and the
renormalized Holmes-Melnikov boundary given by Eq.(7-25). If we assume that this
boundary (7-25) can be applied to the nornlinear stability boundary XW in Fig. 14, then
it is clear that this renormalized Holmes-Melnikov boundary can be qualitatively regarded

as the nonlinear stability boundary XW because

BHM < BN ~ 2.

Thus the renormalized Holmes-Melnikov boundary seems to be a powerful tool to look
for the nonlinear stability boundary XW, where there exists a chaotic solution in certain
parameter regions.

Since the perturbation® combined with the severely truncated Fourier series employed

here is not self-consistent, pointed out by Magnan and Reiss®® for the double-diffusive
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convection, the reductive perturbation method® must be applied to the original partial
differential equations (2-11)~(2-13) in order to obtain consistently a finite-amplitude evo-
lution equation® for the two-dimensional magnetoconvection. In general Eq.(4-1) can be
reduced to the Ginzburg-Landau equation®® by the reducive perturbation method or the
Newell-Whitchead theory,?® which has been also derived from the case of ionization waves
in the glow-discharge.*? The Ginzburg-Landau equation shows a rich variety of spatial
structure*? and a transition to spatio-temporal chaos.6*? Therefore a self-consistent ex-
tension of the normal form equation to the Ginzburg-Landau type equatior is fascinating

topic of study.
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10 Conclusion

We have studied a two-dimensional Boussinesq fluid with the nonlinear interaction be-
tween the Rayleigh-Bénard convection and an externally imposed magnetic field. We
have introduced a truncated model of fifth-order system of nonlinear ordinary differential
equations with five parameters and integrated it numerically in some parameter regions.
Our truncated model is a straightforward extension of the Lorenz model taken account the
Lorentz force. We found various types of bifurcations from periodic solutions : homoclinic
bifurcation, period-doubling bifurcation, heteroclinic bifurcation ( extended hysteresis ),
mtermittent chaos and abnormal transition to chaos, which differ significantly from some

of previously reported results. 3~1326:27

We have also derived a normal form equa-
tion from our fifth-order system, applying the center manifold theory to it, and given an
expression for the Holmes-Melnikov boundary to evaluate numerical results. By means
of the normal form equation, we have shown that each property of the two phase por-
traits described by the Duffing equation and the van der Pol equation emanates from one

common attractor in the five-dimensional space.

Let us list the principal results of this investigation :

1. the simple bifurcation at r = r(®) is supercritical in the absence of magnetic field

(g=0) ( See Fig. 1 (a) ) ;

2. the simple bifurcation at r = r{® is not always supercritical in the presence of

magnetic field (g # 0) { See Fig. 1 (b)~(g) ) ;

3. the branch of steady solution at r = r{® becomes unstable drastically due to the

appearance of periodic solution (limit cycle) ( See Fig. 8 ) ;
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10.

the sign of rge) has an significant effect on the steady solution in double-diffusive
systems, 3~11:132627 byt it does not always determine whether the branch of steady

solution is supercritical or subcritical { See Figs. 1~6 ) ;

. the branch of periodic solution bifurcates supercritically from the static solution at

r = r(&, corresponding to the linear boundary XV in the stability diagram ( See

Fig. 14);

. the amplitude of periodic solution becomes large as r is increased ( See Fig. 8 ) ;

the behaviours of periodic solutions with finite-amplitude can be qualitatively ex-
plained by the normal form equation (7-13) since these periodic solutions (7-13)
obtained analytically at small amplitude persist to larger amplitudes in some pa-

rameter regions ;

. the branch of chaotic solution in certain parameter regions bifurcates supercritically

from the finite-amplitude periodic solution, not from the steady solution, while in
sufficiently large r bifurcates subcritically from the steady solution (the subcritical

Hopf bifurcation in the Lorenz type system, See Fig. 7 ) ;

