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Entropy production and Onsager symmetry in neoclassical transport processes of mag-
netically confined plasmas are studied in detail for general toroidal systems including nonax-
isymmetric configurations. We find that the flux surface average of the entropy production
defined from the linearized collision operator and the gyroangle-averaged distribution func-
tion coincides with the sum of the inner products of the thermodynamic forces and the
conjugate fluxes consisting of the Pfirsch-Schliiter, banana-plateau, nonaxisymmetric parts
of the neoclassical radial fluxes and the parallel current. We prove from the self-adjointness
of the linearized collision operator that the Onsager symmetry is robustly valid for the neo-
classical transport equations in the cases of general toroidal plasmas consisting of electrons
and multi-species ions with arbitrary collision frequencies. It is shown that the Onsager
symmetry holds whether or not the ambipolarity condition is used to reduce the number of
the conjugate pairs of the transport fluxes and the thermodynamic forces. We also derive
the full transport coefficients for the banana-plateau and nonaxisymmetric parts, separately,
and investigate their symmetry properties. The nonaxisymmetrie transport equations are
obtained for arbitrary collision frequencies in the Pfirsch-Schliiter and plateau regimes, and it
is directly confirmed that the total banana-plateau and nonaxisymmetric transport equations
satisfy the Onsager symmetry.
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I. INTRODUCTION

Transport processes caused by binary Coulomb collisions between charged particles in
toroidal magnetic configurations are described by the neoclassical transport theory.' Par-
ticle and heat transport fluxes observed in most fusion devices exceed the predictions of
the neoclassical transport theory and thus are called anomalous transport.* The anomalous
transport is considered to result from the turbulent fluctuations driven by various plasma
instabilities, which are not taken into account by the neoclassical theory. However, the neo-
classical theory is regarded as a standard model with a well-established framework, which
gives lower limits of the transport fluxes in quiescent plasmas close to thermal equilibria,
and it also has practical use for predicting the parallel transport such as a bootstrap current
with more accuracy than the prediciions for the radial transport. The characteristics of the
neoclassical theory lie in the inclusion of the effects of the global magnetic field geometry
due to the long mean free path of the hot particles. In less collisional regimes such as plateau
and banana regimes, the processes in deriving the neoclassical transport equations, which
relate the neoclassical transport fluxes to the thermodynamic forces, are more complicated
than the derivation of the classical transport equations in more collisional regimes. Since the
neoclassical transport coefficients contain the parameters relating to both the collisionality
and the magnetic geometry, it is less trivial than in the case of the classical transport to show
the validity of the Onsager symmetry® for the neoclassical transport. In the cases of axisym-
metric systems, the analytical expressions of the full neoclassical transport coefficients for all
collisionality regimes have been obtained, and it is well-known that the Onsager symmetry
holds for the axisymmetric neoclassical transport matrix.

The neoclassical transport equations for nonaxisymmetric systems® ! are more compli-
cated due to the geometrical complexities, and they involve the nonambipolar parts. The
absence of symmetry may also cause the breakup of magnetic surfaces into islands and er-
gordic regions,'? although such problems are beyond the scope of this work. Here we assume
the existence of toroidal nested magnetic surfaces as in other previous works.®1! Balescu and
Fantechi derive the full neoclassical transport coefficients for the nonaxisymmetric plasma in
the plateau regime, and claim that the Onsager symmetry partly breaks down in that case.!!
Contrary to Ref.11, we show in the present work that the Onsager symmetry is robustly valid
for the neoclassical transport equations in the cases of general toroidal plasmas consisting of
electrons and multi-species ions with arbitrary collision frequencies.

Concerning the Onsager relation, it is important to discuss the entropy production re-
sulting from the transport processes since the Onsager relation, if it holds, is satisfied only by
the transport matrix connecting the conjugate pairs of transport fluxes and thermodyanamic
forces, which should be specified through the entropy production.® According to the termi-
nology in Ref.3, we expect that the kinetic form of the entropy production defined from the
collision operator should coincide with its thermodynamic form in which the entropy produc-
tion is expressed as the sum of the products of the conjugate pairs of the fluxes and forces.



In Chap.17 of Ref.3, Balescu presented detailed analyses on the kinetic and thermodynamic
forms of the entropy production in the classical and neoclassical transport processes for the
axisymmetric case. Using the Hermitian moment representation, he confirmed that the ki-
netic form of the entropy production includes the thermodynamic form given by the products
of the thermodynamic forces and their conjugate classical and neoclassical Pfirsch-Schliiter
fiuxes, although he did not identify the thermodynamic form corresponding to the the neo-
classical banana-plateau transport. In this work, before the proof of the Onsager symmetry,
we show for general toroidal geometry the complete coincidence between the kinetic form of
the entropy production and its full thermodynamic form including all contributions from the
classical and neoclassical (Pfirsch-Schliiter, banana-plateau, nonaxisymmetric) fluxes. The
main difference between our treatment and that in Ref.3 is that we use directly the distri-
bution function and the drift kinetic equations instead of the Hermitian moment expansion.

The proof of the Onsager symmetry for the neoclassical transport equations in general
toroidal configuraltions is given in the similar manner to that in the Appendix of Ref.2. The
proof uses the self-adjointness of the linearized collision operator and the formal solution of
the linearized drift kinetic equation although neither axisymmetry of the magnetic configu-
ration nor any condition for collisionaliy is not required. We also derive the full neoclassical
transport coefficients in the nonaxisymmetric system for collision frequencies in the Pfirsch-
Schliiter and plateau regimes, from which the Onsager symmetry of the full neoclassical
transport matrix is directly confirmed.

In the axisymmetric configurations, the ambipolarity is antomatically satisfied by the
neoclassical transport and the radial electric field does not affect the transport fluxes. On
the other hand, in the nonaxisymmetric configurations, the radial electric field is deter-
mined through the particle transport equations if the ambipolarity condition is imposed. In
both cases with and without the ambipolarity condition, we give the neoclassical transport
equations and check their Onsager symmetry.

This work is organized as follows. In Sec.II, the entropy production defined from the col-
lision operator is divided into the two parts, which are derived from the gyroangle-averaged
and gyroangle-dependent parts of the distribution function. The entropy production from
the gyroangle-dependent distribution function is given by the sum of the inner products of
the classical radial particle and heat fluxes and the radial gradient thermodynamic forces.
The transport matrix relating these classical fluxes and forces is shown to satisfy the Onsager
symmetry. We find that the entropy production from the gyroangle-averaged distribution
function is written as the sum of the inner products of the thermodynamic forces and the
corresponding conjugate fluxes which cousist of the Pfirsch-Schliiter, banana-plateau, non-
axisymmetric parts of the neoclassical radial fluxes and the parallel current. In Sec.III,
using the formal solution of the linearized drift kinetic equation and the self-adjointness of
the linearized collision operator, we prove that the Onsager symmetry is satisfied by the
neoclassical transport equations for arbitrary collision frequencies in general toroidal sys-
tems including nonaxisymmetric cases. The effects of the ambipolarity on the neoclassical
transport coefficients are examined for both axisymmetric and nonaxisymmetric cases to
show the robust validity of the Onsager symmetry independent of the use of the ambipolar-



ity condition. In Sec.IV, the full transport coefficients are derived for the banana-plateau
and nonaxisymmetric parts, separately, and their symmetry properties are investigated. We
derive the nonaxisymmetric transport coefficients for arbitrary collision frequencies in the
Pfirsch-Schliiter and plateau regimes, and directly coufirm that the total banana-plateau
and nonaxisymmetric transport equations satisfy the Onsager symmetry. Finally, conclu-
sions and discussions are given in Sec.V. There, we discuss the reason why our two main
results, i.e., the complete correspondence between the kinetic and thermodynamic forms of
the entropy production, and the Onsager symmetry in the nonaxisymmetric case, were not
comfirmed in Ref.3 and in Ref.11, respectively.

