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Abstract

A life time of the negative pionlike particle beam which is produced by a low energy
(< 1000 eV) electron bunch and positive ion bunch, is estimated from a flight time of the negative
pionlike particle beam within a magnetic mass analyzing region and a reduction of the beam

current during the flight time. We estimate that the life time is near the typical value 2.6 x 10 sec

of the true negative pion.
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1. Introduction

We have already 1'eporteclI the following experimental facts. When 2 low energy electron
beam (< 1200 eV) is injected perpendicularly to a uniform magnetic field, together with a low
energy positve ion beam which is stopped electrically and the uniform magnetic field is used as a
mass analyzer, two peaksof negative current to the beam collector appear at two analyzing
magnetic field intensities which correspond to two relations of negative muon (the mass m; = 207
me and the charge q; = ) and negative pion (the mass my =273 me and the charge q = ¢, where
me and e are mass and charge of electron) Then, their life times should be estimated in order to
compare with the typical life times 7,=2.2 x 107 sec for the negative muonlike particle and
Tx=2.6x 107® sec for the negative pionlike particle. In this report, the life time of the negative

pionlike particle 7~ will be estimated from flight times of =~ which are controlled by the effective

. I
acceleration voitages.

2. Basic Experimental Conditions

Schematic diagrams of the basic experimental apparatus are shown in Fig. 1 and Fig. 2.
The initial or first electron beam (F.E B ) is stopped critically in front of the entrance slit S by an
electrical potential of the decelerator D connected to the cathode of the electron gun. Next, a neutral
gas 1s introduced into the first electron beam region and a plasma 1s produced through ionization of
the gas. Then, positive ions of the plasma are accelerated in front of S while a positive ion beam
with an energy corresponding to the first electron beam acceleration voltage Va, 1s injected into the
magnetic field region through S, Moreover, the stopped beam electrons are reaccelerated electri-
cally toward the gap between two magnetic poles (N) and (S) through S, while the injected ion
beam is decelerated electrically and stopped in the gap. The electrically reaccelerated electrons are
injected perpendicularly to the magnetic field (Byg) and bunched in cyclotron motions of small
radius.

As shown in Fig. 2, the above magnetic system is used as a mass analyzer (M.A) of 90°
type ‘when the beam collector B.C. is arranged. The analyzing curvature radius ris 4.3 cm.
It should be noted that the bias voltage Vg of the beam collector is positive with respect to the

mass analyzer in order to measure a negative charge current.
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A fringe magnetic field distribution of the analyzing magnetic field By under 2 magnetic coil
current of 1A, is shown in Fig. 3 for two different metal plates as the entrance plate (decelerator D)
of Fig. 1 and Fig. 2. The iron (Fe) plate is used and the fringe magnetic field is much reduced.

The distribution of electrically applied potential are shown in Fig. 4. The first electron beam
from the electron gun is perfectly reflected in front of the entrance slit S of the magnetic mass
analyzer (M.A.) while a plasma is produced by a gas (air) ionization. Then, a positive ion beam is
injected into MLA. through the slit S and the second electron beam is produced by reacceleration of
the plasma electrons. It should be noted that the injected positive ion beam (iz) is decelerated and
stopped electrically, and that the second electron beam (e;) suffers a magnetron (cyclotron) motion
in the uniform magnetic field (which is used as the analyzing magnetic field of M.A.). As a result,
both the electron beam and positive ion beam will be bunched within the small space at the
entrance X of the uniform magnetic field. As reported already,1 we consider that a negative
muonlike 4~ and a negative pionlike 7~ particle beams are produced by a coherent interaction
between the bunched electrons and positive ions. Because we find that the mass analyzing relations
of negative muon and negative pion are satisfied for two peaks of negative current [ to the beam
collector B.C., if we assume that the effective acceleration voltage Vg is twice of the first electron
beam acceleration voltage V4. That is, the following relation is found: From the analyzing
magnetic field By where the negative current shows a peak, the curvature radius # of the mass
analyzer and the effective acceleration voltage Vg, we can estimate the mass m of the negatively

charged particle by,

B Ze (BMF )2
T 2Vg

_ 88x 102 Z (B me
= Ve e (D

where ¢ is the electron charge, By is in gauss unit, 7 is in cm unit, Vg is in volt unit and me is the
electron mass and Z is the charge number. For the curvature radius 7 = 4.3 cm of this mass

analyzer, the Eq. (1) is rewritten by



M= Ty T Me (D)

In the experiments as reported alre:ady,1 we obtain m = m; » 206 meg for the first peak of I” and

m = my ~ 290 me for the second peak of I, assuming that Z =1 and Vg =2 V.