. the branch of chaotic solution may be regarded as the secondary Hopf bifurcation

in some parameter regions ;

there are various types of chaotic solutions with different parameters;
(i). period-doubling bifurcation ( See Fig. 9 ),
(ii). heteroclinic bifurcation { See Fig. 16 ),

(iii). intermittent chaos ( See Fig. 21 ),
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(iv). abnormal transition to chaos { See Fig. 24 ) ;

11. the value corresponding to the Feigenbaum constant®® is approximately given by

é; ~ 4+ 1.0 in terms of Period-2, Period-4 and Period-8 ( See Fig. 9 ) ;
12. routes to chaos are not always through the period-doubling cascade ;

13. the numerical results of Eq.{3-2} are qualitatively agreement with those of the orig-
inal partial differential equations (2—11) ~ (2 —13) obtained by Weiss'* except for

the chaotic solutions ;

14. each property of the two phase portraits described by the Duffing equation and the
van der Pol equation emanates from one common attractor in the five-dimensional

space ;

15. the renormalized Holmes-Melnikov boundary (7-25) can explain qualitatively the
nonliear stability boundary XW obtained numerically, where there exists a chaotic

solution in certain parameter regions.

Since there are the five fundamental parameters in our system, we must construct
a theory to contain the higher codimension. The theory of bifurcations of higher codi-
mension may be casting light on the understanding of more general magnetoconvection.
Although there exists a limit that our fifth-order system is no longer a valid approxima-
tion to the original partial differential equations in some parameter regions, our truncated

model may serve as a paradigm for all the turbulence related to the Lorentz force.
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Figure Captions

1.

=

The amplitude-Rayleigh number diagram of steady solutions of the velocity |a| for
the different ¢ with the fixed ( =0.1and w=10.8;(a)g=0,(b)g=1,(c)g=2,

(d)g=3,(e)g=5,(f) ¢g=10 and (g) ¢=15.

. The amplitude-Rayleigh number diagram of steady solutions of the velocity la| for

the different w with the fixed { = 0.1 and ¢ =5 ; (a)w = 0.1081(A = 1/6) , (b)w =
0.2353(A = 1/4) , (c)w = 0.8(A = 1/2) , (d)w = 2.0(A = 1) , (e)w = 3.2(A = 2) ,

(H)w = 3.6(A =3) and (g)w = 0.37647() = 4).

The amplitude-Rayleigh number diagram of steady solutions of the velocity |a| for
the different { with the fixed w = 0.8 and ¢ =5; {a){ = 0.01, ()¢ = 0.1, (c)¢ = 0.2

(A =026, (e)¢ =03, (f)¢ = 0.4 and (g)¢ = 0.5.

The amplitude-Rayleigh number diagram of steady solutions of the velocity |a]| for
the different { with thefixed w =2and ¢ =5; (a){ =0.01, (8)¢ =0.1, (c)¢{ = 0.26

(D) =03, (e)¢ =04, (f) = 0.6 and (g)¢ = 0.9.

. The amplitude-Rayleigh number diagram of steady solutions of the velocity |a} for

the different { with the fixed w =3.2and ¢ =5; (a){ = 0.01, (8)( = 0.1, (c)( =0.2

’ (d)C =0.26 , (e)f =03, (f)C =0.4 and (g)C =035

. The amplitude-Rayleigh number diagram of steady solutions of the velocity |a| for

the different { with the fixed w = 3.6 andg=5;(a)( =0.01,(6)( = 0.1, (c)( =0.2

| (d)C =026 , ()¢ =03, (f)( = 0.4 and (g)( = 05.

(a) A Lorenz type strange attractor projected onto the b — ¢ plane.
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8.

10.

11.

12.

(b} A Poincaré return-map of the successive maxima of ¢(f) in the presence of
magnetic field (¢ = 5).
(¢} A Poincaré return-map of the successive maxima of ¢(t) without magnetic field

(¢ = 0) . All the parameters used hereare e =10, ( =05, w =2 and

r = 30.