II. ENTROPY PRODUCTION IN CLASSICAL AND NEO-
CLASSICAL TRANSPORT PROCESSES

Here, we show that the thermodynamic form of the entropy production is equivalent to
its kinetic form defired from the collision operator for the classical and neoclassical transport
in the general case of magnetically confined plasma with arbitrary toroidal geometry. For
that purpose, we first discribe several properties of the collision operator which is denoted

for species @ by
Ca = anb(fav fb) (1)
b

where f, (fs) is the distribution function of the species a (b) and C, represents the contri-
bution from the collision between the particles ¢ and b.

The collision operator conserves the particles’ number, momentum, and kinetic energy,
which is written as

f B Coy =0
/d% mavCoy + [dsfu myvChe =0

1 1
/d3’U §mav20ab —+ ]d3’U -Q—mwzC’ba = 0. (2)

Furthermore, the collision operator is invariant under arbitrary translational and rotational
transform of the velocity variable v of distribution functions, which is expressed by

TCab(fa; fb) = Ca.b(Tfa: be)1 RCab(fap fb) = Cab(Rfa= be) (3)

where 7 f and R f denote functions f with arbitrary translational and rotational transform
of the velocity variable v, respectively.
The entropy production for the species ¢ is defined from the collision operator by

$e=35u= =% [ do(n £)Culfa, 1) )
b b
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The second law of the thermodynamics or the positive definiteness of the entropy production
is given by ] ] ]
Sab+sba 201 ZSII >0 (5)

where the total entropy production ¥, S, vanishes if and only if the distribution functions
for all species are the Maxwellian with the same temperature and the same mean velocity.
However, even if two particle species with much different masses (such as for electrons and
ions) have the Maxwellian distributions with different temperatures, the entropy production
due to their collisions is so small that we hereafter neglect it based on the small mass ratio
ordering.

For magnetically confined plasmas, the lowest-order distribution function for the species
o with respect to the drift ordering is given by the Maxwellian with no mean velocity as

fao = 773 ngur exp(—x7) = fam (6)

where v2, = 27,/m, and z, = v/vr, are defined from the temperature 7,. The distribu-
tion functions and the collision operator are perturbatively expanded in the drift ordering
parameter é = p/L (p: the thermal gyroradius, L: the equilibrium scale length) as

fa = faO + fal -+ 0(62)

Cab = Ca{fao, fro) + Cop(fa1, 1) + O(6%) (7)
where the linearized collision operator CX is defined by
CE(Fa1s f51) = Carlfats Fro) + Can{ fan, Fr)- (8)

The linearized collision operator also has the conservation and symmetry properties,
which are expressed by Egs.(2) and (3) with C,;, replaced by C4. The self-adjointness of the
linearized collision operator'® is written as

T, ]d3 Yol Lb(hal,hbl)+bed3 gblcba(hbla ha1)

=1, ]da a1 b(gabgbl) +Tb/d3 Cba gbl:gal) (9)

which is exactly valid for T, = T}, and is approximately satisfied for T, # T, when m,/m, < 1
or my/m, < 1. Concerning the positive definiteness of the entropy production described in
Eq.(5), we find the positive definiteness of the quadratic form associated with the linearized
collision operator as

— T, [ @02k (g ) = To [ 02 CL (g, g01) > 0 10
f oo ab(Gal> Go1) bf o bl G515 Ga1) > (10}

which is valid for 7, # T; to the lowest order of the small mass ratio mq./ms < 1 {or
mp/m, < 1) as Eq.(9).



Using in Eq.(4)
Inf, =1n foo + 22 a1 + O(6?)

fa0
the entropy production S, up to (?(62) is given by
Og —Zgab__Zfd3 fal falvfbl) (11)
Instead of Eq.(5), we have from Eq.(10)
TaGas + To0sa > 0, D Taoa > 0. (12)

Now, let us divide the first-order distribution function f,; into the gyroangle-averaged
part f,; and the gyroangle-dependent part f,; as

falzfal“]‘fal- (13)

Due to the rotational symmetry of the collision operator in the velocity space shown in
Eq.(3), the entropy production o, separates into into the corresponding parts as

0o =G4 + 04 (14)

where
-3 [ ol (15)
-3 [ For ot . (16)

First, we consider the entropy production &, due to the gyroangle-dependent part of
the distribution function. The gyroangle-dependent part f,; is given from the lowest-order
distribution function f,9 by

z VXD _ vxn-vVV { 2 __\
fal - Qa VfaO - fa{) QQT& [Xal + Xcz2 \I 2}
_ Ma 2qJ_a
- Ta: v [ U, + 5 Da ( )} faO (}-7)

where n = B/B is the unit vector along the magnetic field B and 9, = e, B /mgc is the
gyrofrequency of the particle with the mass m, and the charge e,. In Eq. (17 ), fag is regarded
as a function of (V, E, ) (V: the volume inside the flux surface, E = 3mqv? + €,®: the
particle’s energy, and p = m,v? /2B: the magnetic moment) and we have used

3lnfa0 1

= [Xal + Xoz (:c - g)] (18)
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where the thermodynamic forces X,; and X, are defined from the radial gradients of the
pressure p,, the electrostatic potential ®, and the temperature T, as

, |
Xo=-T_ew, X,=-T, (‘zojov) (19)

in terms of which the perpendicular components of the fluid velocity and the heat flow are

CXal

1 -
uJ_aE_/d?’vfalez VV xn
Ng e, B
qLa:.L]3~ (2_§)_§CX_“2 20
i v fuvy {22 5 —QBGBVVxn. (20)
Substituting Eq.{(17) into Eq.(16), we obtain
To6, = JE3 X0 + TS5 X o (21)
where 1
Ja=Tg-VV, Jo=mdl-VV (22)
are the radial components of the classical particle and heat fluxes defined by
= e_CEF"'l X n
I 4 ¢
—qS = F . 23
T le=ep 2 " (23)

Here the friction forces F,; and F,» are given by

F, = Zstv maVCi'b(fal,fm)
b

Fo2 = zb:fd% MeV (333 - g) Co(far, fu)- (24)

It should be noted that, from the rotational symmetry of the collision operator, that f,;
does not contribute to the perpendicular friction forces F,; while fa1 does not contribute to
the parallel friction forces F,,;. Equation (21) shows that the entropy production &, defined
from the gyroangle dependent part of the distribution function is caused by the classical
particle and heat transport, and that the classical fluxes J& and J2 are conjugate to the
thermodynamic forces X, and X,a, respectively. The momentum conservation due to the
collision operator gives

