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Abstract

A three dimensional nonlinear Monte Carlo collision model is developed based on
Coulomb binary collisions with the emphasis both on the accuracy and implemen-
tation efficiency. The operator of simple form fulfills particle number, momentum
and energy conservation laws, and is equivalent fo exact Fokker-Planck operator by
correctly reproducing the friction coefficient and diffusion tensor, in addition, can
effectively assure small-angle collisions with a binary scattering angle distributed in
a limited range near zero. Two highly vectorizable algorithms are designed for its
fast implementation. Various test simulations regarding relaxation processes, elec-
trical conductivity, etc. are carried out in velocity space. The test results, which is
in good agreement with theory, and timing results on vector computers show that
it is practically applicable. The operator may be used for accurately simulating
collisional transport problems in magnetized and unmagnetized plasmas.

Keywords: Coulomb binary collision, Fokker-Planck collision operator, Monte Carlo

collision operator, vector caleulation.



1 Introduction

Collisional transport is a fundamental aspect of the physics of magnetically confined
plasmas. Neoclassical theory of transport, which has well developed, is valid under two
essential assumptions, namely p, < L7, L,, and M, < 1, where p, is poloidal Larmor
radius, Lt, L, are scale lengths of plasma temperature and density respectively, and M,
is poloidal Mach number. In the edge region of toroidal systems, the situations with
gp = Lr,L, and M, > 1 are often observed(e.g. H-mode). In this case, standard neo-
classical theory can not be applied. Monte Carlo simulation[1-3] may provide a powerful
way for solving the problems. We are developing a Monte Carlo simulation code for the
purpose of studying neoclassical transport near edge. The Monte Carlo method can be
briefly summarized as follows. The simulation region is divided into a lot of spatial cells
such that plasma in each cell can be considered to be uniform. Initially, particles are dis-
tributed randomly in cells and velocity space in terms of given plasma conditions such as
density profile and temperature profile. The drift motion of each particle is then followed
in magnetic coordinate in which MHD equilibrium is employed. In the process of following
particle drift motion, Coulomb binary collisions are introduced by an appropriate Monte
Carlo operator. Finally, the transport properties of interest are evaluated in terms of
relevant information.

Constructing an appropriate Monte Carlo collision operator is an essential step in the
simulation. The investigations of Monte Carlo operator have been motivated by studies
of many interested processes involving collisions in plasma physics, for example. plasma
heating[4-6] in torus and gyrokinetic simulation|[7-9], et al. There are some efforts ad-
dressed to this topic for different purpose. Shanny et al.[10], to the purpose of electron
plasma simulation, and Boozer and Kuo-Petravic[l], to the purpose of collisional trans-
port in stellarator , introduced respectively the Monte Carlo operators based on Lorentz
gas collision model which describes electron-ion collisions. To model the effect of ion-ion
collisions on ion-temperature-gradients modes, Xa and Resenbluth[11] constructed a lin-
ear Monte Carlo scheme, combined with gyrokinetic particle simulation model. Monte
Carlo operator for orbit-averaged Fokker-Planck equation was given by Eriksson and Hel-
lender[6], and White et al.[12]. The application of such linear operators is limited due to,
fundamentally, lack of momentum conservation. The momentum conservation, as required

by exact Fokker-Planck collision operator, is necessary condition for ambipolarity of par-



ticle fluxes, and therefore, is essential in many cases for correct simulation. for example,
in the calculations of plasma flow(rotation) and bootstrap current. Recent development
in this topic relates with gyrokinetic plasma simulation. The Monte Carlo operator for
§f particle simulation]9,13-15] has been proposed by Dimits and Cohen(16]. in which
energy and momentum conservations are approximately restored by the introduction of
sink/source terms in the gyrokinectic equation. Based on the discretization of linearized
Fokker-Planck gyrokinetic equation, Tassarotto, White and Zheng[17,18] constructed the
linear Monte Carlo operators with fulfillment of momentum and energy conservations
through including momentum and energy restoring terms in it. However, its numerical
implementation is not straightforward and convenient because of the complicated forms
and tedious calculation for restoring terms. A nonlinear Monte Carlo collision operator of
PIC model was proposed earlier by Takizuka and Abe[19], and extended to gyrokinetics
simulation by Ma, Sydora and Dawson[20]. In this model, the scattering angle of a bi-
nary collision obeys a Gaussian distribution, and large-angle deflection is not effectively
avoided when the step size for the collision integral is not sufficient small. The overes-
timate of large-angle collisions may lead to the simulation results inconsistent with the
Fokker-Planck equation|20].

