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Abstract

Dynamical equation for the self-sustained and pressure-driven turbulence in
toroidal plasmas is derived. The growth rate of the dressed-test mode, which belongs
to the subcritical turbulence, is obtained as a function of the turbulent transport
coefficient. In the limit of the low fluctuation level, the mode has the feature of the
nonlinear instability and shows the explosive growth. The growth rate vanishes when
the driven transport reaches to the stationarily-turbulent level . The stationary solution
is thermodynamically stable. The characteristic time, by which the stationary and self-
sustained turbulence is established, scales with the ion-sound transit time and 18
accelerated by the bad magnetic curvature. Influences of the pressure gradient as well

as the radial electric field inhomogeneity are quantified.

Keywords: Self-sustained turbulence, ballooning mode, interchange mode, anomalous

transport, radial electric field gradient, magnetic shear, subcritical turbuience
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1. Introduction

Recently a new theoretical approach to analyze the turbulence and associated
anomalous transport in toroidal plasmas has bec.. proposed[1-4]. It has been shown
that the nonlinear destabilization mechanism due to the enhanced current diffusivity
plays an essential role in determining the turbulence level and transport coefficient. The
predicted transport coefficient is in contrast to the conventional argument on the
turbulent transport coefficient based on the Kadomtsev formula [5]. The anomalous
transport coefficient for the L-mode plasma, which was derived based on the theory of
the self-sustained turbulence, explained vartous aspects of the L.-mode plasma
confinement, e.g., the dependencies of the energy confinement time 7 on the plasma
current, the internal inductance and the ion mass, as well as the radial profile of the
thermal conductivity ¥ [6]. The analysis has also been done for the intensely heated
plasma [7] and has given explanations for the experimental observations on the high-f3;
mode [8], PEP mode [9] and current profile control [10]. The theory was exiended
[11] to include the role of radial electric field [12], in order to quantitatively analyze the
confinement of the H-mode [13]. Thermodynamical consideration is made on the
turbulence, and the characteristic feature of the non-equilibrium statistical physics was
discussed [14]. The comparison with experimental data and the confirmation by the
scale invariance method [15] suggest that the theory of the self-sustained turbulence
gives promising progress in the understanding of the confinement in a stationary state.

The dynamical change of the transport has been studied theoretically in relation
with the L-H transition and the edge localized modes (ELMs) [12,16-19]. The L-H
transition has the nature of the bifurcation (first order phase transition) with a hysteresis
curve, by which the rapid transition as well as the limit cycle oscillation are possible.
The precise analysis of the dynamical evolution would provide a key for the
understanding of the turbulence, transport and bifurcation. In the preceding articles,
several efforts were done to understand the dynamical evolution. A possible time delay

between evolution of the transport coefficient and that of the radial electric field was



modelled in [18] using the quasilinear waves: the quantitative time scales of the L-mode
and H-mode confinement are hardly taken into account.

In this article, the study on the temporal evolution of the self-sustained
turbulence in toroidal plasmas is made. The fluctuation amplitude and transport
coefficients are considered as the dynamical variables. The stability and the temporal
evolution near by the stationary solution are first examined. The time rate of the
growth/damping of the nonlinear mode, which deviates from the marginally stable
condition, is obtained by the perturbation method. Next, the dvnamics in the small-
amplitude limit is calculated. An explosive growth of the mode is shown when the
amplitude 1s much lower than the stationary level. A formula which smoothly connects
these two cases is proposed as well. Influences of the pressure gradient as well as the
radial electric field inhomogeneity, as well as the magnetic structure are quantified. The
formula serves as a basis for the study of dynamics in the transport phenomena, such
as L-H transition and ELMs.

Two cases are investigated, i.e., the case of magnetic hill and that of magnetic
well. In the former case, the current-diffusive interchange mode is the relevant mode of
the analysis, and the result is applicable to the Heliotron/torsatron configuration. In the
latter case, the current-diffusive ballooning mode is subject to the analysis. The
obtained formula is applicable to the tokamaks and stellarators. By investigating the
interchange mode turbulence in parallel with the ballooning mode turbulence, the

generic structure of the dynamics in the plasma turbulence is clarified.

2. Analysis in the Case of the Magnetic Hill

2.1 Model

2.1.1 Model Equation

We study a plasma with magnetic hill in the cylindrical model. The cylindricat

coordinate (1,8,7) is employed. The reduced set of equation {20] is employed. Basic




equations consist of the equation of motion, nimi(élt Ad- ;m}_q)) =BV, J+ % %—g

the Ohm's law, E + vX B = J/6 — AA ;J and the energy balance equation %P;- =¥A.p-
In these equations, ¢ is the electrostatic potential, d/dt = 9/6t + [¢, 1, the bracket [ ]
denotes the Poisson bracket, Q' is the average magnetic curvature, and 6 1s the
conductivity. The transport coefficients {1, A and ¥, (ion viscosity, current diffusivity
and thermal diffusivity) are obtained by renormalizing the nonlinear interaction with the
back ground turbulence, and the explicit derivation is given in [4]. These equations
govern the evolution of the dressed-test mode, and the stationary component ¢ is kept
in the Poisson bracket.

The eigenmode equation was derived in [21] by use of the Fourier
transformation (r,0,z) = Z exp (Y1 + imf —1nz/R) f p(k)exp(- ikx) dk as

O 4 (Y +iRE + kemEl_)P + —2 p
L

dk 7+
—zis—('}""l-lkj_"‘kemx-:l A)_'('Y“'ij."'ke%l A}P =0 W

In writing Eq.(1), the symbol hat denotes the normalized quantity. We use the

normalization r/a— £, t/t, ,— f, uty a2 = L AT a2 = 3, A Ap/uoa“—) A,
Tap= 2V RomiD; /By, YTap— 4,vis the growth rate,

Go = QB'/2e? @
indicates the magnitude of the energy source for the pressure gradient-driven
turbulence, € = 1/R, a and R are the minor and major radii, respectively, and B=

2up/B2. The shear parameter s is defined by the relation

ky = kqs(r-rg)/qR (3)



q(rg = m/n, and q is the safety factor. Normalized value of IEe is denoted by the
poloidal mode number m, and k3 = k3 + &% The parameter wg; indicates the

inhomogeneous radial electric field as

EI
Op =Tapg 4
The marginal condition which corresponds to the limity = 0, gives the eigen value

equation for the stationary turbulent state {21].

