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ABSTRACT

A new algorithm is proposed to solve differential-algebraic equations. The al-
gorithm is an extension of the algorithm of general purpose HIDM (higher or-
der implicit difference method). A computer program named HDMTDYV and
based on the new algorithm is constructed and its high performance is proved
numerically throngh several numerical computations, including index-2 problem
of differential-algebraic equations and connected rigid pendulum equations.
The new algorithm is also secular error free when applied to dissipationless dy-
namical systems. This nature is demonstrated numerically by computation of
the Kepler motion. The new code can solve the initial value problem

0=L ((p(.'v), d ;9(::) , d—z—%gi), z) )

where L and ¢ are vectors of length N. The values of first or second derivatives
of () are not always necessary in the equations.

1. Introduction

Computer analysis is playing more and more important roles for the development
of science and technology. High speed and large scale computers together with pow-
erful algorithms are extending the field of activity of numerical computations. Many
types of equations are waiting to be solved numerically in the course of research and
development.

There are many excellent algorithms to solve the initial value problems described
by non-stiff ordinary differential equations. We can usually get good solutions for such
problems by excellent ready-made computer programs. However, we encounter some-
times serious numerical difficulties if the problems are reduced to stiff ordinary dif-
ferential equations, or to differential-algebraic equations. Differential-algebraic equa-
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tions frequently arise in many physical problems, such as optimal control problems,
dynamical systems with constrained conditions and so on. The present status of the
research on differential-algebraic equations is described in references!23,

In a previous paper® we have constructed a new computer program named HID-
MDYV (HIDM with second derivative) to solve stiff ordinary differential equations or
differential-algebraic equations, based on the algorithm HIDM (higher order implicit
difference method)>%"#. The program HIDMDV can solve the equation

0=L(p(x), ¢z, ¢"(2), 7). (1)

where L and ¢ are vectors of length N. To solve Eq.(1), we have introduced the
difference scheme as shown in Fig.1.
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Fig.1 The difference scheme for HIDMDV. The values »(0) and
¢'(0) are given as initial values for rank-2 ordinary differential equations.
The remaining 5 function values at grid points shown by O (equally sep-
arafed points) are obtained numerically, by solving the differential equa-
tions at 5 intermediated points shown by e (unequally separated points).
The values s;(1 = 1, 3) are uniquely determined from the minimization of
the truncation error for ¢"'{s,h).

The computer program HIDMDYV has shown good performance and has been
extended to be able to solve boundary-value and eigenvalue problems?. However,
practical applications has revealed that the algorithm of HIDMDYV should be im-
proved from the point of view of accuracy and easiness of use.

The algorithm of HIDMDYV is proved to be A-Stable but not secular error free
for dissipationless dynamical systems. For long time tracing of dynamical systems,
symplectic integrators™ 1912 have attracted considerable attention because they are
free from secular errors. Recently, Watanabe and Gnudi* has extended the algorithm
HIDMDY to satisfy the no secular error property by introducing the idea of time-
reversal integrator.

The computer program HIDMDV is designed to solve the second derivative
¢"(z} at the grid points (see Fig.1). Additional equations are needed if the Eq.(1)
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contains no second derivatives ¢”(x). This requirement makes the use of HIDMDV
occasionally complicated in applications.

In this paper, we have extended the algorithm of HIDMDYV in order to satisfy the
time reversibility and to have a more easy-to-use nature. A computer program named
HDMTDV (HIDM, time reversal with second derivative) is constructed based on
this new algorithm.

In section 2 we summarize the principle of the HDMTDYV. Numerical examples
of HDMTDYV are shown in section 3. Section 4 is devoted to a short summary.

2. Principle of HDMTDV

The principle of HIDM is shown in detail in references®®’. Here we summarize
the principle of HDMTDV, which can solve differential-algebraic equations without
the trouble accompanying non adaptive initial conditions. Furthermore, HDMTDV
has a linearly symplectic nature, and guarantees absence of secular errors for recursive
motions of dissipationless dynamical systems. There are 3 types of HDMTDV
difference scheme, depending on the highest derivatives of each variable. These are
discussed in the following subsections.

2.1. Difference Scheme for Variables with Second Derivative

Here, we consider the difference scheme for variables which have second derivatives
in Eq.(1). In this case, we use the difference scheme shown in Fig.2.