In this paper, an accurate 3D nonlinear Monte Carlo operator is developed , which is
simple in form and easy for numerical implementation. The basic features of the operator
are that it fulfills all basic conservation laws, namely, momentum, energy and particle num-
ber conservations, which are characteristic of exact Fokker-Planck operator; it is equivalent
to the exact collision operator of Landau form; moreover, the small-angle collision charac-
teristic is effectively assured by distributing the scattering angle in a small range near zero.
As a consequence, the basic collisional transport properties can be correctly described, for
example, in particular, strict ambipolarity of particle fluxes is obtained automatically.
The final feature mentioned above is helpful to release the limitation on integral step size,
compared to previous nonlinear operator[19,20]. Noting that collision calculation is very
time-consuming, we pay much attention to its fast implementation in vector computer,
and design two vectorizable algorithms, which as an important component part, make the
operator directly applicable.

The paper is organized as follows. First the Monte Carlo operator is presented in

its original form. The procedure of construction of the operator is given in order to



demonstrate the properties of the operator. Then, we address to its fast numerical imple-
mentation, and present two vectorizable algorithms of practical application. After that,
the operator is tested carefully in velocity space. The tests include relaxation processes

and electric conductivity, etc. The conclusions are summarized finally.

2 Monte Carlo Collision Operator

A general useful Monte Carlo operator should satisfy two-fold requiremens. Physi-
cally, it is applicable to the problem to be solved. Generally speaking, it fulfill all basic
conservation laws, i.e, conserves particle number, momentum, and erergy. Strictly, some-
times it needs to be equivalent to exact Fokker-Planck operator for accurate simulation.
Numerically, it is feasible and is convenient for its implementation. In particular, its com-
putational cost in time and memory is acceptable by current computer.

Here, first we present the Monte Carlo operator in its original form, which indeed satisfy
the requirement in physics mentioned above. The Monte Carlo operator is constructed for
the Coulomb binary collisions in local space, a spatial cell with uniform plasma. Without
loss of generality, simple plasma system ( electrons plus one species ions) is employed for
the convenience of presentation. Consider a spatial cell with electron density n, and ion
density n;, correspondingly, the model system with N, electrons and N; ions. We here im-
pose a condition N,/n, = N;/n;, which is the representation, in model system, of plasma
neutrality. For a neutral plasma close to thermodynamic equilibrium, the Coulomb colli-
sion interaction between particles is within the distance of order Ap due to Debye shielding,
where Ap is Debye radius. Thus, a typical size of a cell is the Debye radius. In many
cases, however, one can extend the cell size in terms that plasma properties across each
cell does not vary substantially.

Let that each particle collides with all other particles at same cell in time interval At.
When considering collisions, the particle positions in a cell are trivial and not concerned.
In practice, Monte Carlo operator gives the particle random kicks in velocity space with
appropriate magnitudes and directions. The velocity alteration of particle a{m., 7, €a)
during a collision with particle b(m, 7, ;) in a time interval At is determined as follows,

my
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and small parameter € is given by
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where, for different type of collisions,

) m [Ny = ng/N,, unlike — particle collisions
ne/(Ny—1),  like — particle collisions

# = 1, — v is the relative velocity before the collision, In A is Coulomb logarithm, and 7
is a random unit vector with uniform distribution. In the implementation, the operation

{e** — 1) is performed through following approximate expansion,
e —1=sine x +(1 —cose)ii X L X. (3)

€ < 1 gives restriction to step size At of collision integration.