2.1.2 Fluctuation Driven Transport
The transport coefficient and the fluctuation amplitude has the relation through

the renormalization equation [3] as p = (‘%B)Zki (?’ + ,U-ki)_l or

72
- fus -3 e
In this expression, § is the average amplitude of the fluctuation potential. The
weighting to each Fourier componenets was discussed in [3,4]. The Prandtl numbers
of this turbulent state were calculated and were found to remain close to uaity [3,4],

l.e.,

(6)

o g =
1
s

and

2

“ et ~(e) ”
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where [l is the electron viscosity, @ is the electron plasma frequency and c is the light

velocity.




2.1.3 Nonlinear Growth and Saturation

Equations (4)-(6) represent the relations between p, x, A, v, and ¢ . Quantities
1, %, A, 7, and § are treated as the dynamic variables in this article. In the following
subsection, the growth rate y is expressed in terms on the transport coefficient.

Figure 1 illustrates the growth rate of the dressed test mode as a function of the
transport coefficient. When the turbulent-driven transport coefficient 1s small but finite,
the mode growth rate dramatically deviates form that in the linear theory. This regime
is called as the 'nonlinear growth' in this article. As the turbulence level further
increases, the nonlinear stabilization dominates; the mode growth rate finally vanishes.
This state is called as the 'stationary state’.

Figure 1 also shows the schematic drawing of the stability boundary in the
plane of the equilibrium pressure gradient and the fluctuation level (Fig.1 (b)). The
boundary I denotes the thermodynamically-stable, stationarily-turbulent level. This
corresponds to the stationary self-sustained turbulence. The boundary I1 shows the
neutral line for the case of the linearly-stable pressure gradient, i.e., the subcritical
turbulence. This is the case for the self-sustained, current-diffusive turbulence. The
criterion | Vp,, ;| indicates the linear stability boundary. Since the boundary II is in the
very low amplitude region, we do not discuss the dynamics near the boundary II nor
the lienar growth .

Since the transport coefficient, fluctuation amplitude and the growth rate satisfy
the relation Eq.(5), the dependence shown in Fig.1 represents the implicit function
between the mode growth rate and the fluctuation level. Solving this implicit relation,
the nonlinear and explosive growth and saturation of fluctuation amplitude are

discussed.

2.2 Dynamics near Stationary State
The temporal evolution in the vicinity of the stationary state is examined. The

rate of the dynamic change, y,near the marginal point is expressed in terms of the



deviation of the dynamical variable (transport coefficient) from the expected value in the

stationary state,

2.2.1 Perturbation Method
Equation (1) is expanded with respect to ¥, because the growth rate near the
stationary condition (y=0) is analyzed. Keeping the first order correction with respect

to ¥, we have the equation

Y(Lio+ gl p= Lo+ gLl p (8)

where operators Lo, L1, Ly and Ly; are given as

N )
«_Xd 1 dg2x G k..

L =T—AA——Ak + 5P = )
P s Ked 1 . 2 4. K .4 0
== - -l P 1
PR R @ B & Rt ak {10
L=t € 5,1d 1 dg [BrEk, “1;3 (11)

TR T AR & B

ke B g gp. B o4
L :—AA = - —Ak -~ = ~“=~ 12
1P }szi dk3p Res? dk 1P Res? dkp (12)

The operators Ly and Lyg have the even parity, while L; and L; have the odd-parity.
The least stable mode in the absence of the radial electric field, i.e., g = 0, has the
even-§ parity. The radial electric field inhomogeneity, wg;, mixes the even-¢ mode
and the odd-$ mode.

Following the study in the staticnary solution [5,21], we use the notation y =

k/kq b=k5/kEand F=b+ y2with



ko= (Gy/2m)"* (13)

and

G3/2i'
H=—2—> (14)
x3/2u1f2

We here notice that the eigenvalue H and normalized mode number b are also the
dynamical variables, if the turbulence evolves in time. Noting the Prandtl numbers in
Eqgs.(6) and (7), we sce that the normalizing wave number kg is in proportion to §~ /2
and that the relation H e< 4~ ! holds. The normalization of the wave number to kg
implies that the characteristic length 1s stretched according to the turbulence level. The
dynamical variable H, which directly correlates with the transport coefficient, is
introduced for the transparency of the analysis.

Multiplying E%?th to Eq.(8) and changing the variable from K to y, we rewrite
Eqs.(9)-(12) to

Lo=§—y%din+H—EFl; (15)
hoy St E R ) o

Equation (8) 1s now characterized by the two parameters Hand b.
The growth rate § as well as the effect of the radial electric field inhomogeneity
is calculated by the perturbation method. We write



p=ug+pu; - (19)

where uj is the )-th eigen function of the unperturbed equation, Lou; = 0. Coefficient p
indicates the coupling of the even-¢ mode and odd-¢ mode due to the inhomogeneous
radial electric field. Substituting Eq.(19) into Eq.(8), and operating <11, we have the

relation of p as

<1Lj0>-¥<1L,0>

=T CILgl> 7 < 1L, g1 > VB (20)
where the bracket <ilLlj> indicates the integral
<ilLlj>= f dyu(y)Lu(y) (21)

Equation (20) shows the linear relation in between the coupling parameter pand og;.
This reflects the approximation that the radial electric field effect is treated as a
perturbation.

From Eqgs.(19) and (20), P is expressed in terms of ug, u; and ®g;.
Substituting this perturbed expression of P into Eq.(8) and operating <0l, we have

<OILJ1><1L,l0>
<1 1>

T=<0L,l0>- w3 (22)

where

<OL 1><UL0> <OL1><1UL0>(<1L,0> <1lL,l>
<ML 1> T <ILgls  \<1L,0> ~ <ILyji>

(23)
Equation (22) with Eq.(23) describes the growth rate of the dressed-test mode in the

vicinity of the stationary solutiony = 0.




2.2.2 Growth Rate near Steady Sate

For the strongly localized mode, y2 < 1, the eigen value equation Lop = O was
approximaied as the Weber type equation. The zaro-th and first eigen functions are
given as uy=E"n-12exp (-& y/2) and u, = ¥2/mEy exp (£ y¥2). By the help
of this approximation, the analytic evaluation of the integrals in Eqs.(22) and 923)
becomes possible.

