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Abstract

A new implicit numerical solver for hyperbolic equations is proposed. This
method is based on the CIP (Cubic-Interpolated Propagation) method that was
proposed in an explicit form. Both a physical quantity and its spatial derivative are
determined so as to obey the given equation. Just same as the CIP method, this
method provides a stable and less diffusive result although it has an implicit form.
Most importantly, this method, like other implicit schemes, is stable even in a high-
CFL computation. In addition, this scheme can be directly solved by non-iterative
procedure because of the two-points connected systems although it has third-order
accuracy. The scheme is applied to 2 one-dimensional shock-tube problem
accompanied by a region expanding with quite a high velocity.
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1. Introduction

The CIP (Cubic-Interpolated Propagation) method was proposed by one of the
authors in 1985 [1] and has been highly proven to be a universal hyperbolic solver
in the past decade [2 — 4]. In this method, the spatial profile within each grid is
interpolated with a cubic polynomial, and both the value and its spatial derivatives
are predicted in advance. This method provides a stable and less diffusive result
without any artificial flux treatment commonly used in modern schemes, and can be
easily applied to various problems which include linear, nonlinear, and coupled
hyperbolic-parabolic equations. However, according as applications have become
more general, the fact that the CIP method is limited to a framework of explicit
schemes has become an important issue that must be overcome. For a certain
application, the use of an explicit scheme is extremely inefficient. For example, a
part of the fluid moves very quickly but we do not need accurately solve this part.
Even in this case, the calculation time step is controlled by this region when only an
explicit solver is available. In order to solve this problem, various kinds of implicit
schemes have been proposed [5 ~ 8]. In this letter, we propose an implicit version
of the CIP method.

2. Brief review of the CIP method

Before we come to the main question, we first review the one-dimensional CIP

method. Let us consider a linear hyperbolic equation;

d d
;€+C3£=0. (1)

The solution of this equation is f(x, ¢) = f(x - ct, 0) if ¢ is constant. Even in the
cases where ¢ is not constant and/or there are other non-advective terms, the

solution can be estimated as



Flxst + Ay = f(x-cAre), (2)

during a very short period Az. In the CIP method, a cubic interpolation is used fo
estimate f(x — cAt, ) when x — cAr is not located at grid points. Thus f(x) is

interpolated between x; | and x; with a cubic polynomial:

E@x)=a X’ +bX* + X+ f, 3

where f; and f'; are the values and the first spatial derivatives of f at x;, and X = x -

x; . Two parameters g; and b; in eq. (3) are determined from the continuity of f and

f at x;_; as follows:

(ﬁ"+ f;i1) _ Z(ﬁ _ fz‘.l)

a = sz Ax3 ’ (4)
_ (Zfi'-l- .ﬁil) _ 3(f: - fi—l)
bi - Ax Ax2 ? (5)

where Ax = x; — x;1. f; and f; are updated approximately by eq. (2) with this

polynomial and its spatial derivative as

£ =F(x-cA)=a8 +hE + fE+f, (6)

I =dE(x; ~cA)/dx =3a5" + 25+ £, (D
where

§=-cly, (cz0) (8)

and the superscript * means the time at ¢+ At.
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3. An implicit version of the CIP method
In extending this method to an implicit scheme, we need to forget temporarily
a part of the concepts of the CIP method mentioned above, because the starting

point eq. (2) that leads to eqgs. (6) and (7) is merely a product of explicit thinking.
In order to change our view point, we rewrite e¢gs. (6) and (7) as follows:

£ =ftfE+bE +aE, 9)

£ =f+2pE+3aE. (10)

Reminding that & = —cA¢, we can consider eq. (9) to be the Taylor expansion of f

in time at p;

2

f f+ftAt+fa +fm +O(ArY). (11)
In contrast, the Taylor expansion centered at * leads to

2

* * * At’ * Atg
[efrfibi-fi' —+fa ——+O0(AL") (12)
From this analogy, we come to an implicit formulation of the CIP method;

F=f+f E-b'E+4'E, (13)

and

£ = f+25'E-34E, (14)




where

. _ (fi,- +f!.’_1 a)_ 2(1‘;’ _ﬁ—;)
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We can prove that the Taylor expansion eq. (11) in time is equivalent to eq.
(9). Substituting eq. (8) into eq. (9), we obtain the following equation:

£ = f—flcht+b,c" A —a; AL (17)

When the spatial profile is expanded into Taylor series and is compared with the
cubic polynomial eq. (6), we get

2b, = f"+O0(Ax"), a4 6g =f"+0(Ax). (18)

These spatial derivatives can be transformed to the temporal derivatives as

f=dft o f==cf" (19)

by taking derivatives of eq. (1). Thus we retrieve eq. (11). We can derive the same
result from eq. (2) because this equation means that the spatial profile of f
corresponds to the temporal profile of f. This justifies the use of analogy between
egs. (12) and (13).