ZFQJ_ - 0 (25)



which in turn causes the classical particle fluxes to satisfy the ambipolarity as
S e g =0. (26)
We have the relations between the perpendicular friction forces and flows from Eqs.(17) and
(24) as
Fia ] [Iﬁ’ l‘f‘%} [ Ui ] (
N = a al 27)
[—sz ; Jgb ab —;qug

where the coefficients l;?,lc’ are the same ones defined in Ref.2 and are given by

m?
1% = bavme> 3 [ do o LD (52) Cuw oy LD (22) fuo, fur)

a g
ma,m

T : /d3v LD (a2)Casl fao, LY (23) Fuo]. (28)

Here, L{/(2?) = 1, L{¥?(s?) = § — %, --- are the Laguerre polynomials of order 3. In

Egs.(27) and {28), the rotational symmetry of the linearized collision operator is used. From
the self-adjointness of the linearized collision operator shown in Eq.(9), the coefficients l;f;
have the following symmetry :

=15 (29)
The momentum conservation property described in Eq.(25) imposes another constraint on
the coefficients 1% :

ik =o0. (30)
From Eq.(21) and the ambipolarity condition ¥, €,J = 0 given by Eq.(26), we obtain

S Tba =3 [V Xa + I3 Xe]

a

=2 JaXa + 2 JaXa (31)
a#l a
where X, (a # I) is defined by
. €a Pu , €l
X, =Xu——Xp=-—7+—— I). 32
al LT na+81n1 (a#1) (32)

Here we have chosen a certain particle species denoted by I. We hereafter regard [ as the
ion species with the smallest particle number density. If a plasma consists of electrons and
a single ion species i, we take I = i.

Equation (31) shows that the number of the conjugated pairs of the classical fluxes and
thermodynamic forces is reduced by employing the new pairs ( Ja1, X Jazr, {Ja2, Xa2) instead
of (Ja1, Xa1), (Ja2,Xa2). We also find that the radial electric field does not appear in the
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new set of the thermodynamic forces. The transport equations which relate the classical
fluxes (J,1, Jaz) to the thermodynamic forces (X,1, X,0) are obtained from Eqgs.(20), (22),

(23), and (27) as
J’(:]1 (Lcl)ab (Lcl) ] [Xbl]
gl = 33
] =z ] 3 3%
where the classical transport coefficients (L)% are given by

clha EVV ,
= -y kag) (34)

From Eq.(29), we have the Onsager symmetry for the classical transport as

(Ld)jk - (Ld)kjﬂ (]3 k= 172) (35)

Equation (30} yields
Zea LY = (k=1,2). (36)

We easily find from Eqs.(32), (33), (35), and (36) that the classical transport equations for
the pairs (J&, X7 )azr, (JS, X,2) are given by

astny = 2ALNBXG + D (L% X0
s b

Ta =2 (LNEX5 + 3 (L5 X (37)
b2l b

which shows that the transport coefficients (L)%} are the same as in Eq.(33) except for the
limitation (a,7),(b,k) # (I,1) and that the Onsager symmetry is valid for both of the conju-
gate pairs. We should note that the ambipolarity condition (36) reduces the number of the
thermodynamic forces required for determing the classical fluxes by one, and that the radial
electric field does not enter the reduced set of the thermodynamic forces (X al(agl)r Ka2)-

Next, let us consider the entropy production &, due to the first-order gyroangle- averaged
distribution function f,;, which satisfies the drift kinetic equation!4!5 :

_ € -
- Vg +vVie - Vo — ?UHE“‘faU = Cf(fal) (38)

where vg, is the sum of the E x B, VB and curvature drift velocities, and CZ( fa) =
¥ CL(fa1, for). We obtain from Eqs. (15) and (38)

5, = -]43 f“C’L(fal)

3 (fal) 3 alnfaﬁ
[ fd T } fd Vfa1Va, - VV =22 5V +T NaCalio B (39)
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where the parallel flow velocity wu, is defined by n.u), = f d3vfa1v”. Here, the flux surface
average of the first term in the right-hand side vanishes. In taking the flux surface average of
the second term, we use the following two equations for the radial particle and heat fluxes :

< )

_ [# BC

- eaBe< .(Vpa1+v-7ra)>+———Bch (B, V-7,
c (Bc)
e.B% (B?) B-V- 7))+ —50= B"BC (B;-V-m,)

B( 2B (Y V7 (B (B9 1))

(F||,1+naeaE||)

E 2
= gz¢ - 220 (2 (B~ (B0 135 ) (40)
</d3v o (x§ - g) Via - VV> - <mvg 0 X (Vi +V - @a)>
e (B¢
T e B? (Bg) (B-V-0u)+ ome BBBc: (Bt~ V- 0)
2
Fia2

=TI (41)

where the Hamada coordinates (V, 8, () are employed to represent the poloidal and torodal
components of the magnetic fields (see Appendix A) and Eq.(AQ) is used. Here, we have used
the definitions : pa1 = [ PPvgmev® far, Ou = [ dPvgmav*(z) - %)fal, Mg = (Do — pJ_a)(nn —
11) = fd%ma(vH — 303} fa(on— 31, ©, = (B, —~ O ) (nn — 31) = [ Boma(vf — 10} )(zZ -

£)far(nn — 21). The neoclassical particle and heat fluxes are given by
Ja' = (Ta - VV)™ = I35 + 1 +
1
T = Q- V) = TF 4 IE + I3 (42)
a

which consist of the Pfirsch-Schliiter (J57), the banana-plateau (Jf}’ ), and nonaxisymmetric

10



(J27) parts defined by

T =T, VV)*® = ‘ejge (FEI (BC ~ 1B %»

I =T VV)? = fBBEB% (B-V- =)

ot = (Fa- VY™ (B -V -m,)

B*’BC

2

¢ {Bg

1
T3 =7 (e V)P = — 5o () BV ©.)
na — 1 na _
Ja2 - T (qa VV) BgBC (Bi v @ ) (43)

Then, we find that the flux surface average of the second term in the right-hand side of

Eq.(39) is given by the products of the neoclassical radial fluxes and the thermodynamic
forces as

. oln f, 1], E B? e
“<fdavf01Vda -VV a-‘f 0) = “f_ |:Jt:11l Bg <.B” ( ¢ _(BC) <B2))>} Xal+ J lXa2-

The flux surface average of the third term in the right-hand side of Eq.(39) is given by

g€y (u“aE”> _ Ta€a (Bu“a) (BEH) + N C <E|1 (BC (B;) %))Xﬂ (45)

T. T, (B%) T,B°\ B B%)

where Eq.(A7) is used. Then, we finally obtain from Eqs.(39), (44), and (45) the thermody-
namic form of the flux-surface-averaged entropy production (7,) as

T <0a> = Xal + J;IQCIXﬁ + Ja3Xa3 (46)

where the parallel flux J,3 and the paralle] force X3 are defined by

_Ma (Bu”a> X ze (BE") )
a3 — (Bz)]_/z ) al — a<B_2)1/2.
Taking the species summation of Eq.(46), we have
PN RAEDY (Jc?leal + szanz) + JpXg (48)
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where Jz and Xy are defined from the total parallel current J; and the parallel electric field
EH as

BJ BE|

Jp = (<32>L'/>2 =Yeds,  Xe= (<B2)1 /)2. (49)
Thus the flux surface average of the entropy production due to the gyroangle-averaged dis-
tribution functions is given in the thermodynamic form, in which the neoclassical radial
fluxes J2¢', 7! and the parallel current Jg are conjugate to the radial gradient forces X,
X2 and the parallel electric field X, respectively. It should be noted that the neoclassical
thermodynamic form of the entropy production can be obtained only through the magnetic
surface average as in Eq.(48), which is a remarkable contrast to the classical thermodynamic

form (21) defined locally in the cofiguration space.

