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Absiract:

A new type of nonlinear wave modes which occur as the
electrostatic drift waves in an inhomogeneous magnetized plasma is
presented. The existence of a new type of spiky solitary wave and an
explosive mode with the negative potential are predicted as stationary
solutions of this equation. These solutions are a consequence of a
density gradient and not connected with a temperature gradient. Using
these nonlinear wave modes, the solitary structure and the explosive
event concerning nonlinear drift waves propagating in interplanetary
space and the Earth's magnetosphere, are understandable.
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1. Introduction

Drift waves in the inhomogeneous magnetized plasmas have been
studied experimentally and theoretically in the context of vortexes and
solitary waves. The drift solitary waves have been experimentally
observed in the @-machine [1] . Simple two-dimensional drift wave
turbulence models based on wave-wave nonlinear coupling have been
examined with numerical techniques [2] . Recently, Lakhin et al.
theoretically studied the low frequency drift solitary wave [3] . In
the situation where the nonlinear drift wave propagates in interplan-
etary space, it may be possible that spiky solitary waves and explosive
(bursting) events are detected by satellites [4] . Hendel et al.
suggest that mode stabilization occurs because the mode density pertur
bations affect the diamagnetic drift [1] . Hence, it is possible
for new type of nonlinear wave modes to occur in drift waves. Zakharov
stresses the importance of the higher-order nonlinearity with regard
to the collapse of Langmuir waves, and mentions that the waves with ne
gative energy have the explosive instability [5] . On the other hand,
several studies of the nonlinear evolution equation have been made in
the context of nonlinear plasma waves [6-8] . Su et al, show plasma
waves associated with the exponential nonlinearity [9-10] . However,
the new type of nonlinear drift waves have not yet been shown.

In this paper, we consider a nonlinear drift wave equation in an
inhomogenious magnetized plasma as a model equation, that is, Hasegawa-
Mima equation. The purpose of this investigation is to demonstrate a
new type of spiky solitary wave and an explosive mede of the nonlinear
drift wave equation. It will be expected that these solutions extend
the scheme of well established nonlinear evolution equations and this

investigation may be applied to explaining the behaviour of larger
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amplitude nonlinear waves propagating in plasmas. We do not compare
the present results to collisional plasmas.

The layout of this paper 1s as feollows. In section 2, we consider
the stationary nonlinear drift wave equation propagating in an inhomoge-
neous magnetized plasma. A nonlinear evolution equation is derived
by several approximations. In section 3, new stationary wave solutions
of this equation are shown. These are a spiky solitary wave and an

explosive mode. The last section is devoted to concluding discussion.

2 . Derivation of a nonlinear evolution equation

We begin by considering a nonlinear drift(Hasegawa-Mima) equation

[11,12] as a model:
—a%ww—sé)—(wxfi)-V(vw—logm)uo . 1)

We take the following assumptions:

e d
1. the magnetic field B=B,{. is assumed to be constant and

homogeneous.

2. the density 72, is inhomogeneous in the x-direction and depends
strongly on the spatial variation.

3, the drift wave is not connected with the temperature gradient.

4, the nonlinearity competes with the dispersion effect.

When the density no=n.{x) varying in a direction perpendicular

—_
to the magnetic field B=B,i. in the z-direction, eq.(l) is reduced

to



"""a%(vz¢—¢—logno)+ [¢, V¢ —¢—logn,] =0 (2)

where

In order to obtain stationary wave solutions, we put

p=¢(x,7)
(3)
n=Y—ut
Then eq. (2) becomes
[¢—ux, V2p—¢—logm.] =0 . (4)
Equation (4) has the integral
Vig—¢—logn.=F(Pp—ux) (5)

where F(¢—ux) is an arbitrary function of the argument. Such
solutions travel with the velocity w in the ¥ direction. In the case
of solitary localized solutions, F(é— u=x) is determined from the
condition that ¢ — 0 at |¥| — oo for the fixed values of x,

Thenr we obtain, from eq. (5),

V2¢—¢—Hog[ne[x—i

u

}— [logno(x)] =0 ®)

We expand log {mo(x—¢/u)) in the power series of ¢ as follows

log[no x—% ] J —logno(x)




Substituting eq. (7) into eq.(6), one obtain
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Since the behaviour of stationary wave solutions 1s determined
largely by the spatial dependence of the density z#.=n.{(x), we

assume a simple exponential density profile,

no(x) ~exp(—e.x),

and constant temperature. Here &. Is the usval drift theory expansion

parameter &€ .= po/ L., where po=cs/w.,=(k T/m:i)"2/ (e B/m,)

is the Larmor radius, and L, 1is the density gradient scale length.



As is seen in the observation, e¢. and w, are the sound velocity and
the ion cyclotron frequency.

Using this model, we can describe eq.(8) to

Vig=c ()0 + c2(x)P? + co(x)P® + ca(x)p* + O0(6°) + -+,
(9)

where the coefficients are determined to

1 5] a
cl(x)—l+—u—{ [ax lognn] =0 + x [ - logno] =0

(9{:)-—1 {[aslon} +x’a41n\ }
CoA T e px® 87 =g o xs BT gepf

1 3
cala)== 5 pxt BT pogf

where ¢ (x)>0, c:(x2)<0, c(x)>0 and cs(2)<0.

Since eq. (9) heavily depends on x, we can approximate

o <t

Then the left hand-side of eq.(9) is reduced to V¢ = (82¢/8 x2).

This means that we consider the quasi-one dimensional case. Using
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these approximations and integrating eq.(9), we obtain

[ 09

2 x 3

=—9Y(¢)
=@ (a,—a:P~a:¢°*— a.9?%)

where

a,= Cl(x) ]

2
a2=_?02(x),
1
af;x_?Cx(I) y
2
a4=——é-c4(x) .