Sp 51 S92 83 S84 85 5
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P{—h) ¢'(0) g'(h)
¢"(~h) ¢"(0) " (R)
Fig.2 The difference scheme for variables having second derivatives in

Eq.(1). The values p{—h) and ¢'(—h) are given as initial values for rank-2
ordinary differential equations. The remaining 7 function values at grid
points shown by (O (equally separated points) are obtained numerically,
by solving the differential equations at 7 intermediated points, shown by
e (unequally separated points). The values s;(1 = 1,2,4,5) are uniquely
determined from the condition that truncation error for ¢”(s;h) should be
minimized (59 = -1, 83 =0, s =1).

Expressions of the function and its derivatives at the points r = ;R (i =0, ---, 6)
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are given by linear combinations of function values at grid points x = —h, 0, A as
follows

21: w(gh) + — Z Q;(s)d'(jh) + Z Ri(s)¢"(5R), (2)

- _1_71 ]_~1

_Z o(jh) + Z Ei{s)g'(jh) + R Z (8)"(h),  (3)

— _‘,'-—]. g_fl

o"(sh) =

@(sh) =

Sl ;“|»—=

1

wlsh) = 3 Als)p(ih) +h Z B,(s)¢/(jh) + h? Z Cy(s)e"(Gh) . (4)

i=-1 1=-1 j=-1

The difference scheme for the second derivative ", Eq.{2), has a total of 9 parameters
(Ps(s), Q;(s), R;(s)). Then the truncation error for Eq.(2) becomes O(h”). To reduce
this truncation error we introduce a relation which determines the value of s as follows

1-982 +125* =9, (5)
that is
s1=—0.7838--- , 5= —0.3682--- , 55 =0.3682--- , 55 =0.7838--- .  (6)

Then the values of (Pj(s;), Q;(s:), R;(s:)), (j = —1,0,1,i=0,--- ,6) are determined
uniquely, and then truncation error of Eq.(2) becomes O(h®).

The difference scheme for ¢, Eq.(3) has a total of 9 parameters (Di(s), E;(s),
Fy(s)). Then the truncation errors for Eq.(3) becomes O(h®). This order is com-
patible with the one of Eq.(2). Then, the parameters (D;(s), E;(s), Fi(s)) are also
determined uniquely.

The difference scheme for ¢, Eq.(4), has a total of 9 parameters (A,(s), B;(s),
Cj{s))- Then the truncation errors for Eq.(4) can be reduced to O(h?). This order
1s one order higher than the one of Eq.(2) and Eq.(3). Then one parameters, for
example Ci(s), becomes free if we are satisfied with the same order of accuracy of the
discretization scheme for ¢, ¢/, . When we impose the time reversal condition for
the discretization scheme Eqgs.(2-4), we obtain the conditions

111 ++/33

C - = - 4 -
1(82) — Ci(s4) I (7)
111 - /33
01(81) - 01(55) = —W&, . (8)
"Two coefficients are still left undetermined for the parameters (4, (s;), B;(s:), Ci(s:)),
(j=-1,0.1,i=0,--- ,6), if we request the compatibility for the truncation errors

for representations Egs.{(2-3). We discuss about this points in some detail in the
section 4.



In the following, we determine the parameters in Eq.(4) in order to minimize the
truncation error for ¢(s). In this case the truncation error of Eq.(4) becomes O(h%),
which is one order higher than the one of ¢/ and ¢". Coefficients for the discretization
scheme of HDMTDV are reduced to the form

4278 4+ 598A £ (7569 + H13A)s 2469 — 299A
Ans) = 368(64 ) Aol = )
(2937 + 361A) — (6372 + 164A)s 405 — 59A)s
Byi(s) = ( 7)372; ) , Bo(s)= % . (10)
1614 17A + (444 — 4A)s 283 -21A
Cals) = 73728 » Gols) =~ (11)
(111 — A)(£35 + 64s) (111 - A)s
D = D - =
1(s) 6144 + Dols) i’ (12)
351 — 529A £ (2088 — 600A)s 261 + 53A
Buifs) =~ 18432 o Bl =, (19)
T(39 4+ 55A) + (72 — 56A)s (9—TA)s
Fuls)= Fyls) = - 128 4
1(s) 18432 - Fols) L (14)
3124 440A T (945 — T35A)s 354 55A
Pil(S) = 768 y P[)(-S‘) = T s (15)
+(209 + 65A) + (173 + 93A)s 61 — 19A)s
Qui(s) = ( ?256( ) , Qols) = ”L——Té“—“)“ , (16)
1174 37A £ (99 + 51A)s _9-7A
R (s) = 2304 o Rols)=———, (17)
where /B (
33 for s = sy or s5)
A= !
{ —/33 (for s = s 0r 54) . (18)