Now, let us consider the ambipolarity condition for the neoclassical particle fluxes.
From the momentum conservation (25) by collisions and the charge neutrality condition
¥, nee. = 0, the intrinsic ambipolarity holds for both of the Pfirsch-Schliiter and banana-
plateau particle fluxes in the same way as for the classical particle fiuxes, which implies that

the ambipolar conditions
Soedly =2 el LE = (50)

are valid for arbitrary values of the thermodynamlc forces (X,1, Xa2, Xg). On the other
hand, the nonaxisymmetric particle fluxes /2 and accordingly the total neoclassical particle
fluxes JA¢! are not ambipolar generally. Ifthe amblpolanty condition for the total neoclassical

particle ﬂuxes
Y ealif = Yealit = (51)

is imposed, we find in the similar way as in Eq.(31) that Eq.(48) is rewritten as

ZT =Y JHXn+ Y IE X+ JeXe. (52)
a#l a

In axisymmetric toroidal systems, the nonaxisymmetric fluxes J;* (j = 1,2) vanish and
therefore the neoclassical particle fluxes JB¢' are intrinsically ambipolar. As discussed in
the next section, in nonaxisymmetric systems, the ambipolarity condition (51} combined
with the neoclassical transport equations gives a constraint on the thermodynamic forces
(Xar,Xa2, Xg) from which the radial electric field —® is expressed by a linear form in
the pressure and temperature gradients and the parallel electric field. Then, independent
thermodynamic forces for nonaxisymmetric systems are given not by the set (X1, Xa2, Xi)
but by the reduced one (X347, Xo2, Xg). In the present work, we show the neoclassical
transport equations for both cases with { X1, X,2, Xg) and with (X yapry Xaz X £) used as
the forces, in order to elucidate the relation of the ambipolarity to the axisymmetry and to
the Onsager symmetry.

12



III. ONSAGER SYMMETRY OF NEOCLASSICAL TRANS-
PORT EQUATIONS FOR GENERAL TOROIDAL SYS-
TEMS

In this section, it is proved that the Onsager symmetry is satisfied by the neoclassical
transport equations for general toroidal systems including nonaxisymmetric cases. For that,
it is convenient to define the distribution function g, by

_ { 2
Ga = fa1 — %fai)/ %l lBEu - %2)' (BEu)] (53)

where [’ dl denotes the integral along the magnetic field line. Then, Eq.(38) is rewritten as
. 1
- Vgﬂ - Cf(ga) = ?faO(SaIXal + Sa2Xa‘2 + Sa3Xa3) (54)

where the functions S,; (7 = 1,2, 3) are defined by

1/2

5771
S, = (mz——) Ve VV (=12,  Sg=uB/(B) (53)

2

The neoclassical radial fluxes J3' (j = 1,2) and the parallel flux J,3 are expressed in terms
of g, and S,; (j =1,2,3) as

m=([tvass) (=12
Ja={ [ #0055) (56)
where we have used the following formula for an arbitrary function F(x) :
5\ cpe /B .
<F]d3’l.7 (.13(21 - 5) (Vda - VV)fa_(]> = "6jlea—BE (—én - VF) (] = 1,2) (57)
Noting in Eq.(54) that the left-hand side is linear with respect to g, and that X,; (j = 1,2,3)

oceur in the right-hand side as parameters, we find that the solution g, of Eq.(54) is given
by

Jo = D _(GannXo1 + Gap2 Xo + Gapa Xsa) (58)
b
where G (7 =1,2,3) are defined as the solutions of
1 .
’U||11 . VGabj — Z CaLa,(Gabj, Ga’bj) = abj_-'bfboSbj (] = 1,2, 3) (59)
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Then, using Eqs.(56) and (58), we obtain the transport equations relating Ji¢ (j = 1,2) and
Ju3 t0 Xo; (7= 1,2,3) as
T 15 15 L85 [ X
Ja| =) Lglf LE LS| | Xe (60)
Ja3 b LR LB LE | | Xy

where the transport coefficients L;’}; are given by

L‘J]’g = <]d3U SG‘JGabk> (]9k = 172,3) (61)

Equation (60) is rewritten as the transport equations relating J35* (7 = 1,2) and Jg to X,
(] = 1,2) and Xg :

=3 % LEXu+LixXe (1=1,2)

b k=12

Je=3 % LXu+ LeeXe (62)
b k=12

where the coefficients Lip, L%, (=1,2) and Lgg are given by

Lip=Yels Ly, =Y ell (j=12) Lip=Y el (63)
b b ab

In order to show the Onsager symmetry of the transport coefficients, it is useful to separate
Eq.(59) into even and odd parts with respect to v) as

1
UHB'VGG Z aa ab]? a’bj)— bﬁfwsgl;

1 -
Y- VGG Z ab]’ ’bj 6&bﬁfbﬂsbj (64)

where the superscripts + and — denote the even and odd parts, respectively. Noting that
S, are even for j = 1,2 and odd for j = 3, and using Eqs.(61) and (64), we obtain

1 _ a
2 Ta </ da’UEEGZkaHﬂ : VGAaj> Z Ty <fd i GjbkCAB(GAw GE@)) = (851 + 0) L
A

1 1 - - p .
%:TA </ dgvaAbkviln ) VGL;‘) - AZI;TA <f d3UEGAbkC£B(GAaj1 GBaj)) = ‘5;‘3ng (65)
from which we have

(‘5j1+5j2)L;2+5k3L2? - Z Ts </ dy— szkCAB(G:aJ Gga;,) + Gags Cp(Gane GBbk)D
(66)
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We find from the self-adjointness of the linearized collision operator given by Eq.(9) that the
right-hand side of Eq.(66) is invariant under the permutation of the subscripts (a,j) « (b, k)
and that

(61 + 62) L% + 63 Ly = (Bra + br2) LE% + 853 L50.
Thus, we obtain

(651 + 652 — ;3)L3k = (6p1 + Gp2 — 5&3)112'}
which is rewritten as the well-known Onsager relations :
LR =LY% (j,k=1,2)
Ly =-Lg (7=12)
L% = L%, (67)
We see from Eqs.(63) and (67) that

?E = _L%j (j= 132)- (68)

Equations (67) and (68) show that the Onsager symmetry is satisfied by the transport matrix
which combines the conjugate pairs of the fluxes (J2!, J2¢!, Jz) and the forces (X1, X3, X&)
for general toroidal systems.