Next, we shall explain how to construct the Monte Carlo operator and demonstrate the
properties of the operator. Consider Coulomb collision of two model particles a and b in
three-dimension, as shown in Fig.1a. There are six quantities { the velocity components
of two particles) that can change during collision. However, energy conservation and
momentum conservation impose four constraints. Thus, only two parameters can freely
change. These two free parameters correspond to usually impact parameter pfor scattering
angle #) and azimuthal angle ¢ shown in Fig.1b. The fact that there are two free choices
implies that there are two random variables included in a 3D Monte Carlo operator. In
Takizuka and Abe’s model[19], they are selected to be direction angles © and @ of the
postcollision relative velocity # in terms of precollision relative velocity @ (Fig.1c). Here,
two random variables are combined and selected to be a random unit vector # of uniform
distribution.

With momentum conservation
— — o !
Mgty + Mph = Mgty + MyTp (4)

energy conservation requires that the magnitude of relative velocity does not change during
ihe collision, i.e,

[ =] @] (5)

Then, set the postcollision relative velocity as

7 = R = [¢™*]4, (6)
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where ¢ is a infinitesimal and nondimensional parameter to be determined later. It is
readily to show that @ satisfies Eq.(3). From Eq.(4) and (6) we obtain Eq.(1), which,
through 7 and ¢, determines the change of the velocity after a collision. In practical
implementation, the use of approximation (3) does not violate Eq.(5), and therefore does
not violate energy conservation.

The remaining task is to determine e. € is determined in terms of the requirement that
the Monte Carlo operator expressed by Eq.(1) and (3) is equivalent to exact Fokker-Planck
operator . ..

Cor = =g R0 43 00 (SRR ) )
where < A% > /At and < ATAT > /At are friction coefficient and diffusion tensor

respectively. To this purpose, we calculate the corresponding coefficients of the Monte

Carlo operator as follows ( if = a, N, — N, — 1 in the calculation )y

Ny
<AT>pe = <3 AT >;

=1

Ny 2,3

mb €U U.J 4
= —E 0 8
1ma+mb 3 u? 5+ 0(€), (®)

N, Ny
<ATAT>ye = <Y AR AT >,

Ny
= Y < ATAT >4 +0(Y)

j:l
Ny 2
2003 26u u I —u;u; 4
= 0 9
L T o, (9)

where
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We expect that the Monte Carlo operator can correctly reproduce friction coefficient and
diffusion tensor. Compared to the analytical ceeflicients, it is found that the quantity
€*u?/3 in Eq.(8) and (9) should be set as

ey
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Assuming that model particles are sufficient to form a velocity correctly distributed lo-
cal background, the summations can accurately reproduce the average over background
distribution f;(¥),

P [t 1) (1)

Ty

Thus, as Af — 0, the Monte Carlo operator can give exact friction coefficient and diffusion

tensor, ) s :
. < AT>yc  AmegelnA N 1
A A T Ma /dv s )us(ma * mb)’ (12)
< ABATSye  AnedlmA p o, w1
fim ST = el [ @& ) (13)

To make the operator more physically understandable, we give an insight into the
relation between random uait vector 4 and © and ®. Set # along 7 direction (Fig.1c). In

the Cartesian coordinate random unit vector can be expressed as
fi = sinf cos pF + sinfsin 2§ + cos b2 (14)

with cos@ uniformly taking random value between —1 and 1, and ¢ uniformly taking

random value between 0 and 27. Then from the operator, we obtain

-
c0s© = uu; =1—(1—cose)sin®8, (15)
u‘
tan® = - = tan(p — @) {16)

T

with cota = cosftan(e/2). From Eq.(15) we have 0 < © < e. Hence, when € < 1
the operator always gives small-angle scaitering, which is consistent with Fokker-Planck
operator. With having Eg.(16), we can readily prove that @ can take any value between
0 and 27 with equal probability. This point reflects the fact that @ {or A@l) is isotropic
in the direction perpendicular to .

It is place to point out the signaficant difference between the model here and that
of Takizuka and Abef19]. It is well known that in a plasma small-angle collisions are
much important than collisions resulting in large momentum changes, and the large-angle
deflections mainly result from accumulation of muitiple small-angle collisions. In fact,
Fokker-Planck operator describes the effect on distribution function resulting from fre-
quently occurring small-angle collisions. In Takizuka and Abe's model, scattering angle

O is determined through sampling tan(©/2) according to a Gaussian distribution. Even
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though the variance of the Gaussian distribution is small (small variance is also required
to reproduce correct friction coefficient and diffusion tensor), there are still some prob-
abilities for © taking large value, therefore, as noted in [20], to keep consistency with
Fokker-Planck operator, step size should be small enough to ensure that the majority of
collisions are small-angle. In the present model, as mentioned above, if ¢ is small, large
angle scattering never occurs. In this sense, the operator here is more reasonable to ap-
proach Fokker-Planck problem. In other words, it may allow one to use large step size to
increase calculation efficiency.