Time reversibility conditions given by
A;(s:) = A;(86-i), Bj(s.) = —B_j(ss=i), Cjls:) = C_j{s6-i) , (19)
Dj(s:) = —=D_j(s6~i), Ej(s:) = E. j(s6-i), Fj(s:i)=—F_j(s6_i),  (20)
Pi(s;) = P_j(s6-i), Qi(s:) = ~Q-5(s6-4), Ryls:) = Roj(ss=i),  (21)
(G=-1,0,1), (i=1,2,45)

are completely satisfied.
Next we consider the stability of the discretization scheme given by Eq.(9-17) by
solving the characteristic frequency of the harmonic oscillator

(@) +who(z) =0, (22)



where w is some constant. If we express the eigenfunction of Eq.(22) under the
discretization scheme by

@(nh) oc exp(s nhQ) , (23)
we get the dispersion relation

cos(2hQ) =
457228800 — 8811180009 + 2394157504 — 20934585¢° + 724410g* — 9792¢° + 38¢°
457228860 + 33339600g -+ 127575092 + 33075¢ + 540g* — 18¢5 + 2¢° ’

(24)
where g = (hw)?
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Fig.3  The dispersion curve of the harmonic oscillator given by Eq.(22)
under the discretization scheme of HDMTDV. w is the frequency of
the harmonic oscillator and (2 is the eigenfrequency of the numerical so-
lution. £ is the step size of the numerical integration. When |w|h >
1.570792120- - -, Q becomes occasionally complex , and the periodic na-
ture of the numerical solution begins to break down.
When cos(2h2) is real and the condition
[cos(2nQ?)] <1, (25)

is satisfied, the numerical solution given by the above discretization scheme becomes
periodic with the correct amplitude (= 1). The relation given by Eq.(24) is shown
in Fig.3 when wh is real. This figure shows that the largest step size hp,, which
guarantees the purely periodic solution of Eq.(22) is given by

Rmez|w] = 1.57079212078280060208152- - -
=~

5 (1 = 267763+ x 107%) . (26)



In other words, the largest step size which guarantees the periodic solution of Eq.(22)
is 1/4 of the period of oscillation, and the relative error for the period is 2.67763--- X
1076, The local error of the discretization scheme becomes
( hw)lQ _
— )= - )

cos(2h2) — cos{2hw) 50,950,320 + (27)
This analysis leads to the following conclusion. When we adopt the time step A as
1/20 of 1 period ( h = 0.17/w), the local error for function value is of the order of
4.4 x 10714 and the error for the period of the solution is of the order of 1.1 x 1071
Furthermore, this discretization scheme can be proved to be linearly symplectic.

2.2. Difference Scheme for Variables with First Derivatives

In previous subsection, we have derived a discretization scheme for functions with
second derivatives. Here, we consider the difference scheme for variables with no
second order derivative, which appear in the equation like

0=L(p(2). ¢(a), (), ¥'(x), ¥"(z), 7). (28)

In this case, the value '(0) in Fig.2 cannot be specified as initial values. Then addi-
tional equations become needed if we use the discretization scheme in the preceding
subsection. Sometimes, this process becomes a nuisance. We introduce therefore a
separate discretization scheme for this case as shown in Fig.4.

Sy S1 53 53 54 85 &g
t/h
(~RP(=R)  #(0) i) elh)

-hel5) @ o) @

¢'(—h) ¢'(0) @'(h)
Fig.4 The difference scheme for variables having first derivatives
(without second derivative) in Eq.(1), which should be solved at 7 points
(t =sh, i=0, ---, 6), shown by e (unequally separated points).