Here, let us discuss the relation between the transport equations and the ambipolarity
condition. In axisymmetric systems, intrinsic ambipolarity holds for the neoclassical particle
fluxes and is expressed in terms of the relation between the transport coefficients as

> e LS = Zea =0 (7=1,2,3). (69)

Then, the number of the conjugate pairs of fluxes and forces is reduced by one as shown
in Eq.(52) using X7,y instead of X,,. We find from Eqs.(67), (68), and (69) that the

transport equations relating the fluxes (J3fl 1), T35 Je) 10 (X3 (4zr)) Xa2, Xp) in the ax-
isymmetric case are given by

Toflanny = 2 LUXG + D L5 Xio + L3 X
—y )

T = Z LEXs + > L X + L3 Xk
5
Je =Y L Xg + Z Lo Xio + LppXp. (70)
2T

In the transport equations (70), the transport coefficients L are the same as in Eq.(62)
except for the limitation (e, 7),(b,k) # (I,1) and the Onsager symmetry is still valid.
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In nonaxisymmetric systems, the ambipolarity condition (51) gives a relation between
the thermodynamic forces which is used to express one thermodynamic force X; in terms of
the other thermodynamic forces (X; ,2ry> Xaz2, X E) as

-1
Xn = —er (Z eaebLi‘i’) pILH (Z LEXH + 3 LXK, + L?EXE) - (71)
ab b

a bET

Equation (71) determines the radial electric field —®' = X;1/e; + p;/(nser) as a linear
combination of the pressure and temperature gradients and the parallel electric field.

Then, in the nonaxisvmmetric case with the ambipolarity condition (71), the transport
equations relating (J2. 1(#1), JE5 Jg) to ( Xot(agn)» Xa2, Xp) are given by

Jottarny = 3 LUK +3_ L5 X + LipXp
bAT b

Ja2 =D LEX5 + > L33 X+ L3pXp
bET b

Te =Y Lo X5 + > LiXeo+ LepXE (72)
b1 b

where the transport coefficients L%, L%z, £%;, and Lz are

,C?'g = L_(:i?: — (Z eALaA) Z eAL (Z €A6BL11
A

Lop=L% - (Z eal?
A

eALlE

A.B

)
> eacsli )
)

(o) (35
(ZeALEI) Seal ( S esepL

>

A AB
We see from Eqs.(67) and (68) that the Onsager symmetry still holds for the transport
coefficients given by Eq.(73) :
Ly = LG s8 = —L;- (74)

Thus, we have established for nonaxisymmetric systems with no net radial current that the
radial electric field is determined by the pressure, temperature gradients, and the parallel
electric field, and that transport satisfies the Onsager symmetry.
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IV. BANANA-PLATEAU AND NONAXISYMMETRIC TRANS-
PORT COEFFICIENTS

In the previous section, we have shown the Onsager symmetry for the transport co-
efficients relating the neoclassical radial fluxes and the parallel current (J3', J31 Jz) to
the radial gradient forces and the parallel electric field (X, X402, Xg) in general toroidal
systems. The neoclassical radial particle and heat fluxes (J°f, J%) consist of the Pfirsch-
Schliiter, banana-plateau, and nonaxisymmetric parts while, as shown in Appendix B, it
is well-known that the transport equations for the Pfirseh-Schliiter fluxes (JFF, JBF) and
the radial gradient forces (X,1, Xa2) satisfy the Onsager symmetry. Thus, it is clear that
the sum of the banana-plateau and nonaxisymmetric radial fluxes, and the parallel current
(J2P +J5p, T84 T2 Ji) are related to the forces (X,1, X, X&) by the transport coefficients
with the Onsager symmetry. In this section, using the thirteen moment (13M) approxima-
tion,® we derive the tramsport equations for the banana-plateau fluxes and those for the
nonaxisymmetric fluxes separately, in the case of general toroidal plasma consisting of elec-
trons and one ion species. Then, the symmetry properties are investigated for each of the
transport equations, and the Onsager symmetry for the total transport is directly confirmed.

The parallel momentum balance equations combined with the friction-flow relations are

given in the 13M approximation by

(B-V-m,) +nee(E”B)] _ [éBﬁhelg

_ _%[ i —jfgl [(B(ﬂne - uua))} (75)

(B-V-0,) BFjes Tee | =12 15 5,2,,, (Bque)
;M 2
B-V.-8,)= (BFHi2> = _ py 2255; (Bq“z-) (76)
where the dimensionless friction coefficients f;-’"j = —{Tua/Nam,)IEf are given by e, = Zz,,

s, = %Z,—., 552 =2+ lffZi, and fgz = /2 with the ion charge number Z;. The species
summation of the parallel momentum balances reduces to

B-V-w)+ (B -V-m)=0 (77)

where the momentum conservation (25) in collisions and the charge neutrality condition
3 g €atg = 0 are used.
Solving the linearized drift kinetic equation gives the equations for the parallel viscosities,

which have the following form for all collision frequencies in the Pfirsch-Schliiter, plateau,
and banana regimes :

(B -V- Wa)jl Mg [ﬁal ﬁaQ} (&HQB) c [Xal
= Ca | 50 —{Gqa) — 78
[(B -V -0,) Taa fla2 fla3 % (q”aB> (Ga) eq | Xa2 (78)
where ¢, and fq; (j = 1,2,3) are the dimensionless parameters for the viscosity coeffi-
cents, and (G,) represents the geometrical factor which measures the deviation from the
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axisymmetric configuration. These parameters ¢, fq; (§ = 1,2,3) and (G,) are given in
Appendix C and all of them are generally dependent on the collision frequecies although, in
the axisyminetric case, the geometrical factor is given by (G.) = (B¢} /B? for both species
and for all the colision frequecies.

Using Eqs.(76)-(78), the ion parallel flows and viscosity are written as

iy 1 7
<B'u,n,,> = (G ) — ( i1+ = 2_}(z ) — il T (B -V- We) (79)
( q > Cz(l—fnlﬂzS - (,(1,12) <G ) EXZ + []';2 (B V. ) (80)
5p: g fiy (cifus + Ib) Yo ﬁ;llz22 Nty :

37re e (Tt e — f o }2

(B V. @5) _ _nzmz Czbi(#zlﬁfza (f_jﬂ) ) (Gz) E"Xég _ lch {B v - 7"e) (81)
T frig(cifliz + ) &;

where we have defined fy = fy — Ve and il = o — Yiks With v = gfle/(cfls +

I5,). Equations relating the electron parallel viscosities (B -V - x,.) and (B-V - ©,) to the

thermodynamic forces ( X1, Xeo, X1, Xi2, Xg) are obtained from Eqgs.(75), (78), and (79) as

- s a1 _
lii —:lf2 + i fre1 l}e2 ' + I nemeri |10 (B -V ﬂ'e)
=I5y 15 Ce | fle fle3 Cofthy noMTe. |00 (B-V-0,.)