At the stationary condition, which is indicated in Fig 1, the dynamical variable
H takes the eigen value Hp. (The suffix O denotes the stationary state, ¥ =0.) For the
least stable mode, the eigenvalue Hy was calculated as [4]

Hy=126 (24)
and &% = 3bH,, for the mode number of
b=034. (25)

The growth rate does not vanish if the dynamical variable H is not equal to Hy.
The right hand side of Eq.(22) was calculated in [21] and was given as
<OL,1><1L,0>

<OL0> - AgT> :F,(l+h1m%1)(x;0-1) (26)

The term § 5o represents the statistical expected vatue of the thermal diffusivity in the
presence of the radial electric field inhomégeneity. In other words, the dynamical

variable § is predicted to take the value §5 in the stationary state. (Since the thermal
conductivity which would be relevant to the H-mode plasma is that for the case in the
presence of the electric field. We therefore abbreviate it as the transport coefficient in

the 'H-mode plasma') The transport coefficient {350 is given as

Yo = —x&“J 27



with

h, = % (28)
and
L=HsTZV 1T Hsiaal

%1015 the transport coefficient for the stationary state in the absence of the radial electric
field inhomogeneity i.e., that in the stationary L-mode plasma.

The same eigen functions are used to evaluate the integrals in the coefficient I'
in Eq.(23). Explicit form of integrals <illlj> are given in the appendix A. Taking the

lowest order terms with respect to Gg, we have

2b +
= Guz 4b§+3 Gy §112 §2 \ 48 fz?cz

30)

with C; = {3b€/4 — 3/8 + Hy(b? + b/ + 3/4E%)} and C; = C; - 1/2. In obtaining

Eq.(30) we use the simplification F = b. Substituting the absolute values of Hg= 1.26,
b =034 and £ = 1.03 into Eq.(30), we have I’ = 2% (1 + U mEl) Substituting
0

/Gs

this expression of I into Eq.(22) and using Eq.(26), Eq. {22) is written as

fgg(noé)oz )'y E(1+h,0l )(x;“’ ) 31)

We notice the relations H/Hy = ; /£ and Eq.(27), and the variable H in the left hand
side of Eq.(31) is expressed in terms of the dynamical variable § as

H =Hyfuo(1+ h,02,) % Using this identity, Eq.(31) is rewritten as



HO _ 1) 32

n 0.45 ¢y Gq { 4 )
= 1= 33
¥ (1 + Mmgl U %uo (33)
Go

This result shows that the fluctuation amplitude grows in time, in the case of

or %9 <%uo 34

>
A

P d

5

eB

On the contrary, the mode amplitude damps if § exceeds fyo (§/B > YXyo)- The

stationary solution of a strongly-turbulent state
-X‘ — i l ¥ —
=Xuo or (B T = Xuo) (35)
is thermodynamically stable.

2.3 Nonlinear Growth in Low Fluctuation Limit

The dressed test mode has nonlinear growth rate in the limit of small fluctuation
amplitude as is shown in Fig.1. The analytic formula for the nonlinear growth rate is
derived in the small but finite amplitude limit. Then a connection formula of the growth
rate between the small amplitude state and that near the large-amplitude stationary state

is discussed.

2.3.1 Nonlinear Growth Rale



The growth rate in the limit of the small fluctuation amplitude (i.e., small

transport coefficient), ;’{Ei <4, was discussed in [3]. It was found that the growth rate

has the dependence like ¥ o< %' in the small 4 limit. The formula is extended here to
the case where the electric field gradient is present. Derivation is given in the appendix

B, and the growth rate is given as

Yo

v= o L 36-1)
1+ E?on
and
Fo=2¥53-35GYSR1P - us (35 (36-2)

This result confirms that the growth rate has the dependence on the transport
coefficient as § o< A" and indicates that the nonlinear growth rate is reduced by the
electric freld inhomogeneity. It should be also noted that the shorter wave length mode
has larger growth rate. This dependence on kg continues so long as the effect of
thermal diffusion is weak, i.e., ¥> jiki. If kg becomes too large, the stabilization by
thermal diffusion and viscosity dominates, and the mode becomes stable. Using the

estimate k ;| ~ k¢ and Eq.(36), the relation § > {k? is approximately written as

1/2 2 45
s

>

ke((

Figure 2 illustrates the unstable region of the dressed test mode in the kg- plane. The
least stable mode determines the stationary level of the transport coefficient. The peak
of the growth rate moves towards the shorter wave length mode if the diffusivities
becomes smaller than those in the stationary value. The normalization of the mode
number, Eq.(13), implies that the mode number which gives the peak of the growth

rate may depend like kg o §~ 12, as %/f150 becomes smaller.




The growth rate Eq.(36) is evaluated for the mode number k*, which is
characteristic to the stcady state turbulence. Near the stationary state, ¢ / B = Yo, the
characteristic mode number for the turbulence, K*, is estimated. Using the eigenvalue
of b for the stationary state, b = 0.34, the normalization kog=vbk, gives the relation of
kg and the transport coefficient as 129 = O_SS(GOIﬁﬁ)”‘*. Substituting the values in the

stationary state, %50 and flyg, in this expression, we have the estimate

£ = 0.58GD) R 2 (38)

If one fixes the mode number as Ee = f(", and substitutes this form of kg, the relation

(ﬁ/ﬁ)ys ~ 1 and the expression of §yp (i.., Eq.{27)) into Eq.(36), we have

0.58GY2 [ # \'5 058G [ g\
1+(gﬂﬁ)ﬁ\%) (E)
205G,

Y= (39)

- Z
1+0352EL
GO

in the limit of § << {zo. In deriving this result we employ the approximation
(1+h 1‘-‘)1%:1)1/5

h
2.3.2 Connection Formula

Comparing Egs.(33) and (39), we see that ¥ scales as ' G, both in the small
amplitude limit and near the stationary state. In the small § limit, it has a dependence as
(%! ;”CHO)US; near the stationary state, it behaves like ¥ < {1 - § / {z10). Combining

Egs.(33) and (39), a connection formula of the growth rate for the mode with fce =k

is given as
. 05Gy* (2 \". %
y:—%—(i} (1-#) (40)
! 0.350%; \Xuo Xuo
+ —
Gy



As is illustrated in Fig.2, the modes with larger mode numbers, kg > k*,
become more unstable in the case of the lower fluctuation level, § << %yo. The wave
number of the mode, which is most unstable for the given value of §, increases as § is
reduced from §;,. Figure 3 illustrates the schematic growth rate as a function of the
thermal diffusivity ). One would draw an envelope of the peaks of the growth rate for

various modes. The largest growth rate in the small y limit with @g; =0 was given as

4 = 0.5G}"? (41)

which corresponds to the growth rate of the fast interchange mode [22]. From
Eqs.(33) and (41), we see that the formula Eq.(33) is an approximation for the
envelope of the least stable modes. Equation (33) can be used as a connection formula
for the growth rate of the wrbulent fluctuations in the system of the magnetic hiil.