The value p(—h) is given as initial values for rank-1 ordinary differential
equations. The remaining 7 function values at grid points shown by (O are
obtained numerically. The values s,{i = 1,2, 4, 5) are uniquely determined
by the difference scheme for the variables with second derivative as shown
in Eq.(3). The additional embedded points z = +h/+/3 are determined
from the condition that the truncation error for ¢/(s,h) (1 = 1,2,4,5)
should be minimized.



Expressions of the function and its derivatives at the points z = ;A (i =0, ---, 6)
are given by linear combinations of function values at grid points x = +h, &hu, 0 as
follows

(k) = 3 (,_Z () ih) +f—(8)99(—htt)+f+(8)w(hu)) + 3 es)dh),
i= j= (29)
P(sh) = 3 ay(s)o(ih) +c-(8)o(—hu) + ex(s)(hu) + b 3 b(s)/(jh) . (30)

=1 F=—1

The difference scheme for the first derivative ¢/, Eq.(29), has a total of 8 parame-
ters (d;(s), e;{s), fi(s)). Then the truncation errors for Eq.(29) become O(h7). To
reduce this truncation error one more order, we choose the value of the embedded
points s u appropriately. It is slightly surprising that the value u = 1/ V'3 guaran-
tee the all truncation errors for ¢'(s;h) (i = 1,2,4,5) are reduced one order, and
the truncations errors of above expressions become O(h®) which is just the same or-
der for discretization scheme of functions with second derivative shown in previous
subsections. Coefficients for this discretization are reduced to the form

293 + 85A £ (318 + 94A)s 61— 19A
au(s) = 3072 o Go(s) = —o—, (31)
_3(111 = A)(1 £ 5v3)
(254 9A)F —9) _ (61 —18A)s
bii(s) = 3072 o bols) =, (33)
+(1137 + 225A) + (1380 + 292A)s 147 — 29A)s
d:1(s}) = ( 1)536( ) , do(s) = “L—%'L ;o (34)
_ F(39 +55A)3v/3 + (216 — 168A)3s _
Fil(s) = 1024 ’ (35)
_ —143 — 31A F (168 +40A)s _ (—61+19A)
ex1(s) = 3072 » eols) = T 384 (36)

where the value A is given by Eq.(18).
We study the stability of the discretization scheme given by Eq.(31 -36) using the
equation
¢(z)=Ap(z), 9(0)=1, (37)

where A is a some constant. The difference scheme Eq.(31-36) gives the following
solution

7560 + 7560 h + 3465(Ah)? + 945(Ah)% + 165(AR)* + 18(Ah)? + (Ah)®

7560 — 7560k + 3465(AR)2 — 945(AR)3 + 165(Ah): — 18(AR) + (MRS
(38

w(2h) =




This solution (the amplification factor of the difference scheme) has the following
characteristics
le(2R)] < 1 when RAh <0, (39)
lo(2h)] = 1 when Ak is pure imaginary. (40)
The relation (39) shows that the difference scheme is A-stable and Eq.(40) guaran-
tees purely periodic numerical solutions independent of the step size h when X is
pure imaginary. The linear symplectic nature is also verified for this discretization
scheme. The local error of the difference scheme is given by the difference between
the discretized solution Eq.(38) and the analytic solution exp(2\h)
_ (AR)1
13,097, 700
These results show the excellent nature of the difference scheme of Eq.(31-36).

@(2h) — exp(2Ah) = +--- (41)

2.8. Difference Scheme for Variables with no Derivatives

Here, we consider the difference scheme for the variables with no derivatives, which
appear in the equation like

0 = L{p(z), ¥(z), ¥/'(x), &(z), €(a), €'(z), ). (42)

In this case the difference scheme is very simple, as shown in Fig.5, and and no
truncation errors are included.