_ [ B =] [ne(B) X5 m[(GV a+ (G = (X + B2 ng)}
[ iz, Is, ] [ 0 ]+ Tee (G.) =X, (82)

We also find from Eq.(75) that the parallel current is divided into the classical part Jg and
the neoclassical part J2P due to the electron parallel viscosities as

Je=(BR)/(B) = 13+ I

JgEG’SXE
=2 )‘””(BV«}JE(B-V-@)) (83)
E _‘ne K e 552 e

where 0, = (Ne€27ee /)15 / [5,155 — (15,)?] is the classical Spitzer conductivity.
Finally, we obtain from Egs. (7?) and (81)—(83) the banana-plateau transport equations
which relate (J2F, J5F, I, JF, JF) t0 (X.1, Xea, Xi1, Xiz, Xz) as

] TIPS (L) (L) (L)% (L%)55 ] [ X
JE| P (285 (108 (P05 (L5 | | Xeo
TRt = I (L) (L) (L9)1 (L) | | X (84)
Bl @ @ @ (9 (D7) | | X
_JE"_ (LPP)Gy (LPP)5n (L) (LPP)a (L) pp | [ X&
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where the banana-plateau transport coefficients are given by

(L%%)ss (29055 _ neme & (Bo) (Ge) [ My My
(LPP)s5 (LPP)55 Tee €2 B9(B2%) | My M;

7 fe 171 P -1
My Mo — I, —ls " 1 Hei Heo 4 lA : NeMeTs 110 (6)
M, My —liz 15 Ce | He2 He3 Coftiy i Tee 100

(85)

[(pr)fi] _1(Gy [(pr)ee] [(L‘“’)‘ié} _ 1y (Gy) [(pr)ee] (7)
()5 ] T Z Gy L)) (L) | = Zi iy (Ge) (L")
{(pr)gEl ___ ne (B) [M1 Mg] [122] (88)
(E%)se) s, — (523 B0 ()% | M2 M |15,
[(pr)lla (pr)l‘?a (pr)?lﬁ (pr)tllm (pr)zlE]
=— [(pr)u, (L5)s5, (LPP)5s, (LPP)h, (L%%)5, ] (89)
[(pr)gelv (pr)gﬂ% (pr)gl? (pr)g% (pr)IZE:I
= [ (L5, (B0 (B (B8 (L) ]
im; & el (i flis — (2)?) (Be) (G
R i By (40010 o0
@)1, (20)55] = = ZSEL [(29)55, (201 (91)
a .
(£, (£99)ia] = — 2552 [ ooy, (293 ] (92)
(B
bpy s " M, My [is,
(L)ze = I5[05:18, — (%,)?] [122 512] [MZ M3] [ fz] - (93)

The banana-plateau transport coefficients given in Eqgs.(85)(93) satisfy the following
symmetry properties :

(L>)s5 = (Lb")m, (L)% = (L*)5,
(pr)_ﬂc = (G y (pr) (.77 k=1, 2) (94)
(L) = ﬁ(L"P)a (a=ei; j=1,2)
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Thus, we confirm that the banana-plateau transport equations have the complete Onsager
symmetry in the axisymmetric case where (G.) = (G;) = {B.) /B®. The intrinsic ambipo-
larity of the banana-platean particle fluxes is expressed by

. 1 - .1 .
(L) = —(L*)§5 (a=e,4; j =1,2), (L¥Ne = 5 (L")ip (95)

Z;
which are rewritten by Eq.(94) as
(G.)

b _ <G> bpyae _ - bpye 1 bpye
(L p)}l = W(L p)ﬂ {a=e1; J=1,2), (L p)m - m(L p)m- (96)
Using the above relations, the fluxes {JF(= Z,JIP), J2P, JEP. Jg) are related to the new
reduced set of forces { X7, Xez, Xi2, Xg) by the transport equatlons
TP [LPP)S (EP)55 (LPP)5h (LPP)sp ) [Xer
T | _ (L5 (LP)55 (LPP)55 (LPP)5p | | Xeo (97)
TiF (L) (LPP)i (LPP)% (LP)ip | | X
JoP (LPP)g1 (L) (LPP)gs (LPP)ee] | Xk
Here, the force X7 is defined by
(Gy) ( 3 G ) ,((Gz—) )
H=Xa+ Xop=——|p.+ ed [ = 1. (98)
' 26 G* (Ge)

When (G.) = (G:), X coincides with X, which is proportional to the total pressure
gradient —p’ = —(p, + p}), and the radial electric field —&' never affects the banana-platean
transport. However, if the electrons and the ions belong to different collisionality regimes
in the nonaxisymmetric case, the banana-plateau radial particle and heat fluxes, and the
bootstrap current depend on the radial electric field —®' through X} since (G.) # (G:).

Next, let us derive the nonaxisymmetric transport equations. For the derivation, it is
essential to note that the toroidal viscosities are given in the following form for both of the
Pfirsch-Schliiter and plateau regimes :

[(Bz'v'ﬂ'a):l — namac rr"ai ﬂ'a2:| r <ui[GB> -I _ (G )_C_ rXalJ (99)
(Bt -V - ®a> Taa te [Ma? Ha3 l% <Q|EQB>_| ta €a lXa2

where ¢;, and (G:a) are given in Appendix C and fi,; (7 = 1,2, 3) are the same as in Eq.(78).
Here and hereafter, we consider the toroidal viscosities and the nonaxisymmetric fluxes only
for the Pfirsch-Schliiter and plateau regimes since the expressions similar to Eq.(99) have
not been obtained yet for the banana regime.

Appendix C shows that the ratio between the toroidal and parallel viscosities ¢y, /¢, is
related to the geometrical factor {G,) in Eq.{(78) by the following equation :

ce (BY) _ B'(G.)
¢ BBy (Bo

1—

(100)
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which is an essential relation for showing the Onsager symmetry of the total neoclassical
transport.

Using Eqs.(78) and (99), the toroidal viscosities are written in terms of the parallel
viscosities and the thermodynamic forces as

[éﬁ::;?:g;@] [fB v “">]+”“m“ (G - <Gm>)e—‘i[§:;§:§] [ﬁg].(mn

Then, from Egs.(43), (84), and (101), we obtain the nonaxisymmetric transport equations
Telating (Jélf, J;zag Jﬁaa Jlinza) to (Xel-. Xe?:leaXﬂo XE) :

7Y T (B (1) ()5 (e ] |
75 | _ | (0 (L) ()5 (L), (e | | 57 (102)
7| = (@ (s (o (o (s | | 5
el LS (5 (05 (95 (] | 4

where the nonaxisymmetric transport coeflicients are given by
[(L“a)i‘i (Lm)55 (L)) (L) L’“‘)TE]
(L72)55 (L7355 (L7*)51 (L") (L™ )5k

e (B {(L PE (LPP)15 (LoP)53 (LPP)sS (L P)TEl
ce BS(Bc) | (L™)55 (LPP)55 (LPP)5 (L°®)5) (LPP)sg

(103)

+ NeMe Ez_ct ((Ge) - (Gte)) ﬂel ﬂe? 000
Tee € BIBS fiez feg 00 0

[(L“)ii (L) (L) (L7 (Lﬂa)iﬂ
(L (L7 (L) (™) (L)e

_ci (B%) [(Lb")’ﬁ (LOP)ys (L2 (L) (pr)iE}
e B(Be) [ (L™)5 (L)% (L) (LPP)5; (LPP)ip

L T, czC ({Gi) = {Gn)) [00 iy 12 0
Tu € TY:TS 00 fug fii3 0]

1€
12
e
22

(104)

It is found that (L*)% = (L™*)§¢ is always valid although (L*)%, = (L) is satisfied only
when ¢ie/ce = ciifc;. We see from Eq.(100) that the condition ¢ /c. = c¢u/c, is equivalent
to {G.) = {G;), which holds if the electrons and the ions belong to the same collisionality
regime.