The amplitude-Rayleigh number diagram with { = 0.1 , ¢ =1, w = 0.8 and
g =5, la| means the maximum amplitude of a(t) for the branch of periodic and
chaotic solutions (denoted by () and A ) and does the absolute value of g for the
branch of steady solutions (denoted by @ }. Unstable steady solutions are indicated

by the dotted line.

. A sequence of period-doubling bifurcations. Return-maps for the fixed parameters

((=0.1,0=1, w=08 and ¢ = 5) are shown when r is increased : (a) Period-2
at r = 3.417, (b) Period-4 at r = 3.421, (c) Period-8 at r = 3.4218, (d) Period-finite
at r = 3.422, (e) Chaos at r = 3.425 , (f) Chaos at r = 3.43 , (g) Period-5 window
at r = 3.437 , (h) Chaos at r = 3.4, (i) Period-5 window at r = 3.445, (j) Chaos

at r = 3.446.

Phase portraits projected onto the ¢ — a’ and d — d' planes from one common
attractor. (a) Chaos at r = 3.44 which corresponds to Fig. 9 (h), (b) Period-5

window at r = 3.4375 which corresponds to Fig. 9 (g).
A set of time-evolution of chaotic solutions , corresponding to Fig. 10(a).

A strange attractor projected onto the b — ¢ plane, corresponding to Fig. 10(a). It
is clear that this attractor is different from Fig. 7(a) ( the Lorenz type attractor ).
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13.

14.

15.

16.

17.

18.

19.

20.

A Poincaré section of magnetic flux d(t) projected onto the d —d’ plane, correspond-

ing to Fig 10{a).

The stability diagram for the Chandrasekhar number versus the Rayleigh number
with ( =0.1 ,0 =1 and w = 0.8. L;, L, and L are corresponding to Fig.15 (a),

Fig.15 (b) and Fig.8, respectively.

The amplitude-Chandrasekhar number diagram with ( =0.1, 0 =1and w =0.8:

(a) r =3.44 (L), (b) r =2 (Ly).

A sequence of heteroclinic bifurcations : phase portraits projected onto the a — o
plane (-3<a<3,-3<d <3 J)with(=026,0=1,w=08andg=35
when r is increased. (a)r=3,(b) r=6,(c) r =73, (d) r =74, (e) r = 7.5, (f)

r = 7.6, (g) a narrow — band chaos at r = 7.6485, (h) Period-3 window at r = 7.65.

The amplitude-Rayleigh number diagram with ( = 026 , 6 =1, w = 0.8 and

g=>5.
Time-evolution of a(t) for an extended hysteresis :

(a) heteroclinic bifurcation at r = 7.5, corresponding to Fig.16 (e),

(b) Period-3 window at r = 7.65, corresponding to Fig.16 (h).

Time-evolution of a(t) for an intermittency with { =0.1, 6 =1, w = 0.2353 and

g = 5. The oscillations are interrupted by bursts which become more frequent as r

is increased. (a) r = 6.858, (b) r = 6.88 and (¢} r = 7.2.

A part of the return-map of the successive maxima of a(t) for r = 7.2 during the
5 x 10° iterations, corresponding to Fig. 19 (c).
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21,

22.

23.

24,

25.

A strange attractor projected onto the b — ¢ plane for the intermittent chaos with

r = 6.858.

The amplitude-Rayleigh number diagram for the intermittency with { = 0.1, ¢ =

1, ¢=>5 and w= 0.2353.

A Poincaré section projected onto the d — d’ plane with ( = 0.1, ¢ = 1, w =

0.2353, =5 and r = 6.858.

Time-evolution of a(t) with ( =0.1, 0 =1, w = 0.1081, ¢ =5 and r = 12.9.

The amplitude-Rayleigh number diagram with { = 0.1, ¢ = 1, w = 0.1081 and
g = 5. Periodic solutions are denoted by (), chaos by A and steady solutions by
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