Different from € in Takizuka and Abe’s model, the random parameter 7 is independent
of quantities of binary particles and other simulation parameters. This feature may bring

us some convenience in the implementation.

3 Fast Implementation — Algorithms Suitable for
Vector Calculation

The Monte Carlo operator presented in last section is simple in form, and its im-
plementation is straightforward and convenient. We here remark one point about the
implementation.

Coulomb collisions in a plasma, as we know, are simultaneous interaction. i.e. one par-
ticle may simultaneously experience the forces exerted by a number of particles around
it, due to the character of long-range interaction. In the Monte Carlo model, however, a
particle velocity changes step by step in time interval A7 as it collides with other particles
one by one. The one-by-one collisions may affect the long time statistical properties of
the system. Determining collision order in an optimal way is essential in the model. Ob-
viously, determining collision order in a completely random way may greatest reduce this
effect. One simple way to determine collision order is shown in Fig.2. First, all particles
in a cell are randomly arranged in a line. The particle with index I (1) collides with all
other particles behind it first, then does the particle with index I(2), and so on. Although
the determination of collision order by above way is not completely random, the exami-
nations show that it is effective to give satisfactory results, in addition, fewer calculation
for sorting is needed in this way.

Moate Carlo calculation of collisions is very time consuming. The computational time




cost for a cell is proportional to N2, where N is the total particle number in the cell. To
reduce statistical error, large number of particles are needed in each cell. In addition. to
apply it in practical simulation evolving configuration space, a lot of cells are needed to
reflect the spatial variety of a plasma. Thus, its fast implementation with high efficiency
is essential for it to be practically applicable. Vector calculation provides a very effective
way for the speedup. Unfortunately, the operator in its original form is not suitable for

the vector implementation. We next present two vectorizable algorithms.

Algorithm 1

The implementation of the original operator in each time interval At consists of three
steps: generating uniform random unit vector, arranging collision order and calculating
the changes of particle velocities, among which the final step contains most of floating-
point calculation and is most time-consuming. In each time interval At, one particle
collides with all other particles in the same cell, and its velocity changes many times. This
gives rise to the difficulty to vectorize the final step. The difficulty also relates to second
step—how to arrange collision order.

Now imagine that the time interval At is divided into many small time intervals At,.
At each small time interval At;, particles in the same cell are paired in a random way for
collisions. We expect that, in time interval At, each particles may pair all other particles
in the same cell. This is an alternate way to reproduce the average over the background
distribution. We next explain the details.

To pair particles for collisions, we use the same method as in Takizuka and Abe’s
model[19]. At first, the particles of same species are randomly arranged in lines. Then,
pairing particles is performed as follows. Like particles are paired as shown in Fig.3. If
particle number is even, particles are paired in order from the top of the line(Fig.3a). If
particle number is odd, the first three particles are paired in three pairs(Fig.3b). Unlike
particles are paired as shown in Fig.4. When N, = N;, electrons and ions are paired in
order from the top of the lines(Fig.4a). If N, # N;, for example N, > N; ( N, /Ni=i+r,
where i is a positive integer and 0 < r < 1 ), electrons and ions are divided into two
groups, first group with {i+1)7N; electrons and rN; ions, and second group with #(1—7r)N;
electrons and (1 —r)N; ions. Each ion of the first is selected i +1 times to pair an electron

of the first, and each ion of the second is selected ¢ times to pair an electron of the second
(Fig.4b).



Having done pairing particles and generating 7(the latter is easily vectorized), we
calculate the velocity change after a collision by Eq.(1) and (3) . However, Eq.(2). used

for giving small parameter ¢, is here modified,

v Ati(4re2e2 In A — + )2y (17)
3 - T a“h < m‘a me i
and for different cases,
g/ 2. for first three like — particle collisions when N, = odd,
B ng = min(n,, ny), Otherwise.