Finally, combining the banana-plateau transport equations (84) with the nonaxisymmet-
ric transport equations (102), and using the relation (100}, the transport equations for the
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total of the banana-platean and nonaxisymmetric fluxes (J5?, Ji8, Jo=, J50, J2P) are obtained
as
g [ e s

Lo (D (L)eg ] [ X

( )
SR IS HIE | (T (L) (L) (D)8 (K)se | | X
T | = [ | = (6 (1% (00 (D% (L7 | | X | (109)
T T+ J5 (L5 (L)% (D)5 (L5 (L%)p | | X2
JE i TP | (Lbn)iﬂ (Lbn)fm (L)e: (Lbn)m (L"™ee| | Xe

where the total transport coefficients are given by

B s (L (B U] _ B (G (L (L L (i (L
(L5 (L (L) (L0 (L))~ (R L5 (L) (1) (B0 (D)

| MM CZC ({Ge) = (Gie)) | frer f12000
Tee € BOBS frez 13000

] (106)

[<Lb“>w | (L) (L) (L) (1) =B"<G>{<pr)w (L) (D)8 <pr>'(LbP>iEJ
(L) (T (L), (%05 (L) | ~ (B0 |(E)5 (1% (199} (L% (L)

+nmzc26 ({G:) = {Gu)) [00 fig 12 0
e e  BYBS 00 L f1s3 0

} (107)

(L)% (L2 (L22Yigy (E2%)g (L) | = [(£22)5; (L%P)5p (LP9)iy (LPPiy (L) ] .

(108)

Thus, from the above definitions and the symmetry properties given by Eq.(94), we can

directy confirm that the total banana-plateau and nonaxisymmetric transport coefficients
satisfy the following Onsager symmetry :

(L™= L™ I =-™%  (ab=ei;jk=12) (109)
Here, we should note that these transport coefficients contain terms of different orders in
(me/m.)'/2. As seen from Eqs.(85)~(93) and Eqs.(106)-(108), the ion-ion coefficients (L)%,
are Of(m;/m.)*?) larger than the other coefficients.
When the ambipolarity condition is imposed in the nonaxisymmetric case, we obtain, in
the similar way as in Eqs.(71)-(73), the radial electric field :

Xa
_ (I)I — pe, + i
nie; €;

4 -
= ( 3 eae,,(Lbn)‘;*;)

Nt Jb=eji

X Y eq [(L™)EXE + (L™)55 X0 + (D)5 X + (L™)ipXg]  (110)

a=e,i
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and the reduced set of the transport equations :

J{f (Eb”)‘fi (L’b“)?’é (L)% (E‘“‘) Xa
in)Zn — ( n)gﬁ( n)eg Lbn)? ( n)?E Xe (111)
e (L5 (L)% (L)% (L%)sg | | Xo
JEp (f,bn) (ﬁbn) £bn): (bn)EE XE

where the transport coefficients are defined by

o (g i) (£ et £ o)
A=ey A=ei A B_e K

(ﬁbn)}tE — (Lbn)}zE _ (Z eA(Lbn);fl) ( eA Lbn) ) ( Z eAeB Lbn AB)
A=ei A=e, A,B=ei

(£ = (L"™)5; — (Z eA(Lb“)él) (A ALy

A=e,i

Z eAeB Lbn AE
A,B=e

([,bn)EE = (Lbn)EE — (Z eA(Lbn)gl) ( 6A Lbn IE) ( €A63 Lbn AB) 112
A=eyn AB—ez

A=ei

The Onsager symmetry still holds for the above coefficients :
(L5 = (L™ (L5 = ~(L™)g;. (113)

As mentioned earlier, terms of different orders in (m,/m, )/? are included in the transport co-
efficients (L*")%. Therefore, the coefficients (£>")2; for the reduced transport equations also
contain different order terms. To the lowest order of (m,/m;)'/?, Eq.(110) is approximated
by .

@~ ﬂ (Lm)ilzz XiZ (114)

nee (L na)ll €

which is the same one given in Ref.8 and in Ref.11. In Ref.11, Balescu and Fantechi used this
approximate expression for the radial electric field instead of Eq.(110) to derive the reduced
set of the transport equations. Then, their resultant transport coefficients are different from
ours in Eq.(112} and do not satisfy the Onsager symmetry since part of O((m./m;)}/?) terms
in Eq.(112) are inconsistenly neglected.

V. CONCLUSIONS AND DISCUSSION
In this work, we have investigated the entropy production, the full transport equations
and their Onsager symmetry for the neoclassical transport processes in magnetically con-

fined plasmas with general toroidal configurations. It was clearly shown that, for both the
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classical and neoclassical transport processes, the kinetic form of the entropy production
defined from the linearized collision operator is equivalent to its thermodynamic form writ-
ten as the inner product of the thermodynamic forces and their conjugate transport fluxes.
The entropy production from the gyroangle-dependent distribution function corresponds fo
the sum of the products of the classical radial particle and heat fluxes and the radial gra-
dient thermodynamic forces, while the magnetic surface average of the entropy production
from the gyroangle-averaged distribution function is given by the sum of the products of
the thermodynamic forces and their conjugate fluxes which consist of the Pfirsch-Schliter,
banana-plateau, nonaxisymmetric parts of the neoclassical radial fluxes and the parallel
current. This equivalence between the kinetic and thermodynamic forms of the entropy pro-
duction for the full neoclassical transport fluxes were not confirmed by Balescu in Chap.17
of Ref.3. The reason is now discussed.

In deriving the thermodynamic form of the entropy production, we used the linearized
drift kinetic equation without employing the Hermitian moment expansion of the distribution
function. Balescu expressed the kinetic form of the entropy production as the quadratic form
of only the vector Hermitian moment part of the distribution function which corresponds
to the | = 1 part of the Legendre polynomial expansion. However, since the neoclassical
banana-plateau and nonaxisymmetric fluxes are caused by the parallel and toroidal vis-
cosites, the tensor Hermitian moment part (or the I = 2 part of the Legendre polynomial
expansion) needs to be included for deriving the neoclassical thermodynamic form of the
entropy production. Furthermore, as shown in Appendix D, we find that it is necessary
to include all the tensor moments including higher order parts with [ = 3,4,5,--- in the
kinetic form of the entropy production to derive the neoclassical thermodynamic form in the
banana and plateau regimes. This is intunitively understandable by considering the resonant
particles responsible for the neoclassical fluxes in the plateau regime. The resonant particle
distribition is highly anisotropic in velocity space and is approximated by a delta function
in pitch angle so that the all Hemitian moments (or all [th-order Legendre polynomials) are
required. As shown in Appendix D, the operator yn - V in the drift kinetic equation (38)
introduces the anisotropic distribution in the velocity space and it connects the [th-order
moment with ({+1)th-order moments in contrast with the linearized collision operator which
is isotropic in the velocity space and connects the {th-order moment with the same /th-order
moment alone. In the Pfirsch-Schliiter regime, the collision operator dominates yyn -V and
the distribution function has small contributions from higher order moments representing
the anisotropy. Then, in the Pfirsch-Schliiter regime, the ! = 1 vector moment is enough
to express the entropy production as in Ref.3, while the negligibly small viscosity-induced
neoclassical fluxes are included in the [ = 2 tensor moment part. On the other hand, as the
collision frequency decreases, the operator yyn - V is comparable to, and then dominates,
the collision operator and all I-order moments are required in the kinetic entropy production
functional to obtain its neoclassical thermodynamic form in the banana and plateau regimes.