-1 &5 82 0 54 85
Ry = N 7 o
@(s1h)  o(s2h) @(ssh)  p(ssh) t/h
©(—h) ©(0) p(h)
Fig.h The difference scheme for variables having no derivatives in

Eq.(1), which should be solved at a total of 7 points (z = s;h, § =
0,---,6), shown by e (unequally separated points). The values ((s;h)
(£ =0,1,---,6) shown by O are obtained numerically. The values s,{(i =
1,2,4,5) are uniquely determined by the difference scheme for the vari-
ables with second derivative as shown in Eq.(5). (so = —1, 53 = 0, 55 = 1)

2.4. Remarks on the coding of the program

In previous sections, we have considered the truncation error of the discretization
method. In actual numerical computations the roundoff errors deteriorate the accu-
racy of derivatives. To reduce these effects, increments of variables are treated as
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practical unknown quantities in the actual program coding. For example, the guan-
tities @(jh) &'(jh) are treated as unknown quantities introduced by the relations

©(Fh) = o(=h) + (§ + Dhe'(=h) + §(jh) , (43)
¢(jh) = J(=h) + F(jh) , (44)
(j=0,1).

If it is possible to determine all the highest derivatives using the given system of
equation (1), we can get solutions directly by the above mentioned algorithm. There
are, however, problems in which we cannot determine the highest derivatives only by
the given system of equations. An example is given by

G(o" 0 ot x) =0, (45)

H(p,y,2) =0. (46)

In this case, both variables ¢{z), ¥(x) have second derivatives, so the discretiza-
tion scheme given by Eq.(9 —17) is applied. This discretization scheme assumes that
w(—h), ¢'(—h), ¥(—h) and ¥/'(—h) are given as initial conditions. In this example,
however, we have only two true initial conditions, for example @{—h) and ¢'{—h).
The other quantities ¥(—h) and ¢¥'(—h) are not initial conditions, and should be
determined consistently from Eq.(46). In this case, two additional equations are nec-
essary to determine the values ¥(—h) and ¢/(—h). An example of a set of additional
equations is

%H(cp, zb,x) =0, (47)
d2
&-EEH(@, Y,z) =0. (48)

Since the program should be informed of these facts, a index for each variables is
prepared in the program. Example of the index is rank-2 array variable named JVR
as shown in the following.

JVR(1,n) = highest derivatives of n-th variable.
JVR(2,n) = pumber of additional equations for n-th variable.

When equation is one of standard form as
¢ = fl¢,0,7), (49)

and high speed computations is requested, separate program should be prepared which
does not treat the second variables as unknown functions because this value is given
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in Eq.(49) . In this case the computation speed can exceed the speed of standard
Runge-Kutta method program.

3. Numerical Examples of HDMTDV

In this section we show several numerical examples of HDMTDYV. Computation
was carried out on a Fujitsu M-1800 with double precision (1 word is 64 bits). The
‘exact value’ is calculated by long double accuracy {1 word is 128 bits). First we
show the accuracy of the discretization scheme of HDMTDV. Giving the ‘exact
values’ of @(nh), ¢'(nh), ¢"(nh) on each grid points (¢(z) = sin(z), n =integer and
h = 7/32), we have calculated the numerical error of the discretization scheme given
by Eqs.(9-17) and plotted it in Fig.6.

h=m/32 h=n/32

Error for ¢ (x 10'7)
Error for ¢’ (x10")

Error for ¢ (% 10

1 )
0 5 10 15 20 25 ¢ 5 10 15 20 25
X X

Fig.6 An example of numerical error of the discretization scheme
given by Eqs.(9-17). First and second derivatives (¢’ and ¢") have almost
the same order of accuracy and the accuracy for ¢ is one order higher
compared to them.

Next, we have calculated the numerical error for the variables with first order
derivative {without second order derivative). The discretization scheme is given by
Eqs.(31-36). In this case, we give the ‘exact values’ of p(nh) and /(nh) on each grid
points and p({2n + 1 4 1/+/3)k) on embedded points (¢(z) = sin(z), n =integer and
h = 7/32), and calculate @((2n+1+s,)h) and &' ((2n+1+s;)h) by the discretization
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scheme Eqgs.(31-36). The numerical error for this discretization scheme is shown in
Fig.T. h=n/32 h=n/32

(1

Error for ¢ (x10'%)
NS

Error for ¢ ( x 10'¢)

L

i
=

R
6 5 10 15 20 25 0 5 10 15 20 25
X X

Fig.7 An example of numerical error of the discretization scheme
given by Eqs.(31-36). ¢ and ¢’ have almost the same order of accuracy.