3. Experiment for Estimation of Life Time

An experiment to estimate the life time of muontike particle ™ or pienlike particle 7~ is tried
by the experimental apparatus as shown in Fig. 2. In Fig. 5, dependences of a negative current I”
to the beam collector B.C. on the analyzing magnetic field By are shown for the first electron
beam acceleration voltages ranging from V4 = 100V to Va = 400V. In their dependences, two
kinds of peaks of the negative current I” for the various voltages Va, are seen, which correspond
to the negative muonlike particle 1~ beams or pionlike particle 7~ beams as related with Eq. (2),
assuming that Vg =2 V. Besides, we must pay attention to variations of I for V4. The two peak
values of I” comresponding to ¢~ and 7~ beam currents decay abruptly when the first electron
acceleration voltage Va decreases. That is, when V, decreases from 400V to 100V, each peak
value of I decreases about 1/17, while the variation for the peak value of electron beam current Io
near By ~ 0 is kept within about 1/2.5. We confirm experimentally that the above features on V,
do not vary for the first electron beam currents (50 uA <Ia < 0.5 mA) where space charge effects
do not become serious, and for differences between Air (8 x 107 Torr~ 1.5 x 107 Torr) and Ar

gas (2 x 10 Torr~2 x 107 Torr) in the gas introduction region (G of Fig. 2).

4. Discussion
Each flight time of 4~ or =~ particles from the generation point X {in Fig. 2) to the beam

collector B.C,, is estimated by,

w F
=757
F[3 r
D = T (3)



where T, or Tz is a flight time of ™ or 7~ particles, vy or v2 (s @ mean velocity of 4~ or 7~ particle
and r is the mass analyzing radius (» = 4.3 cm). The mean velecities vy or v; are determined by the
effective acceleration voltages Vg = 2 V (assuming the acceleration mechanism of Fig. 4). That

s, in cm/$ec unit,

v = V(%)(WA):SSMO"’\/E
v = V(ﬁ%)@%hs.nuo%ﬁ, .................................... L@

where m is the mass of 4™ (= 207 me), mz is the mass of 7~ (= 2753 me) and Va is in volt unit.
If the life time of 4~ or 7~ particles is expressed by T, or Ty, the initial x4~ or 7~ beam current

15 or I at the generating point X (in Fig. 2) is reduced on the way to the beam collector B.C., by

[ =In exp(~Tv7)

L = I exp(=To/Ta ) s e (5)

As well known, the typical T, of T, has been estimated by

Ty~ 2.2% 10’6 sec
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From Egs. (3), (4), (5) and (6), we obtain

o = I/igy = exp (-5.3 % 107 Va)
ty = B3 = exp (5.1 % 10VVA), oo )

where, a] or @ shows a reduction ratio of 4~ or 7~ beam current.



For our experimental conditions 100V < V4 < 400V, we obtain, from Eq (7),

/106 < o <1/103
V164 € o € V130 .0 i e (®)
Here, if Eqs. (7) and (8) are normalized by a value of I at Vy = 400V, Egs. (7) and (8) are

rewritten by

o = 103 ¢y

8
I

/103 £ o’ 21

To compare with experimental reduction ratios o’ (Exp) and a;’ (Exp) with the theoretical
reduction ratios ¢’ {Th) and ;" (Th) from Eq. (7)’, we show Table 1, where all ¢;’ and o’ are
normalized by a value of I” at V4 =400. As understood from Table |, we can not explain their
reductions of I” peaks in Fig. 5, from the life ime of 4™ particles 7,. On the other hand, we can

explain roughly, from the life time of 7~ particles 7,,. That is, from Table 1, we find the following

relation

which means that the experimental decay time constant of 7~ particles is very near the typical life

time 7. Consequently, we may consider that 4~ particles are produced secondly from the decay

of 7~ particles.
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Fig. 1 and Fig. 2: Schematic diagrams of the basic experimental apparatus.

