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Increase of Lifetime of Thallium Zeolite Ion Source for

Single-Ended Accelerator
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Nagoya, 464-01, Japan

Utilizing multiple sintering, we have considerably increased the
lifetime of a thallium (T1) zeolite ion source used in single-ended
electrostatic accelerators. The obtained lifetime of a small 1on source
(6.4 mm in diameter and 10 mm long) is about 4400 pAh (70
ttAh/mm3 for T1 material).
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Probing a plasma cross-section using a heavy ion beam (HIBP)
permits us to measure important physical quantities such as the plasma
potential and fluctuations in the potential and density.l) Presently the
2 MeV HIBP on the TEXT tokamak and the 0.5 MeV HIBP on the
JIPP T-IIU tokamak use a thallium zeolite ion source in a single-ended
electrostatic accelerator. The source is used because of its simplicity,
compactness, and low heater power (less than 100W) due to its low
temperature operation (1000 °C).2-3) Replacing an exhausted ion
source with a new one requires considerable time and effort. The tasks
include pump-down and opening of the accelerator tank which is filled
with pressurized SFg gas for electrical insulation, opening of the
accelerator tube and exchange of the ion source, re-pressurizing the
tank with SFg, the tuning up (gradual increase of the beam current) of
the ion source and readjustment of controls to focus the beam. In
addition, a larger beam current (10 to 100 pA) which leads to the
shorter lifetime of the ion source, is required to study the micro-
turbulence of the tokamak plasmas and this reduces the source lifetime.
As a result, the lifetime of this ion source is one of the most crucial
factors for the operation of a heavy ion beam probe in the MeV range.

The lifetime of the ion sources generally depends on the quantity
of the beam material. Since the electric power, space, and cooling
method are limited in the high voltage terminal of a pressurized single-
ended electrostatic accelerator, a compact ion source is required. We
have considerably increased the lifetime of a compact Tl ion source
with a new treatment (multiple sintering of Tl zeolite) which increases

the quantity of source material in a rather limited circumstance. In



addition, this paper is the first one which discusses the lifetime of a Tl
zeolite ion source.

Four types of ion sources are discussed in this paper. In all cases,
a housing of alkali-metal ion source®-8) purchased from Spectra-Mat
Instrument has been modified. We drilled a hole of 4.4 mm in diameter
and 1.5 mm in depth at the top of the housing as shown in Fig. 1. The
hole is filled with a mortar of Tl zeolite dissolved in ethyl alcohol. Tl
zeolite is produced by stirring a mixture of sodium zeolite (Linde A)
and thallium chloride in the pure water. Thallium ions exchange
positions with sodium ions and thallium zeolite is then obtained by
filtering the mixture. In all the tests, the ion sources is mounted in a
Pierce-type ion extraction electrodes as shown in Fig. 2. The electrode
geometry is the same as the ion gun of the heavy ion beam probe on the
JIPP T-IIU.4,5) Thallium ions are emitted from the ion source when
the source material is heated and the extraction voltage of 5 kV is
applied to the extraction electrode of the ion gun.

The beam current is measured by a Farady cup shown in Fig. 2.
The target plate of the Farady cup is made of copper. At an early phase
of the lifetime measurement, the current to the extraction electrode
(Iex) is observed, but it soon disappears. The target current (Ita) at zero
repeller voltage contains the secondary electron current of about 20 %
and is nearly equal to the current of the high voltage power supplies at
zero extraction current. We use this target current at zero repeller
voltage as the target current, since in HIBP measurement, the current
measurement including the secondary electron effect is usually
performed. The measured lifetime of the first ion source ( (1) in Fig.1)

was 240 pAh and high current operation (50 pA) is not feasible. The



sintered T1 zeolite looks like ceramic after the initial baking at 900 °C
and the volume shrinks to about 40% of the original volume (shaded
area). After this observation, we investigated whether the effective
volume of the source material could be increased by multiple sintering.

Three more types of modified ion sources (shown in Fig. 1) were
made in order to elucidate the volume effect on the lifetime. The
second one ((2) in Fig. 1) has the same shape as the first source, but
after the initial baking, the hole is filled up again with a mortar. The
third source ((3)) has an extension cup made of tantalum (50 um thick).
The cup is filled with zeolite mortar. The fourth source ((4)) has the
same shape as the third source, but the cup is filled and baked 3 times
to compensate the shrinkage of the sintered zeolite. In this case, the
first baking is performed without the extension cup in order to
optimally position the sintered zeolite at the bottom of the initial hole
of the housing. In the second heating, the extension cup is mounted and
filled up with a Tl zeolite mortar.