Two distinct features are seen in the formula (33). (1) The growth rate is
described by the geometrical parameters and the pressure gradient. It does not include
the dissipation coefficient. (ii) There is no critical pressure gradient for this fast rate of
the change. These results show a clear contrast to the conventional argument based on
the quasi-linear formalism [5]. The first aspect, i.e., ¥ is independent of the dissipation
rate (such as resistivity) as is in the ideal MHD theory, indicates that the change of
turbulence can occur 1n a rapid time scale. When the turbulent level and associated
transport coefficient are deviaied from the values of the stationary state, the
charactenistic time scales for the growth (if % < y110) and damping (if ¢ > Yz0) 18 of the
order of T4 ;G!/2, i.e., the combination of the ion sound transit and the bad magnetic
curvature. The scaling with the ion-sound transit time suggests that the very rapid
change of fluctuation level is predicted. This time scale is of the order of the linear ideal
MHD modes [22]. The second aspect of v, 1.e., ¥ o< G(l,’ 2 indicates that this rapid
change occurs at any pressure gradient (i.e., independnet of the linear ideal MHD

instability condition), if the state deviates from the marginal point, § = ;0.




2.4 Explosive Growth and Saturation

The plasma turbulence has the nature of the sub-critical turbulence {1-4], and
the nonlinear growth rate dominates the lincar growth rate at the very low level of the
fluctuation amplitude. Numerical simulation has been done and the strong nonlinear
instability has been found {23]. The relation between the growth rate and the dynamical
variables are given as Eqgs.(33) or (40). Using these relations, we study the temporal

evolution of the fluctuation amplimde.

2.4.1 Explosive Growth

First, the dynamics in the small amplitude limit is analytically studied. Equation
(5) provides the relation X - (y + 'ykf) =(d/ 2B)2 with the help of the assumption % = [1-
In the regime of the nonlinear growth, § e XUS, the term % '\{l{l2 is of the lower power
in terms of 7 than the term x2. (In other words, the decorrelation time in the

propagator is given by ¥ rather than xki.) In this case we have

¥ k2= (5 /2B (42)

Substituting Eq.(39) into Eq.(42) and using Eqs.(27)-(29), we have the expression of

y in terms of ¢ as

1.57 G(S)HG( c i * sn
= - £k 43
(1+0.14 G 'wZ,) s\ 2% i) ’ ®)

ya
Xu
where 9 is the absolute value of the amplitude that is normalized as

s 0 1
8= 55 7 (a4)

The mode amplitude is normalized such that & = 1 at the saturation level. In deriving

Eq.(43), we employ the simplification i / ¥ = 1 and Ag = (c / amp)z. It is noted that



the thermal diffusivity scales like ¥ o ¢>°. This dependence is in between that of the
quasilinear approximation, y o 02, and the one for the strong turbulence, ¥ < ¢. The
power Index of 5/3 is characteristic to the strong nonlinear growth phase.

The growth rate is now expressed in terms of §. By substituting Eq.(43) into

Eq.(39), as

13

F=9,06 (45)
where
~ r 3
T~ —0L - G 13 (28R ) (46)
1+038-2L

is expressed in terms of the equilibrium parameter and the mode number. The

dynamical equation, which describes the evolution of the mode amplitude, is reduced
from Eq.(45) as

45-4,6% (47)

for small but finite amplitude, ®<< 1. This equation is solved analytically, and the

solution is written explicitly as

2P — 1
RO “

The parameter 1o is given by the iniiial amplitude, t, = ¢(0)” ' The solution expresses
an explosive growth. The typical time scale to approach the saturation level is
Tapln 1$(0)"'". Evenif the initial amplitude is 103 times smaller compared to the

a1

saturation level, it takes only 10 times of T, ¥}~ to come to the strong turbulence level.




2.4.2 Approach to Saturation
We next study the approach to the stationary state. In the vicinity of the

stationary condition, § = %10. Eq.(5) reduces to the formula of the strong turbulence

=

T
u= B (49)

(T being the plasma temperature) and y and Aare given through Egs.(6) and (7) as

¢ e .
X=B T and A= eB _ﬁ.) ( ) respectively. The growth rate of the mode, Eq.(33),

is then expressed as

T=9{1-9) (50-1)
and
. 0.45/G
A *———05/2_0 (50-2)
( G "’El)

The equation which descries the evolution of the fluctuation amplitude is given as
L 6=1{1-8)} (51)

This equation gives the solution

8(0) = 9(0) exp(¥,1)

1 + (0) {exp(¥,i) - 1} (52)

The state § = 1 is realized in the long time limit. The characteristic time scale, by which

the stationary state is realized, is given by 75 ‘1,
The nonlinear behaviours of the seif-sustained turbulence, i.e., those in the

nonlinear growth phase and in the saturation phase, are summarized in the table 1.



The conventional argument in the quasi-linear picture is also compared in this
table. In the zero-amplitude limit, where ¥ and W are the second order in terms of the
fluctuation amplitude 6 Eqg.(5) reduces to the formula of random walk,
1=k, $2B)y 1= (Vexp)¥~ !, where ¥,  is the fluctuating Ex B velocity. If one
substitutes the fluctuation level for the weak turbulence theory, Vg, = Yiineadk 1» X IS

given as ¥ ~ '\(limlfki, which is the well known Kadomtsev formula [5].

3. Analysis in the Case of Magnetic Well

. 3.1 Model
We study a circular plasma \-vith the toroidal coordinate (r, 6, {) and use the
reduced set of equations with same variables (¢, J, p) [24]. In this section, the case
where the magnetic curvature is no longer constant but has the poloidal dependence is
considered. Instead of the interchange mode, the ballooning mode becomes the
relevant mode for the analysis. The ballooning transformation [25] with the ballooning
coordinate 1) is employed, and the eigenmode equation for the dressed test mode is

given analogous to Eq.(1) as [11]

d F d {5 ~ d ; i
an m an (y +KF+ %lﬁ)p + a{x + cosn + {sn —osinn)sinh} p

- (‘? +MF + 6‘)513%—)13 (? +KF + (T)EIa%)p =0

(53)

where K = #n%q2, M = (inq?, A = An4q4, xis the average curvature (x < O for the
case of the magnetic well), « is the normalized pressure gradient, o = — 2 R dp/dr, s is
the shear parameter -rq"/q, and F is redefined as F = 1 + (sn —asinn)®. The transport
coefficient in the stationary state was also obtained by renormalizing the nonlinear
interactions [3]. The parameter to indicate the inhomogeneity of the radial electric field,

O, , is defined as




. dE
Or1 = Tapgig (54)

where (g = g, / st in comparison to Eq.{4).