Fig. 3

F: Filament as electron emitter. K. Cathode of electron gun. A: Anode of electron gun.
V4 Initial electron acceleration voltage. [o: Total negative current. F.E.B.. First electron
beam. G Neutral gas. D: Decelerator of FE.B. S: Entrance slit (3 mm x 10 mm). Ins.
Insulator. LB.: Ion beam. S.E.B.: Second electron beam. e: Electrons with cyclotron
motions. i~ Negative muonlike particle. (M.A.): Mass analyzer. Fe: Iron. C: Magnetic
Coil. (N): North pole of electro-magnet. {S): South pole. By Analyzing magnetic field.
B.C.: Beam collector. I": Negative current to B.C. Vg: Bias voltage of B.C. with respect
to mass analyzer body. S.P.: Secondary plasma generating outside the mass analyzing
region. X: Entrance of uniform magnetic field. i: Ion bunch. 77: Negative pionlike
particle. The neutral gas (air) pressure is about 3 x 107® Torr in the electron gun region
and 1 x 10 Torr in the plasma region (F.E.B. and G in Fig. 2). The total anode current
{of electron gun) I4 is kept to the Iy = 0.3 mA while the anode {electron gun) voltage Va
is varied. A bias voltage Vg for the beam collector B C. and the diffusional current
collector D.C. is usuaily kept to Vs = 200V. (¢): Electron Beam. (I¢): Electron Beam

Current.

Fringe magnetic field distribution.

Bu: Analyzing magnetic field of (M.A.). Bo: Uniform magnetic field inside (M.A),
X: End of uniform magnetic field. S: Entrance slit position. Fe: Magnetic field distribu-
tion in a case using iron plate as D in Fig. 1. Cu; Magnetic field distribution in a case

using copper plate as D in Fig. 1.



Fig 4

Fig 5

Table 1

Applied electrical potential distribution.

V: Electrical potential. Vo" Initial potential (voltage) of electron gun anode. Vg Effective
potential for 1~ (negative mucnlike particle) and 7~ (negative pionlike particle). ey: Initial
electrons from electron gun cathode. e1: First electron beam. &: Second electron beam. 1.
Positive ion beam from plasma. iy Second positive ion beam. e-B: Electron bunch due to
magnetic cyclotron motion. i-B: Positive ion bunch due to electrical retardation. K.
Cathode position of electron gun. A- Anode position of electron gun. S- Stit position of
mass analyzer. X: Entrance position of analyzing uniform magnetic field. ~V Additional

potential generated by stopping the positive ion beam.

Dependences of negative (muonlike or pionlike particle) current I” and electron current I
to the beam collector B.C. on the mass analyzing magnetic field By,
(1): I" at the first electron beam acceleration (electron gun anode) voltage Va = 100V
(2): Tat Va =125V, (3): T at Va = 150V. (4): T at V4 = 200V, (5): I” at V5 = 400V.
(1Y:leat Vo =100V. (2): [g at Vo = 125V, (57: Is at V5 = 400V.

Comparisons between theoretical (typical) and experimental reduction ratios for y~ or 7~
peak of negative current I,

Va : First electron acceleration voltage. a;” (Th) or ;" (Exp): Theoretical (Typical) or
Experimental reduction ratio for u~ peak of I” from a case of V5 = 400V. a3’ (Th) or
oy’ (Exp): Theoretical (Typical) or Experimental reduction ratio for 7~ peak of I” from a

case of Va =400V.
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(5) (4) (3) (2) (1)
Va(V) | 400 | 200 | 150 | 125 | 100
- o (Th) U Vo0 Vio17 | V1021 | 11027
o} (Exp) 1 Ina | 1ns | lue | s
o, (Th) 1 lho | liso | 75 | 113

—
o, (Exp) 1 15 | 130 | Yag | 1117

Table 1
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