The first baking (sintering) is performed in vacuum although the
zeolite is not activated in air.7.8) The heater power is increased by 3
W i 5 minutes until an ion current of 50 YA is extracted. The
extraction electric field during this procedure is 1 kV/mm. A milky
zeolite powder dissolved in alcohol is used when refilling the cup so
that it can penetrate into the narrow crevices or cracks produced by
baking. The milky zeolite becomes dense mortar after the alcohol
evaporates. Figure 3 shows the dependence of the required heater
power on the thickness of the sintered ceramic at various extraction
currents. The required heater power of the fourth ion source at the last

sintering is about 30 W and more than one hour is necessary for the last




sintering. To prepare the fourth ion source, three days are necessary for
all of the processes mentioned above.

A typical lifetime measurement of the fourth type of ion source
is shown in Fig. 4. The heater voltage is adjusted to keep the beam
current roughly at 50 A. An integrated current is obtained by
summing the current until it falls below 5 or 10 pA. The time history
has 3 phases. In the first phase, an extraction electrode current is
observed. At the second phase, the current is proportional to the heater
voltage and the third phase has a decaying ion current.

Table 1 shows the measured lifetime of the 4 ion sources. We
first compare the ion sources with equal cup volumes. The difference
in lifetime between the first and second ion sources and the difference
between the third and fourth ion sources are very large and show the
effectiveness of the multiple sintering. It seems that the first ion
sources is unstable to gravity during sintering and the shrinkage in the
hole, since the beam is extracted horizontally to simulate the extraction
of the beam at the accelerator. The second ion source is found to be
stable to the gravity at the second baking because of the adhesion to the
initial sintered ceramics in the hole. The third ion source is found to
be stable to the gravity. After multiple sintering, the lifetime is
proportional to the volume as can be seen by comparing the case of the
second and fourth ion sources.

The time integrated current of the fourth source is 4400 pAh and
18 times larger than that of the first ion source. The weight analysis of
the fourth source after the lifetime measurement, shows that most of
thallium atoms contained in the sintered ceramic are emitted as beam

jons. The lifetime per unit volume of a Tl zeolite mortar is 70



uAh/mm3, Multiple sintering increases the lifetime by a factor of 2.5.
The volume decrease due to baking is much more apparent in TI
zeolite, than in Cs or K zeolite. Multiple sintering is only effective in
enhancing the lifetime in Tl zeolite. This may be related to changes in
the crystal structure during sintering.

The authors thank visiting professor of our Institute, Dr. T. P.
Crowley of Rensselaer Polytechnic Institute for his critical reading of
the manuscript. They also like to thank the Director-General of our
Institute, Prof. A. liyoshi and Professors M. Fujiwara, K. Matsuoka,
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Reference

D)F. C. Jobes,and R. L. Hickok, Nuclear Fusion 10 (1970) 195.
2)P. M. Schoch, J.C.Forster, W. C. Jennings, and R. L. Hickok,
Rev. Sci. Instrum. 57 18235 (1986).

3)A. Ouroua, T. P .Crowley, R. L. Hickok, P .M. Schoch, K .A.
Connor, J. F. Lewis, P.E. McLaren, J. G. Schatz, J. Schwelberger,
B.Hoffman, Rev. Sci. Instrum. 63 4582 (1992).

4)Y. Hamada, Y. Kawasumi, M. Masai, H.Iguchi, A. Fujisawa and
JIPP T-IIU.. Group, Annual Review of NIFS, p.118 (1990).

5)Y. Hamada et al., Plasma Phys. Control. Fusion 36 1050 (1994).

6)0. Heinz and R. T. Reaves,Rev. Sci. Instrum. 39 1229 (1968).

T)R. K. Feeney, W. E. Sayle II, and J. W. Hooper, Rev. Sci. Instrum.
47 964 (1976).

8)D. W. Hughes, R. K. Feeney and D. N. Hill, Rev. Sci. Instrum. 51
1471




(1980).

Figure Captions

Figure 1. Schematics of 4 zeolite ion sources used for lifetime

measurements. Length is in terms of mm.

Figure 2. Schematic diagram of the test stand used for lifetime

measurement.

Figure 3. Heater power necessary for various beam extraction currents
versus thickness of the sintered disk of T1 zeolite ceramics in the initial

baking.

Figure 4. A typical time history of a long lifetime T1 ion source. Vhe,
Iex, and Itar, are the heater voltage, extraction current, and target
current respectively.

Table captions

Table 1. Integrated current, lifetime, sintered volume, and cup volume

of 4 types of Tl zeolite ion source shown in Figure 1.
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