3.2 Dynamics near Stationary State

The same method as in § 2 is applied to estimate the growth rate. We introduce

the normalized mode number N

N = (/e nq (55)

and the ratio H, instead of Eq.(14), as [3,11]

3/271
H=-S"0 (56)
x3/2u1/2

As in the case of the interchange mode turbulence, the quantity H and the normalizing
mode number (o/§{i)!"* are treated as the dynamical variables.
The eigenmode equation Eq.(53) can be rewritien in a form similar to Eq.(8).

The operators L, L, L and L., are redefined as

L,= % + AKO—L {x+ cosn + (sn - sinm)sinn} - MAF® (57)
e (59
S

S 1 & 2Apd (60)



[n deriving Egs.(57) to (60), the operators d/dn and F are commuted, because the
Weber type approximation for (s-02n2 << 1 is used in the analytic study. (See [2] for
the relevance of this approximation.)

The eigenmode for the unperturbed operator Lo are given analytically by Weber
functions in the small § limit, as in §2. In the steady state, the dynamical variables H
and N take the eigenvalues as H = H, and N2 = N"2. The eigen values H, and N*2

Were given as

Hy= (%) (61

N*2=1/y2+CQE) (62)
with

£= ¢ -éﬁl(é(g §(§)) 63)
where

f(s)=(1-28W2+CE) &4

§=s-0, and C(8) = 68%(1-28)" 1 [2].
The same procedure as in Eqs.(22) and (23) is applied for the case of the
ballooning mode turbulence with Egs. (57)(60). Evaluating integrals (see appendix A

for details) we have, similar to Eq.(26), as

<0L,l><1IL,i0> _ i -
<0Lg0> - L1|L0|1>1 m'%lzé’(%g_ =h m‘%‘) ©3
=1 F2 3aF~! 2
hy== — — + 66
e { (1-28)1 +C(3)) 4f(§)(2+C(§))”2} )



In this expression, ¥ o and h; are those for tokamaks. The suffix O also indicates the
statistical estimate value in the stationary state. Transport coefficients in the stationary

H-mode and the stationary L-mode are given as

~

G — LO

.4 6
X0 1+h1n21 (67)
and
o oA ()"
Ao =y x(u) ©9

respectively [11]. The formula ¥y is a general one for the transport coefficient in the
stationary state, and {; o is the specific expression in the limit of &, =0.

When the state is slightly deviated from the stationary solution and the
dynamical variable ¥ is different from Jyo. the growth rate y is calculated. Using the
formula Eq.(22) and evaluation Eq.(65), § is expressed as

o XL { X }
Fry=§=={1-=" (69)
7=8 X Ano
The multiplication factor I" is evaluated by using integrals <ilLlj>, which are given in

the appendix A, as
= —%(1"0 + Tl (70)

where the coefficients I'g and T'g are given as

ro._2F 1+ C(B)
°72+CE) " 2R2 + C®P”?

(71)



and

-1 fEF +( 2 3F F
RO 2?2400 az+ceP  (1+C)2+ P

(72)
withF=~1+ §2/2E_,. From these results, we have the growth rate near the stationary

ballooning mode turbulence, similar to Eq.(33), as

. 4 ( % }
J=dad—2_ (1-2% (73)
(1“0 + FEC‘)EJ Xu

In the limit of s = 0, we obtain an analytic expression as

(74)

oo 042002 x)

1+03%1 &\ Au

The growth/damping rate is expressed as the first order term with respect to (§/%;50— 1)

near the stationary state.

3.3 Nonlinear Growth in Low Fluctuation Limit
3.3.1 Nonlinear Growth Rate

The argument on the growth rate for the limit of low fluctuation level (i.e.,
small y limit) is also developed for the ballooning mode turbulence. The analytic
formula in the strong shear limit was given as = y Yt (nq)*> a5 s~ 253]. Itis

extended to the case where the radial electric field shear is present, as

090X P55 (nq)¥

1= 2 (75}

1422
20 g2

The detailed derivation is given in Appendix B.




The characteristic mode number in the stationary state turbulence is given by the
relation N = N” as is shown schematically in Fig.2. This relation gives the estimate of
the toroidal mode number for the stationary state as n*q = N'(a/ﬁwiw)m. Using the
eigen value N” of Eq.(62), and the formula for §35o of Eq.(68), the value of n*q is
expressed in terms of the equilibrium parameters. Substituting this form of n* into the
expression of y, Eq.(75), the growth rate for this mode is estimated in the limit of small

amplitude as

f(8)” L5 g-2i5 ol ( i )1/5

L B
20082 5/ E

Singular dependence as (%/xb)” > is also obtained for the small value of .

(76)

3.3.2 Connection Formula

Figure 4 compares the numerical solution of the eigenmode equation Eq.(53)
with the analytic estimates Eq.(74) and Eq.(76). For fixed values of the mode number
and other equilibrium parameters, the growth rate is calculated as a function of the
thermal diffusivity % In the small y limit, y scales as x'>; in the large % case, ¥
behaves like (1 — %/%) (3 being the stability boundary). A simple interpolation

o \1/5 Y
(g

s

is found to be a good approximation for the fixed value of kg.

The mode with the higher toroidal mode number has the larger growth rate if §
is much smaller than %y, . The largest growth rate at higher torotdal mode numbers
remains of the order of 1’2 in the zero y limit. (If the toroidal mode number is too
high, the stabilization by the thermal diffusion and viscosity dominates.} Figure 5
illustrates the growth rate as a function of the anomalous transport coefficient. The

ballooning mode turbulence has also the nature of the strong subcritical turbulence, so



that the rate of change in the presence of fluctuations completely differs from the result
in the quasi-linear theory. The higher-n modes have larger growth rates in the case of
the small values of §. However, they are more easily stabilized when ¥ is increased.
One can consider the envelop of the peak of the growth rate. Equation (73) would

serve as an approximate formula for the envelope of the largest growth rate.