The solution of eqgs. (13) and (14) is rewritten as

[4)]



o K(KEDKE - A+ K +3)f T+ Bk + D,
fi = (x +1)° ’ (20)

and

P (K+ D -2)f " -2k -1D)f'} - 6x(f, —f:—)/Ax’
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where « is the CFL number:
&

T TAx (22)

Equations (20) and (21) can be solved explicitly in the order of increasing i. In the
above discussions, we treat only the case ¢ = 0, so we must change eqs. (20)-(22) as
i-1 = j+1 and Ax = —Ax in the case ¢ <0, and these equations are solved in the

order of decreasing ;.

4, Numerical results

We first apply this method to the propagation of a square wave. All results
shown below are at the time when the wave moves by a distance 200Ax from its
initial position and the CFL number or the time step At is linearly increased from 0
to specified values during first several steps. Figure 1 shows the results for low
CFL number with explicit and implicit CIPs. The results with the implicit CIP are
quite similar to those with the previous explicit CIP. Figure 2 shows the results for
various high CFL numbers. Even with an extremely high CFL number, this method
provides stable results.

In these computations, we know that the accuracy of the implicit CIP is same
as that of the previous CIP, and this method is stable with any CFL numbers.



We can also use the variable-transformation technique [9] with a tangent
function coupled with the implicit CIP as done with the explicit CIP. This technique
is very effective in the case when we use the solution of eq. (1) as the density
function (or the color function) which describes the interface between different

materials. Here we use a fransformation:
¢ = (arctan £)/(0.997)+ 0.5, (23)

f = tan[0.997(¢ — 0.5)], (24)

where ¢ works as the density function whose range is 0.0~1.0. Stable calculation
but significant diffusion for high CFL number is a nature of any implicit schemes.
We should note that most important point is stable nature when the implicit schemes
are requested. Even in this case, however, the variable-transformation technique
can greatly reduce the diffusion. Figure 3 shows the results with these procedures.
Even in the case that CFL number is set to 2.0 which is 10 times larger than that
frequently used for explicit CIP, the configuration of the square wave is kept well
for a long time.

Next, we apply this method combined with the CUP procedure [10] to the one-
dimensional shock-tube problem . The conditions are same as in ref. 3 except near
the right-side boundary where we put a region expanding with quite a high velocity
u = 13.0 and y is fixed on the boundary. This perturbation causes an expansion
wave whose velocity is about ten times larger than that of the shock wave generated
in the central region. If we are not interested in this expansion wave and we want to
control the time step with the velocity of the shock wave, not of the expansion
wave, we need an implicit scheme described above. Figure 4 (a) and (b) show the
density profile at ¢ = 0.0 and ¢ = 0.275, respectively. In this case, we set CFL = 1.3
at the expansion region. For comparison, we show the result for a low CFL number
(CFL = 0.2) in fig. 4 (c). These two results are quite similar, while the total CPU
time for the computation of (b) is 6.5 times smaller than that of (c).



5. Conclusion

We have proposed an implicit version of the CIP method. This method
provides a less diffusive result in a low-CFL computation and is stable even in a
extremely-high-CFL computation.

Note that the main equations of this implicit scheme, eqgs. (20) and (21), are the
two-points connected systems although this scheme has 3rd-order accuracy. Because
of this fact, if we treat the boundary conditions carefully, the CIP scheme, even
with an implicit form, can be solved without any matrix solvers even in general
cases, for example, when the direction of the velocity is not uniform in space. The
extension to higher-dimensions is possible by a directional splitting technique. We

will discuss this matter in a future paper.
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FIGURE CAPTIONS

Fig.1  Linear wave propagation with (a) an explicit and (b) implicit CIP with
CFL = 0.2. The symbols and solid lines denote numerical and analytical solutions,

respectively.

Fig.2  Linear wave propagation with implicit CIP with (a) CFL = 1.0, (b) CFL
= 2.0, (c) CFL = 5.0 and (d) CFL = 20.0. The symbols and solid lines denote
numerical and analytical solutions, respectively.

Fig.3  Linear wave propagation with implicit CIP combined with the variable
transformation. CFL numbers are set to (a) 1.0, (b) 2.0 and (c) 4.0. The symbols

and solid lines denote numerical and analytical solutions, respectively.

Fig4  One-dimensional shock-tube problem. Figures show the density profile at
t = 0.0 (a), + = 0.276 with CFL = 1.3 (b) and ¢ = 0.276 with CFL = 0.2 (c). The
symbols denote numerical results and solid lines denote an amalyfical solution

without expansion region.
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(a) Initial condition

(b) Results with CFL =1.3

(¢) Results with CFL = 0.2

Fig 4
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