With the way of pairlike collisions, the calculations of velocity changes can be vectorized
now. We can understand that the modified operator, as the original one, is eqguivalent to
exact Fokker-Planck collision operator with following two observations: 1. determining
collision pairs by above way means sampling v, ( or v, ) in @ = o, — 7 according to
background distribution f,(%) ( or f,(¥) ); 2. in Fig.4a, the probabilities of a electron (or
aion ) being in the first group and the second group are, respectively. (i 4+1)r N, /Ne=(1+
Dr/(r+1) (or rN,/N; =1 )and ¢(1—r)N;/N, = i(1—r)/(i+7) (or (1—7)N;/N, =1—r).

Algorithm 2

We note that algorithms 1 is effective when N, = N; =even, and, however, it is
complicated in logic in other cases, especially when N, = odd # N: =odd. In general case,
its implementation is not so convenient, and more essentially, the complexity in logic may
give rise to additional computational cost. In practice, the particle numbers in a cell is
not fixed, and the cases without N, = N; = even are often met. The algorithm 2, as to
be seen next, is more practically applicable in the sense that it is universally effective to
handle general case.

For the convenience of presentation, an example with 7 electrons and 6 ions is employved
here. At first, as in algorithm 1, electrons (and ions) in a cell are randomly arranged
in a line (Fig.5a). In a step of time interval At, for unlike-particle collisions, let one
electron collides with all ions in the same cell. The ergodic unlike-particle collisions are
performed by the way of “round robin”, as shown in Fig.5b (where the final electron in
each round draws a bye). For like-particle collisions, we divide electrons (and ions) into
two groups, group A with N4 = inf(N,/2) (=3 for our example) electrons and group B

with Nep = int{(Na+1)/2] (=4 for our example) electrons, as shown in Fig.5a. aad let one
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particle in a group collides with all particles in another group. The like-particle collisions
between the two groups are then performed by the same way asin unlike-particle collisions
(Fig.5¢).

The velocity change after a collision is calculated by Eq.(1), (2), and by Eq.(3) in
which, for like-particle collisions of species a, the factor v is modified as

Ny
7T (N /Ny

where N., = N,4N,p is the like-particle collision number of species 2 in time interval At.

Note that particles that belong to same group do not collide each other in a time step.
If necessary, we can immediately improve this point by further dividing a group into two
subgroups. The particle collisions between two subgroups are performed by the same way
as shown in Fig.5¢ without additional difficulty. Correspondingly, the factor ~ given above
changes as the like-particle collision number N, changes.

The algorithm presented here is highly vectorizable thanks to the way that particles

are grouped for collisions.

4 Test

The Monte Carlo operator should be tested carefully in order to be applied. To this
purpose, we have simulated various problems in velocity space concerning relaxation pro-
cesses, derivation from Maxwellian distribution and electrical conductivity. For simplicity,
a simple plasma system with n, = n;, thus N, = N, and charge number Z = 11s employed

in the simulations.

(1) Relaxation between electron temperature 7. and ion temperature 7;

In the simulation, set initially electrons and ions are both Maxwellian, but with dif-
ferent temperatures T, # T;. Due to Coulomb collisions, electrons and ions will relax to
equilibrium, and T, and T; will approach to same temperature. This process 1s described
by

neTe -+ niﬂ - neTeU + nij—TiOs (19)
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where
efi 1 Te Me I‘;

-
r 24/2 (Te() m; Teo
with the relaxation time defined as

)3/2,‘,..0

m, 3/ 732

 me4vme2ein, lIn AP

To

The result of a simulation by using the original operator with N, = N, = 400 and
Teo/Tio = 2 is shown in Fig.6, in which the Monte Carlo operator gives good agreement

with theory.