3.4 Explosive Growth and Saturation

We see that the evolution equations for dynamical variables %, [i, A, 7 and § has
the same structure in the case of the ballooning mode turbulence as that for the
interchange mode turbulence. The same argument in the section 2.4 applies.

The explosive growth of the mode is also derived from the formula of the
growth rate in Eq.(76). The dynamical equation for the turbulence level has the same
structure for the case of the interchange mode turbulence in the section 2. The

explosive solution 1s obtained in the stage of the nonlinear growth as

N 1
R T "

For the case of the ballooning mode turbulence, the normalized value ¥, is claculated by

use of Egs.(67), (68) and (76). Itis given as

N 1 o3 c i 113
Yo = = — o Kt (79)
" 14+ 83(532 W, (sf(s))u3 (amp )

The approach to the saturation state is also obtained near the stationary state.

Introducing the normalized value ¥, as

5 §
Y= —2—— (80)
(1"0 + FE(DEH)



the evolution of the fluctuation amplitude is given, in the vicinity of the saturation state,

as

(81)

The recovery of the stationary state is predicted.

4 Summary and Discussion

In this article, we have derived the formulae that describe the temporal change
of turbulent fluctuations in toroidal plasmas. The rate of the dynamic change were
investigated in the vicinity of the stationary state as well as in the nonlinear growing
phase. Near the stationary state, the derivation from the self-sustained stationarily-
turbulent state was analyzed by the perturbation method. Analytic formula of the
nonlinear growth was obtained. The influences of the pressure gradient as well as the
inhomogeneous electric field were quantified. The interchange mode turbulence was
studied in the system of the magnetic hill, and the ballooning mode turbulence was
investigated in the case of magnetic well, respectively.

The result is summarized in Table 2. The two cases (i.e., the interchange and
ballooning modes) have a strong similarity to each other. The structure in Eq.(73) is
the same as that of Eq.(33), although numerical coefficients are different. Quantities
Gpand o play the same role as the driving force, and g, and O, play the role for
suppression. In the cases of the magnetic hill and magnetic well, the dynamical

equation for the fluctuation amplitude § is generally given as

¥l
.
Il
=2
o

{82)

and



_(Goora)™?; %\, (Goora)® (1~ 5 )G

1+ had, ( "X_HG)TAFI’: 1+ hag, ®3)
This equation covers both the cases of the dynamics near the stationary state and the
nonlinear growth in the small amplitude fluctuations. The connection formula is thus
obtained. Equations (82) and (83) are the generic form of the dynamic structure in the
self-sustained turbulence in toroidal plasmas.

The turbulent level changes in the fast time scale that is typical to the ideal MHD
instabilities. This fast growth (when ¥ < ¥z or damping (when ¥ > ¥3;) occurs
independent of the critical B value against the linear MHD instabilities. The growth rate
» is already considerably different from that of the linear mode calculations, even at the
smali-but-finite amplitude fluctuations. Our analysis shows that the plasma turbulence
has the feature of the strong sub-critical turbulence.

The rapid rates, in the change of the turbulence level and the transport
coefficient, provide the basis for the approximation which had been used in the study of
H-mode dynamics and causality [17]. At the 1L/H transition and the ELM bursts, the
electric field was predicted to change with the time scale of v; (v; being the ion-ion
collision frequency). From Eq.(83), we see that the delay time in the change of
fluctuations, which would follow the change of the radial electric field, is predicted to

be of the order of T, 0™ 2. The delay of the turbulence change is negligible if the

condition
o> (Tpvi) (84

is satisfied. The right hand side of Eq.(84) is much smaller than unity. This condition
is usually satisfied for the plasma that is relevant to the H-mode. The simultaneous
change in the transport coefficient, which was employed in [12,17], is now confirmed
to be a relevant assumption. Some of the recent studies employed the dynamical

equation for the fluctuations {See [18] and following work, or [26}). The nonlinear



theory in this articie gives considerably different dependence of Y on the equilibrium
parameters compared to these studies. The characteristics of the solution such as the
bifurcation and the limnit cycle solution, in general, can be changed by the choice of the
form of the growth rate. For future quantitative study, it may be necessary to employ
the formulae of Egs.(33) and (73).

‘We here note that the fast change is predicted to take place even in the parameter
region which is stable against the linear MHD mode. The linear ideal MHD theory has
predicted that the fast growth rate of the order = y/Gy, is possible to occur, if the
pressure gradient exceeds the critical pressure gradient [27]

s2

Our result indicate that, as a result of the nonlinear enhancement of the growth rate, the
fast rate of change is possible even in the case of G < Gygyp, if the turbulence level is
deviated form that for the statistical expected value for the stattonary state. In this
sense, there is no threshold for the pressure gradient for this rapid change.

We finally note the relation with the transport catastrophe in the large pressure
gradient limit [28]. In this article, the coefficient I" is calculated analytically in the limit
of a small pressure gradient. The first order correction of Gy in I' could be calculated.
For simplicity, the result of the L-mode plasma with the interchange mode turbulence
(i.e., in the absence of the radial electric field inhomogeneity) is presented. Itis given
as

3
H2b+—)
( [ 3b_ Go

I'=<0IL, 0> = -

(86)

It should be noted that the sign of the second term in the square bracket is negative. If

the pressure gradient is high enough to satisfy the condition, i.e.,



#aE? + 31
Gy2 ——)g—BE——-——Q $2 =~ 5652 (87)

the sign of the coefficient I" becomes negative. If this is the case, the growth rate of the
dressed-test mode becomes positive if y exceeds the stationary solution ;. In other
words, the stationary solution Eq.(35) is no longer thermodynamically stable. The
catastrophe of the transport coefficient above a threshold pressure gradient may happen.
Thas critical pressure is, however, much higher than the so called beta-limit against the
ideal MHD stability, Eq.(85). The disappearance of the stable and stationary solution
of Eq.(35) could happen if the pressure gradient becomes greater than the ideal MHD
limit by an order of magnitude. The transport catastrophe was predicted to occur if the
condition G > st/R is satisfied [28]. The relation Eq.{87) indicate the new path for the
transport catastrophe at the very steep pressure gradient. These processes would be
important for the study of the beia limit phenomena in turbulent plasmas. This requires

future study.
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Appendix A: Evaluation of Integral

The integrals are evaluated for the interchange mode turbulence. The Weber

function approximation is used and integrals are given as

" [BEfu+xP2 & & G
<Olkol0>= 75 x( T b T2HF 212 s (A1)
u u xF2, 38 3¢ G

A H 2¢3/2

<ALy, f0> = GO('\/ Vo ) e X S:;, (A3)
2, Hs2 3/2

<OIL”H>:G%('/BZZ +‘/F§F) Wb % FE Ad

where F is approximated as an constant. Integrals <tlLg jlj> were given in [25] as
<OILJO> =& (3 /% - 1), < Lol > =- 2§, <OIL,/1 > =- 2bC,G; /% and
< L 10 > = 2bC,G /2 with €, = 3Eb/4 - 3/8 + Hfb? + b/& + 3/4E%) and C, = C; -
1/2. Taking the limit of F = b, we have the results Eqs.(30) and (31).