3.1. Kepler Motion

As a example of dissipationless dynamical systems, we have integrated the equa-
tion for the Kepler motion

2

th = _”(372 +£Ey2)3/2 ' (50)
Cj!:;z?j =R +yy2)3/2 . (51)
p=m[16,
z(0) = 1 dZ—(tU) =0,
y(0)=0, gng:T‘ 12—?2,



where the constant p and the initial conditions are chosen such that the analytic
solution has period T = 64 and a relatively large value for the eccentricity. In this
system energy and angular momentum are conserved and it is possible to check the
accuracy of the numerical computations.

For this system the index of the variables is shown in Table 1. No additional
equations are necessary.

variables | z(Z) { y(t)
n 1 2

JVR(1,n)| 2 | 2

JVR(2,n)| 0 | O

Table 1 Index JV R of each variables to solve the Kepler motion
given by Egs.(50-51) by HDMTDYV.

For the numerical computations by HDMTDV, we have used step size h =
0.25(= T/256) and total time step number 105 (0 < ¢ < 5x 10°). Plots of the orbit
(z(t),y(t)) and of the error for energy and angular momentum are shown in Fig.8 and
Fig.9.

p=n216, h=025, 0<t<5x105, (Tanayic="64)

T T T i T TV T[T T T T T I T T it Irtirrrrrroerdd
1 T I |

L

|||lIIIIH|||lllIIIIITIIHIIIIIIHHIIIIIIIII

lIIIIIIIIIIIIIIIIIIIIIIIIIIIlHlI]IIIIIIIIIIlI!

Iltfll|'|IIF1|IIIIIllllIIIIIIlllllllllllllllll
-3 5 2 )
X

Fig.8 Plot of the orbit (z(t), y(£)) of the Kepler motion Eq.(50-51).
Because the period for the numerical solution is not the same of the an-
alytical one (= 64), the phase of the motion gradually shifts from the
analytical position. The discrete plots of (%(t), y(t)) appears like a contin-
uous line. But the motion is guaranteed to come back to the initial state.
No secular error are present in the numerical results. The center of the
force is marked by '+'.
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n=mr216, h=025

gy (x107)
b b L L

L
=

T T T T T T T T P T T T T T O T T T T T T oo e
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-12

IIIIIIIIIIIIIIJIIIIIllIIillll[[lllllrllb
///’F____q‘\\\

|
5
|
1
|
l
|

f
f
I

1
!

|

:

LllllllllllrllllllllllIIIIIIIIIIilllli_

=

Fig.9

10 15 20
Time (x10-4)

Plot of error for energy and angular momentum of the numer-
ical solution of Eq.(50-51) (Kepler Motion). Because the period of the
numerical solution is very close to the analytical value (= 64), the recur-
sion time of the numerical solution is very long. This figure shows the

Error for Angular Momentum ( x10° )

—
w

—
=
T

L B A

wn

T

0

L=mr?16, h=025
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&

L\rll\il‘vl\lll‘\\‘ll\!\vll\llx\‘ 1 \“f

T l»ih>il\\;iH:. u.llH\\( \ITD

bty 1y

A AR I IR

0

16 15 20
Time (x107°)

secular error free computation characteristics of HDMTDV.

3.2. Numerical Solution of a Connected Rigid Pendulum

In this section we solve the motion of a connected rigid body pendulum as an
example of differential-algebraic equations. The equations are

d*z
ml(d 21 "9) =~Ti- 21+ (13 ~11),
t
d2
ml%:—ﬂ'm +h-(p—wn),

d’z
(L ( dtQQ _g) = _T2 ' (IQ _ml) 3

d? Y
My = T (2 — 1),

\/33?4'9%:31,

\/(EI ~ T2+ (- )=y,

14

(52)

(53)

(34)




where #; and /5 represent the length of mass-less rigid rods. T; and T» correspond
to to the tensions of the rigid rods, my, ma, g are constants. The unknown variables
are the position of the tip of each rod (z, in, &3, ¥2) and the tension of each rod,
(17 and T3). The former group of variables has second derivatives, but last group of
variables has no derivatives. In this case, the the index JVR is given in Table 2.

variables |2y |y {22 |2 |10 | To

n 1(2]1314|5]6
JVELm |22 |2(2]0]0
VR, 0120200

Table 2 Index JV R of each variables to solve the differential-algebraic
equations given by Eqs.(52- 57) by HDMTDV.