(2) Relaxation between longitudinal temperature 7} and transverse tempera-
ture T,

Now we consider the thermal isotropization process in a single species particle system
in which the particles are initially in the distribution

Ma 12, Ma a2 Ma 2
- exXpy — Vg — v
2?1'11”0) (2TrTj_()) ( 2:11”0 10 QTJ_O LU)

fa(} - na(

with Tjjo # T1o- In theory, following equations can describe the relaxation between T and
T,

dT, - _ldTII — _TL | (20)
dt 2 dt - I

where
2 T [-3+(A+3)m i 45

( )3/2f127h 4
3 Tuo [-3+(A+ 3)—7rtanh ——A1 D A<l

with the relaxation time here defined as

3/m, T3/2
4y/metngm A0

a

Tp =

Ta =

Too=(2T10 +Ty)/3 and A =T, [T} — 1.

This process is modeled by the Monte Carlo operator. The time evolutions of difference
between T} and T, are illustrated in Fig.7 with N, = 2000, Tjp = 1.5keV and T\ =
2.5keV. Here the original operator is used. The good agreement between the Monte
Carlo results and analytical result is obtained under different time step sizes (At in Fig.7b

is 4 times that in Fig.7a ).
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(8) Derivation from the isotropic distribution

As a test of the accuracy of the operator, a system with 1000 initially Maxwellian
particles is observed in time to see its derivation from the isotropic distribution. The
observation is shown in Fig.8, from which we can conclude two points: the fluctuations
of three temperatures T, T, and T, are within 5%, and the derivation from the isotropic

distribution does not increase with time.

(4) Electrical conductivity

The next test is regarding parallel electrical conductivity. Set initially electrons and
jons are in equilibrium. A magnetic field and an electric field are introduced along 2
direction. Due to different electrical accelerations, the relative motion between electrons
as a whole and ions as a whole occurs in Z direction, and as the result, a current jj along
3 direction is created. Meanwhile, due to ohmic heating electron temperature increases.
In this case, since system is not in steady state, the simple Ohm’s law j; = o} E is not
valid, where ¢y denotes parallel electrical conductivity. Instead, following equations can

describe the problems,

3 dl. _jj T T
e e _ _ 3 e 3/2
25’1 df \/_ ) 70 (21)
3 dT; ToppTe= T
Zn; =3 f22¢  t
2’:‘1 dt ‘/_ T0 (22)
ave e Jj
S | 2
dt Me + me oy ’ ( 3)
V; e J
Vi ep_Cnedi (24)
dt  my mi i 0
o= —ene(V. — V). {25)

We solve Eq.(18)(22) by Runge Kutta method to obtain the analytical result. When we
solve the equations, the theoretical parallel electrical conductivity
3732
4@ In Ae?,/m,

(26)

is used.
The Mounte Carlo result obtained by algorithm 1 with N, = N; = 1000, B = 0.1T and
E = 0.2F, ( E, denotes Dreicer field ), as well as the analytical result are shown in Fig.9, in

which T, and j; are plotted versus ¢/7.. We can see that the Monte Carlo result agrees well

13



with the theory. In addition, a series of simulations with different parameters have been
carried out, and shown that the Monte Carlo operator can correctly give the dependences
of oy expressed in Eq.(23), i.e, the numerical factor is about 1.96, oy is proportional to

T3/? and is independent of B, E, and plasma densities.

(5) Relaxation of initially shifted Maxwellian distribution
We again use a system of 1000 electrons and 1000 ions, and employ algorithm 1.

Initially, electrons are in a shifted Maxwellian distribution

—

_ Me 379 ¢ e P T2
feo ne(?’ﬂ’Tgﬂ) ekp[ 2Teo(v 80) ]7

and ions are Maxwellian with Ty = T,. At first stage, collisional dissipation trans-
fers electron kinetic energy to thermal energy and leads electron to reach equilibrium.
The temperature T, and current § evolutions given by the Monte Carlo simulation with
%mev;% /Teo = 1.09 are shown in Fig.10, as the comparison, also shown analvtical result
which is obtained by Eq.(18)-(22) with electric field E = 0.

We here remark that the three operators (original one, algorithm 1 and algorithm 2 ),
all can give the correct results for above tests. In VPX vector computer, for one of above
tests, the vector implementation by using algorithm 1 for the case of N, = N;=even, is 4-5
times faster than the scalar implementation by using the original operator. However, the
vector implementation by using algorithm 2 always gives such high efficiency in general,
not only the case of N, = N;=even, but also other cases. The CPU cost for the caleulation
of one collision in SX-3 supercomputer is about 1.5 x 10~7 second. As the comparison, the
Monte Carlo results obtained by algorithm 2 are illustrated in Fig.11, which is regarding

the equilibration of T, and T, and the thermal isotropization between Tj, and T .