Integrals are also calculated in case of the ballooning mode turbulence. In the

lowest order of ¢, the integrals in the small § limit is givenas (§ =5 - &)

<OLg0> =/ & Hor /2 { SN 2N§FH (1 - ;‘2;1:2)} (A5)

<1Lgll > =/ & Hor 1/2{” AN+ - ijpH (1 - XN%:IFZ)} (A6)

<OIL,l1 > = y2EHNF & (A7)
<L, 0> = - y2EHNF & (A8)



with N = N"(§). In performing the integral, the term F s also approximated as a
constant F = 1 + 8228, The expression of & is given in the text.

Integrals <ilLg ;lj> were givenin [11] to give

<OILI1><1L,0>

_ 2 o\ _er a2
<0Lgl0> igs % §( T ) Ehy @ (A9)
c_1X[XFTE N 30N"2)
=g u{ T 2% TaEF (A10)

With the first order correction with respect to @3, T is calculated as
r=5(r,+af,) (All
= 7ol ot TE®E; )

where I'g and Ty are estimated as

X[(XHRy san B &
roz,/ﬁ{(T)N F +Y§F—%—} (A12)
X (XU 4. N 2% \xarn 3age8 XHH 1207
Tr=d u{( 2x )HONGF (2x)(x+uN L F)}
(A13)

In calculating I'g and I'y;, the lowest order term with respect to ais kept.

If we employ the estimate that the Prandtl number is close to unity, L/ =~ 1,
and substitute the relations N” = {2 + C§))™ ", £ = (1 - 281 + C®)Y2 + CE))"!
H, =f(8), we have

_ p2 30F! |\’ Al4
' “{(1—2§)(1+C(§)) " w2+ om)” -

2F2 1+ C(§)

Ty~ = T
0T 2+CO T 22+ )

(A15)

—32—=




roo L[ fOF [ B 3F F’ )
EP 0\ p+c@y® 12+CO) 42+cm)P (1+C2+CEP?

(A16)

with F= 1 + §%/2€_ Substituting these integrals, Eq.(73) is obtained.



Appendix B: Growth Rate in the Limit of Small Transport Coefficients

B.1 Interchange Mode

Analytic formula of the growth rate in the limit of the low transport coefficient,
% << %uo. has been discussed. The dependence like ¥ o A" has been derived [3].
The analytic expression of 'y, however, was limited in the case where the radial electric
field shear is absent. We here generalize the analysis in the presence of the radial
electric field shear.

We first study the case of the interchange mode. The basic equation was given

as [25]

W T o+ G_z (YHDEdk)k {r+ogp=0 @y

where @ =Kglg), W =T, p(dEl./dr)B‘1 and the electrostatic fimit is taken in the

Ohm's law for the transparency of the argument. (This approximation does not affect

the dependence like § o X.US.) Keeping the first order correction with respect to @,

Eq.(B1) is written as
Lo+ E";{%_IL! F=0 (B2)
where
-4d 1 4
O*dyl yz dy+g Q’U"’Y) (83)

g= Gorkds27 1, Q= 9Akds2and

-d
LTy T 2dy Q(dy +) .



(Note that Q is the parameter which describes the growth rate in this appendix, and
must be distinguished form the magnetic curvature €2' in the main text.)

The eigen value equation is solved by use of the vanational method. The

functional 18 introduced as

R= f R (Lo + (0gy/9)L) p dk (B5)

where the asterisk * denotes the complex conjugate. We set the trial functions as

P=ug+ (P, +i Py (B6)
where

ug(y)= Sz exp - (B7-1)

u)=258 y exp - 2 ®72)

(Note that & is not conductivity in the appendix B.) The functional R is given

R=<ugLguy>+{p? + pfl<u,iLou, >

. o {B8)
+(p, + 1pi}—?i< uglLfuy >+ (p,— Ipi)Tl< uy il luy >
The eigenvalue equation is given as
0 g=0, 9 R=0 L2R=0 ad R=0 (B9)

op,

Solving the parameter p, + ip; from the refation oR /dp_ ; = 0, and substituting it into

Eq.(B8), we have



(B10)

R = < uglLglug >— ((DEI)2< uglL lu, ><u,IL;lug >

<wilLglu, >

where the lowest order correction with respect to ®g; is kept. The integral is performed

and we have

<uglLolug> =~ * + 2-0%xp (GAEC(0) + g —Q - 2 (B11)
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We find, a posteriori, an ordering 6 = QV® and ¢ is a smallness parameter (so is Q).
We therefore keep the lowest order term with respect to 6. In the absence of the radial
_electric field inhomogeneity (wg; = 0), we have
R~-ct+g- Q-2 B12
+g- Q-5 (B12)
Substituting this expression into Eq.(B9) and taking the optimum with respect to the

variation of o, we have

c=2"13qle (B13-1)
and

g=2%3-9m+9:§4,—3§22’3 (B13-2)
or

V=90 =2¥3"3 G - 25 g (B14)

This recovers the previous theory for the current diffusive interchange mode.

Other integrals are calculated, in the lowest order of o, as




<uyilguy > =—2/T6? + g~ Q— ﬁhszcﬁ (B15-1)

<uglLlu,> = - %05 ~3/2Q0 = %05 (B152)

<ulL,luy> = V2r6* - V2Q0 = V2r6* (B153)
The functional R is calculated as

R~ -ot+g-S (%)206 (B16)

The correction with respect to (g, is in a higher order in ¢. This correction does not
affect the solution g = 2713 Q6. By the help of this solution for 6, Eq.(B16)

provides the dispersion relation as
_3 o 1 {©e1\ 513
5= 550 {1 h{ 7] 27} @

The Q' term in the bracket is evaluated in terms of the unperturbed value as

QB = 370 24’3G0. In the presence of the radial electric field inhomogeneity, the

growth rate is given as
. Yo Yo
9= ~ (B18)
3 (DEI 31 1 + = 9 O)EI
4G, 20 G,

The Lorentz form of the radial electric field correction is obtained. The suppression
factor is very close to that for the transport coefficient, Eq.(27).