The system of Eqs.(52-57) has energy conservation law given by

2 om; | {d; 2 dy; :
E = LA [} e i — MOT:
57 () (5| e

= constant, (58)

which is used to check the accuracy of the numerical results.
Numerical example are shown in Figs.10 and 11.

I L
ITRYNE
BARVAIAVED

mumsthnsdgsmdpsnbisouludi ; :
0 5 10 15 20 25 30 ¢ 5 10 15 20 25 30
t t

Fig.10 Numerical solution of Eq.(52-57) by HDMTDYV with step
size h = 0.001. z; and z, are plotted as a function of time. my; = 65,
mg = 35, {4 = 10, £y = 5, ¢ = 9.8. Initial angle of rod-1= 175 {deg),
rod-2= 187 (deg). Initial velocities of rods are assumed to be 0.
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Fig.11 Numerical solution of Eq.(52-57) by HDMTDYV with step
size A = 0.001. y; and the error for the energy are plotted as a function of
time. Parameters and initial conditions are the same of those of Fig.10.

This system is dissipationless, but numerical results show that numerical error
suddenly increase at special points. This will break the time reversal nature of the
motion. The reason of this phenomena will be discussed in the next section.

3.3. Differential-Algebraic Equation of Indez 2

As an example of differential-algebraic equation of index 2, we have integrated
the following equations by HDMTDYV,

0= Lily,v,2t) = -g—?; ~ acos(t)z® - Bexp(—t)y?, (59)
0= Ly(yt) =1-(1-asin()+Fexp(-1)) -y, (60)

where o and (3 are constants. The analytical solution of this system is given by

1

V0 =20 = T i + Fesp(D) (61)

In this case the variable y(t) contains the first order derivative, but it is determined
by the algebraic Eq.(60). Then, an additional equation is necessary to determine the
value 3/(t). So, the index of the variables y(¢) and z(t) becomes as shown in Table 3.
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variables | y(t) | 2(t)

n 1 2
TVRALn) | 1 | 0
JVE2,n)y| 1 | 0

Table 3 Index JV R of each variables to solve the differential-algebraic
equations of index-2 given by Egs.(59-60) by HDMTDV.

We adopted as additional equation

d LQ(ya t)

— =0. n: positive integer. (62)

t=(2n-1)R

Numerical results of HDMTDYV for this differential-algebraic equations are shown
in Fig.12.

=09, p=02, h=001 a=09, p=02, h=001

10‘_(_IllllllIilllllllllllllllIIlIIIIHIHIIl 20f_llIIIIIIIIII.HH.IIIIIIIIiIIIIIIIIIIIIlILj
sE 1S 56 3
: 12
- N 3
6¢ 18 10F ]
N | 1o 3
3 ©
4E EL :
u @ - ]
F 12 ¢t ]
: T ]
2t 1 0p4 l 1&-5
jc PO T T ]
OElII!IlIllII!‘IlIIIII!IIHIIHlIllllllllli; :HIIHIIII‘I||II!llllll]lllll]llllllll!ll:
0 S 10 15 20 0 5 10 15 20

Time Time

Fig.12 Plot of numerical solution and its relative error for differential-
algebraic equations of index-2, Eq.(59-60). Since the variables (¢} is
solved by the algebraic equation, Eq.(60), the error is only due to roundoff
error, i.e., order of 10725,

4. Summary and Discussion

We have developed a new integration method with high accuracy and high ap-
plicability. A new program named HDMTDYV can solve dissipationless dynamical
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systems without secular error. Stiff ordinary equations or differential-algebraic equa-
tions can also be solved by the same program. These properties are demonstrated by
several numerical examples.

AL R LT e | f g
10F p n - 5 E
5 1o 0 E
s 53 E
: 1< 3
1 > : E
T OF H 5 -0f i ;
> f ic 3
N 7wl 3
g 18-15 3
-5F 1= 3
C ke 3
3. 20 3
=10 H ] : 3
0 5 10 315 26 25 30 0 5 10 15 20 25 30

t t

Fig.13 Numerical solution of Eq.(52-57) by HDMTDYV under au-
tomatic change of the value of JV R guided by the Table 4. 7, and the
error for the energy are plotted as a function of time. Parameters and
initial conditions are the same of those of Fig.10.