If a,¢°=0 in eq.(10), the solution is already shown.

]2=c1(x>¢2+ Lot Talxet Loz

(10)

However, the

solution of this equation which includes the nonlinear term ¢.9$° has

not yet been solved.

3 . Stationary solutions of eq. (10)

In order tc¢ obtain statiomary wave solutions of eq.(10), we trans-

form eq. (10) to




[695

o x

]zs—au(as)
=A¢2(@P.—P)* , (1)

because the solutions of eq.(10) exist only in the region of

—9¢(¢)> 0, where we determine that

a3
3a,

A=a, , ©o=—

A relationship between the potential function —2/(¢ ) and ¢ is shown
in Fig.1. One can understand that the proper localized solutions
are obtained in the upper region of the horizontal axis. According
to eq. (11), d¢ /dx is finite everywhere ¢ is finite. 1t should be
noted that the potential function (¢ ) is finite in the region ¢ >0,
but is infinite in the region & <0 . As a result of this, we have
to integrate eq.{10) independently in the two regionms.

Imposing the boundary conditions ¢, d¢/dx, d°¢/dx® — 0 at

| x| — oo, we have, from eq.(11),

+ AV (x—x,4) = $ (P d_¢¢)3/2
( ¢ o
f ------- in the region 0 <@ <@, (12)
_ ¢
J. ------- in the region —oco<{¢ < 0 (13)
@

where ¢ o denotes the maximum amplitude of the drift wave at x-— x ..
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We should note the sign of the coefficients of eq. (10). If the
coefficients a.,>0, a2.>0, as<0, a.>0, then u>0 and @,>0.

Integrating eq. (12) and using the boundary conditions, we have

172
+ > @2 (x— xo)
2 172 [ @0_¢s(@0,¢0, x) 1oz
=— =+ tanh
990““¢s(§00,¢0. x) arctan @
+ FH (Po, o) . (14)
where

172 — 172
H. (P, ¢°):[§00 ?_90950 ] — arctanh ©o @U‘ﬁo
We obtain the solution of eq.(12) as follows
¢s(@01¢09 x)
@0 1/2 AI/Z
— o h? ] + 0372 _
Do sec [[QDO — ¢ (Po, P, x) 2 v (x %)
- %1(@0, ¢'o)] (15)

Since F.(®,, @) of eq.(15) connects the wave profile in x>0
with that in 2 <{0, the wave profile of ¢ (P, $0, x)} 1is continuous
and finite at x— x,. Equation (15) forms a new type of spiky solitary
wave. @ (Po, Po, x) is the amplitude of the spiky solitary wave.
We illustrate the wave profile of eq.(15) in Fig.2.

Similarly, calculating eq.(13), we get
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1/2
+

@03/2(1'—-’170)

-2
Do 1z ¢0—¢E(‘po,¢o,x) Loz
=— + th
@o"‘xﬁz(qpu,qsu,x) areco 2
+ %2(@0) ¢U) ] (16)
where

Lo

H:(Po, $o)= [ o0 — .

1/2 _ 1/2
] — arccoth [ M } .

Po

We then obtain the solution of eq.(13), from eq. (18), as

¢E((p09¢0, x)

1/2 Ai/z
o ] =+ gDQS/z(I""xn)

= COthz[[@o - ¢B(§Do,¢u,x) 2

— B0 m)] an

The potential function % (¢) 1is infinite in the region ¢<<0 in
Fig.1. Hence, it is predicted that eq.{13) has no finite solutioms.
Calculating eq. (17) numerically, we can obtain the solution that the
amplitude becomes infinite, $:(Po, $o, x) denotes the amplitude
of the explosive solution, Equation (17) takes an explosive profile
at T(1/2)AV2 03 2 (x—x0)>H:(P0, $o), which is illustrated in
Fig.3.

_11_



4. ., (Concluding discussion

¥We present new type of nonlinear wave modes associated with in
nonlinear drift waves. We show that a new nonlinear evolution equation
is derived from nonlinear drift wave equation, assuming the spatial
dependence of the density and using a quasi one-dimensional approxi-
mation.  This equation has the fifth-order nonlinear potential term.
The behaviour of the plasma physical system in which the fifth-order
nonlinearity competes with the dispersion effect is described by eq.
(10). The stationary wave sclutions of eq.(10) with the nonlinear
potential term ¢ °® is shown for the first time in this investigation.
The solution of eq.(ll) is integrable according to the selection of the
proper boundary conditions and the proper integration region. The
stationary wave solutions of this equation are obtained due to the
fifth-order nonlinearity, and bear a spiky solitary wave solution and
an explosive selution. These solutions are first shown in drift
vaves. It should be noted that the explosive sclution eventually will
pake the ordering in the derivation of the higher-order nonlinear
evolution equation break down. In addition, the explosive solution
is associated with the wave with negative potential. It 1is worth
noticing that the explosive mode presented here is similar to those
derived in the potential structure of Zakharov.

In actual situations, spiky solitary waves and solar radio burst
events are frequently observed in interplanetary space. Hence, refer-
ring to the present spiky solitary waves and explosive(bursting) modes,
we can understanding the properties concerning the new nonlinear wave
modes of nonlinear drift waves in space plasmas. Although the author
has not examined the application of these results to a specific

observational result, this investigation 1is important in discussing
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the nonlinear wave modes which occur in plasmas. This theory is

therefore applicable to another nonlinear waves in physical systenms.
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Captions of figures

Fig.1 The potential function —<% versus potential ¢.

Fig.2 The profile of a spiky solitary wave described by eq. (15).

Fig. 3 The profile of an explosive solution described by eq. (17).
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