We here notice that the odd-parity mode is an weaker instability, compared to
the even-parity mode, in the small A limit. The growth rate of the odd-parity mode, in

the ®g; = O limit, is given by use of the functional R =< u,iLglu; >, The integral is



given by Eq.(B14-1). By finding the optimum with respect to &, we have the

dispersion relation g= 5(4m)"*2~1 3, or
7~ 558gm)BaY 81V s V2, (B19)

The power index of Ais now 1/4 and is higher than the case of the even-mode. This
result shows that the odd-parity mode is an weaker instability than the even-parity
mode. (We notice that y in Eq.(B19) has the fractional power dependence on A
Though the growth rate is smaller than the even-parity mode, the odd-parity mode also

shows the explosive growth in time.)

B.2 Ballooning Mode
We next study the case of the ballooning mode instability. The eigenmode

equation (53) is expressed in the limit of 3, 4 — 0O as

Lo+ %ilLl p=0 (B20)
where
A 4
onn . . 'y ’
Ly= % % % + ?q) {cosn + (sn —asinn)sinn} ~FA(nq)y  (B21)
L.=ld1 2 Angfy pd  dp (B22)
178dn F dy? _T( dn  dn )

and F = 1+ (sn —asinm)?. We study as in [3] the strongly localized mode. Analytic
treatment of possible by taking the strong shear limit. We use the ordering Sn ~ 1
(§=s—00). In this limit, the approximations are derived as F = 1 + §°n? and

cosT + (sn —asinnsinn = 1. Equations (B21) and B(22) are simplified as




VIR Ry
_d 1 d oMng)®  YA{nq} i 2
Ly= ay T+y2 dy + W 2 (1+y?) (B23)

and

L. =8d 1 _ff__i'(an?(
FS\a 1+ @ 2\

nd  d 2
A+ ¥+ g4y ))} (B24)
by changing the variables as y =8n.

Comparing Egs.(B23) and B(24) to Eqs.(B3) and (B4), we see that the same
procedures apply by properly replacing parameters. We have the growth rate in the

strong shear limit, §>> 1, as

Y= __QYZ)%W (B25)
1+ 30 as?
and
o= 2453735 9315 AUS o215 (o q)4"5 (B26)

The growth rate is in proportion to AY% in the zero @y, limit, which reproduces the
previous analysis [3]. The Lorentzian form for the suppression by the radial electric

field is obtained as well.
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Figure Captions

Fig.1

Fig.2

Fig.3

Schematic drawing of the growth rate as a function of the turbulent transport
coefficient (a). In the case of smali but finite transport coefficient, the mode
growth rate shows the strong nonlinear growth. This region is called as the
nonlinear growing regime. When the transport level becomes high enough, the
growth rate vanishes. This state is called as the stationary state. If the turbulent
level vanishes, the growth rate of the linear theory, ¥}y, is recovered. The
lincarly-unstable case is shown by the solid line, and the dotted line indicates
the linearly-stable case.

The stability boundary is shown in the plane of the equilibrium pressure
gradient and the fluctuation level (b). The boundary I 1s the thermodynamically-
stable, stationary turbulent level. The boundary II is the neutral line for the
subcritical turbulence. The criterion | Vp, | indicates the linear stability

boundary.

The stability boundary in the mode-number/transport coefficient plane. The
least stable mode, kg = k", determines the level of turbuience and fransport
coefficient at the stationary state. The thick dotted-dashed line indicates the
peak of the growth rate. If the transport coefficient is smaller than the stationary
value, the peak of the growth rate is realized by the mode with the higher mode

numbers.

Growth rate of the dressed-test mode as a function of the transport coefficient
(fluctuation level). The case of interchange turbulence is shown. The solid
curve shows the case of kg = k¥, Eq.(40). The coefficient C; is given as

C; = 0.45(1 + 0.02G; '@d, ) "Thin doited curve shows the case of the shorter
wave length ko> k™. Thick dashed line indicates Eq.(33) which is the envelope

of the growth rate for various components. (In the case of the zero amplitude,
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1 — 0, the growth rate should reduce to the from in the linear theory, Yiinear,

but this limit is suppressed in this schematic graph.)

The numerical solution of the eigenmode equation (53) is shown by the solid
line. Parameters are: ®g;=0,0=0432,n=30,q=3,x=-0.111,s =04,
Aly =103, wy = 1. For this case, the stability boundary Y is given as
§,=5.2x107% In the small % limit, ¥ scales as X", in the large  case, y
behaves like (1 — /%) A simple interpolation of the form §'(1 — /%) is

shown by the dotted line.

Growth rate of the dressed-test mode for the case of the ballooning mode
turbulence. The case of kg = k¥, the interpolation of Eqs.(73) and (75), is
shown by the solid curve. The coefficient Cg 1s given as

Cp= ETo+ I‘Em%l)‘ 1 Thin dotted curve shows the case of the shorter wave
length kg > k. Thick dashed line indicates Eq.(73) which is the envelope of

the growth rate for various components.



Table 1 Summary of Dynamics Relations

Linear Mode
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Range x—0 0 <y <<Xuo X~ Xno
Growth Rate Yiinear ¥ o< (x/xHO)HS ¥ o< (1 =%/ %no)
yikY X3 oy +¥k) ~ (6B)°

o 65!3 o 61
1i4)] < ¢’ < §'" < (1-9)
a(t) Exponential Explosive Saturating

é ~€Xp (Ylineart) q; ~ (f() "?ni"‘)—3 @ ~ (1 + exp(_f))_l

Liheory VinearK 1" - Yo




Table 2 Summary of the Transport Coefficient and Dynamic Equation

Systems

Magnetic Hill

(Torsatron/Heliotron, RFP)

Magnetic Well

(Tokamak, Stellarator)

Driving Force Gy= Q.'[S'Qez o =—Rq2p
Relevant Mode Interchange Ballooning
Basic Equation Eq.(1) Eq.(53)
N G%Q (% 12 N 32 £ (F\12
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