In subsection 3.2, we have observed a sudden increase of numerical errors. Let
us consider the reason of this phenomena. When we treat the constraint given by
Eq.(56), we use two additional equations,

o7y + i, =0, (63)

na + @+ =0. (64)
These equations are expected to work to determine the values ¢/{¢) and y'(¢). But,
when the rod is nearly vertical (z; ~ £; and y; ~ 0), the left hand side of Eqs.(63~
64) becomes very close to zero independently of the values of 4/(t) and ¢7(#), and it
becomes difficult to determine the accurate value of /() and (). This will be the
reason of the sudden increase of numerical errors shown in Fig.11.

A quick treatment for this problem is provided by the replacement of the value of
the index JV R according to the relation |y| > |2| or || < |z1], ie., in the former
case, we treat yi{f) as a rank-2 variable, on the other hand, in the latter case, we
treat z1(?) as a rank-2 variable as shown in the Table 4.
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[ys] = {71 |y:] <z
variables [ n || JVR(1,n) | JVR(2,n) | JVR(1,n) | JVR(2,n)
T 1 2 0 2 2
n 2 5 5 5 0

2 — | 2 |z2 — 2] ly2 — 3| < |z — 24
variables { n [| JVR(1,n) | JVR(2,n) || JVR(1,n) | JVR(2,n)
T2 3 2 0 2 2
Uo 1 5 2 2 0

Table 4 An improved index JV R to solve the differential-algebraic
equations given by Eqs.(52- 57) by HDMTDYV. The index JV R for the
values T} and T5 are same of those of Table 2.

The physical meaning of this process is the following. We treat y,(¢) as a rank-2
variable when [71(2)} > |z1(¢)]. In this case, yi(—h) is treated as a initial condition
and #(—h) is determined by the equation of motions. The xj{—h) and z{{—h) are
determined by the additional equations Eqs.(63—64). When |31 (¢)] > |z1(2)], z:1{t)
is treated as a rank-2 variables. We show a numerical example in Fig.13, using this
choice of the value of the index JVR.

1
;

10 ﬂ - 0._ 3
; N :

N - c - -

SE - — C 7

- 3 X "4: 3

7 I =

— 0:. .—: E) - ]
> f 18 -8t 3
z 1Y o :

: 18 7O E
-5 — r 3
5 18-12F E

: I _af 3
-10F . - ;
0 5 10 15 20 25 30 0 5 10 15 20 25 30

t t

Fig.14 Numerical solution of Eq.(52-57) by HDMTDY introducing
the polar angles #; and #. defined in Eqs.{(65-66). y; and the error for the
energy are plotted as a function of time. Parameters and initial conditions
are the same of those of Fig.10.
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A more fundamental treatment for this problems is the introduction of polar
angles, #; and #> as unknown variables instead of x;, 71, 22 and s,

1= ¥f1cos8;, yp = {1sinf; (65)
T9— 71 = #pc086s, Yo — 1 = Losinfsy . (66)

In this case, Eqs.(56-57) are automatically satisfied. Highly accurate numerical solu-
tion is obtained as shown in Fig.14.

In subsection 2.1, we found that two of the coefficients (A,(s;}, B;(s,), C,(s.)).
{ = —1,0,1, i = 0,--- ,6) are undetermined {for example the values of Cy(s4
and C(ss). if we are satisfied with the compatibility for the truncation errors for
representations Egs.{2-3). In this case, we can change the dispersion relation Eq.(24)
so as to satisfy

3
cos(2h) <1, for Al < g \ (67)

by appropriate choice of the values of C1(ss) and C1(s5). In this case, the largest step
siz€ fipmer which guarantees the purely periodic solution of Eq.(22) is given by 3/4 of
the period of oscillation.

It will be easy to extend HDMTDYV to solve boundary value and eigenvalue
problems. This will be published elsewhere.

The next big task is the construction of a general purpose computer program to
solve time evolution of multi-dimension boundary value problems described by partial
differential equations. When the space dimension is 1-D, we have already constructed
such a general purpose computer program based on HIDM!*%. The present work
represents also an important contribution to accomplish this task.
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