5 Conclusions

A 3D Monte Carlo collision model based on Coulomb binary collision has been devel-
oped with the emphasis both on the accuracy and the implementation efficiency.

The exact momentum conservation and energy conservation fulfilled by the operator
are assured through the consideration of elastic binary collisions. Since the operator is
constructed in a spatial cell, the conservations are local. The accurate Monte Carlo opera-

tor is equivalent to the exact Fokker-Planck operator by correctly reproducing the friction
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coefficient and diffusion tensor through the leading order. The small-angle scattering
characteristic can be effectively assured in the model by small parameter e.

The implementation is straightforward and convenient due to its simple form. For the
practical application, the vectorizable algorithms have been designed. A high efficiency
for speedup has been achieved in vector computer. The point that the scattering angle
of a binary collision is restrained to be small may allow one to enlarge step size for
collision integral, and therefore to increase the implementation efficiency. The timing
results on VPX vector computer and SX-3 supercomputer show that the computational
cost is acceptable to use it in some practical simulations (we are using it in a Monte Carlo
simulation code to study egde neoclassical transport).

The relaxation processes, electrical conductivity and Ohmic heating in uniform plas-
mas have been simulated as the test of the model. The Monte Carlo results show good
agreement with theory.

The present Monte Carlo operator show some advantages compared to earlier approxi-
mate operators (the linear operators) some of which do not fulfill basic conservation laws.
As noticed before[13], the violation of conservation laws may resuit in incorrect result n
the simulations of some problems. The operator constructed in general case, is widely
useful for different problems in both magnetized and unmagnetized plasmas because it
makes fewer assumptions. Its nonlinear form makes it more applicable for accurate sim-
ulation. In principle, it is potentially useful for general nonlinear problems involving the
evolution of distribution functions far from equilibrium, where the previous linear opera-
tors can not be applied. Such an important example is electron transport process in laser
produced plasmas. The model can be readily extended for the use in particle simulation
and gyrokinetic simulation.

Compared to Takizuka and Abe's model[19], in which the scattering angle of a binary
collision is determined in terms of a Gaussian distribution, and thus, to reduce the proba-
bility for occurring large angle deflection, the sufficient small step size is needed to get the
consistent results with the theory[20], the present model may be more efficient to approach
Fokker-Planck problems since the scattering is limited within a small e. In addition, the
fast implementation in vector computer is achieved by two vectorizable algorithms, in

particular algorithm 2, which make present operator directly applicable.
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Figure Captions

1 A sketch of Coulomb binary collision.
2 Determination of collision order.

3 After index randomization, like-particles are paired for binary collisions. Particle

number (a) N =even, and (b) N =odd.
4 Electrons and ions are paired for collisions. {a} N, = M. (b) N, > N,.

5 Particles are grouped for collisions (an example of 7 electrons and 6 ions). (a)
Electrons (and ions) are randomly arranged in a line and divided into Group A and
B, (b) i-e collisions are performed by the way of “round robin” where in each round
the final electron draws a bye. (¢} Like-particle collisions between Group A and B

are performed by the same way.

6 Temporal relaxation between electron temperature T, and ion temperature T, (by

original operator ).

7 Temporal relaxation between longitudinal temperature T), and perpendicular tem-

perature T, (by original operator).
8 Deviation from isotropic distribution.

9 The results of a test regarding parallel electrical conductivity (by Algorithm 1).
Time evolution of (a) electron temperature T, due to Ohmic heating, and (b} parallel

current j.

10 Relaxation of initially shifted Maxwellian distribution (by Algorithm 1). (a)

Electron temperature T, versus t/7.. (b) Current j versus ¢/7,.

11 Thermal relaxation processes simulated by using Algorithm 2. (a) Temporal
relaxation between T, and T; with 7,/7; = 2 and N, = N, = 513. (a) Temporal
relaxation between Ty and T, with T, /T =2 and N, = 2111.
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