We also proved from the formal solution of the linearized drift kinetic equation with
the self-adjoint linearized collision operator that the Onsager symmetry is robustly valid for
the neoclassical transport equations for general toroidal plasmas consisting of electrons and

24



multi-species ions with arbitrary collision frequencies. Furthermore, we derived in Sec.IV,
in the case of a single ion species, the full banana-plateau transport coefficients for all
collisionality regimes and the full nonaxisymmetric transport coefficients for the Pfirsch-
Schliiter and plateau regimes. The symmetry properties of these transport matrices were
separately examined and the Onsager symmetry for their total transport equations was
confirmed. We discussed the effects of the ambipolarity condition on the transport equations
in detail for both axisymmetric and nonaxisymmetric configurations. The ambipolarity
condition reduces by one the number of the conjugate pairs of the transport fluxes and the
thermodynamic forces. In the axisymmetric case, the intrinsic ambipolarity holds and the
radial electric field does not affect the transport. On the other hand, for broken torocidal
symmetry, a radial current is a function of the thermodynamic forces (X,;, Xg) in which
the radial electric field is included. When the ambipolarity condition is imposed in the
nonaxisymmetric case, the radial electric field is given by a linear combination of the other
thermodynamic forces. We showed that the Onsager symmetry is satisfied whether the
conjugate pairs of the fluxes and forces are reduced by the ambipolarity condition or not.

Balescu and Fantechi derived the full neoclassical transport coefficients for the plateaun
regime in the nonaxisymmetric configuration and claimed that the Omnsager symmetry is
slightly broken by the nonaxisymmetry. They showed the transport equations only for the
reduced pairs of the fluxes and forces, in which the radial electric field is eliminated by
the ambipolar condition. There, terms of @((m./m;)}/?) were neglected in expressing the
radial electric field in terms of the other forces as in Eq.(114). Then, the resultant transport
coefficients in Ref.11 deviate from those in Eq.(112) and the Onsager symmetry is broken in
them since part of O{(m./m;)/?) terms necessary for the symmetry are dropped.

The banana-plateau and nonaxisymmetric transport equations obtained here are valid
whether electrons and ions belong to the same collisionality regime or not. When both
species are in the same collisionality regime, we find that the geometrical factors for electrons
and ions coincide with each other {G.) = (G;) and that, as far as the radial fluxes and the
radial forces are concerned, the Onsager symmetry is separately valid for the banana-plateau
transport matrix (L)% and for the nonaxisymmetric transport matrix (L"*)?%. When
electron and ion collisionality regimes are different, (G.) # (G;) and the mixed electron-ion
coefficients in each matrix are not symmetric although the total matrix L>® are symmetric. In
the latter case, the radial electric field appears in the thermodynamic forces for the banana-
plateau radial particle and heat fluxes and the bootstrap current in the nonaxisymmetric
systems.

Since we proved the robust validity of the Onsager symmetry for the neoclassical transport
equations even in the nonaxisymmetric cases, this symmetry property can be utilized for the
calcultaion of the nonaxisymmetric transport coefficients in the banana regime which were
not given in Sec.IV. For example, from the banana-platean transport coefficients (pr)?E
and (pr)‘};j (a =e,i; j=1,2) for the banana regime given in Sec.IV, we can immediately
obtain part of the nonaxisymmetric transport coefficients for the banana regime as (L**)%p =
_(pr)?E - (pr)%j (a=ei; j=12).

In the previous work, we investigated the neoclassical and anomalous transport in weakly
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turbulent plasma and described the entropy production and the Onsager symmetry in electro-
static turbulence.'® We are also investigating a unified description of the transport equations,
the entropy production, and the Onsager symmetry for neoclassical and turbulent processes
with both electrostatic and electromagnetic fluctuations, which we will report on in a future
work.
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APPENDIX A: HAMADA COORDINATES AND INCOMPRESS-
IBLE FLOWS

In general toroidal configurations, the magnetic field is written in the covariant form :
B = B%0x/00 + Bdx /8¢ (A1)

where § and ¢ are the poloidal and toroidal angle variables, respectively, and corresponding
basis vectors for the covariant representation are given by dx/08 and 8x/0¢. Throughout
this paper, we employ the Hamada coordinates (V, 8, (), where the flux label V represents the
volume enclosed by the flux surface, and the periods of the angle variables are normalized
as §df = §d( = 1. The Jacobian is unity VV - V8 x V({ = 1 so that the flux surface
average is simply written as () = §d8 § d(-. The poloidal and toroidal fields are given by
B, = B%x/80 = B’V( x VV and B, = B'dx/d( = B'VV x V4. The contravariant
poloidal and toroidal components are the surface flux quantities B = B - V8 = ¥/(V) and
B¢ =B -V =4/(V), where x and ¢ are the poloidal and toroidal fluxes, respectively, and
"= §/0V. The vector product of B and VV is given by the linear combination of B and
0x/0¢ as \
B; B*ox

BxVV—-EEB A (A2)
where B, =B - 0x/0(.

When a solenoidal vector field U (V.U = 0) is tangential to magnetic surfaces U-VV =0
and satisfies U x B = VK (V) with some flux quantity K(V'), it is written in the Hamada
coordinates as

U=U%x/00 + Ut0x/d( (A3)

where the both contravariant components ¢ = U - V# and U¢ = U - V( are flux surface
quantities. Since both of the flow velocity u, and the heat fiow q, are incompressible
V-u, = V-q, = 0 (see Eq.(D12)) and satisfies the above conditions (see Eq.(20}) to
the lowest order in 6, all of their contravariant components u? = u, - V8, 4§ = u, - V(,
¢ =q. V0, ¢ = q,- V( are flux surface quantities. Also, u, and q, are separated into the
paraliel and perpendicular components as

U = Uje + Uig, Go = et + 9ia (A4)

where the perpendicular components u,, and q,, are given by the thermodynamic forces
X, and X, as in Eq.(20). Then, the contravariant poloidal and toroidal low components
are given by the linear combinations of the parallel flow components and the thermodynamic
forces as




BS Bp cX
¢ U ¢ tAgl
Ya= et

200 _ B'2qp _ BreXa

5pa - B 5pa B? €

26 _ 20, BocXa

5p. B5p. B2 e,
where By = B - 0x/96. We find from Eq.(A5) that

CXal
€

CXal

€a

(Bz> U: = Be (u;EaB> — (Bg)

(B*)u = B (upuB) + (By)

8 B
()26 w202 _

(BQ>2£:B€'2M+<B >‘3X_a2

) A6
50 "5 m 2w (A6)

The following formulae are obtained from Eqs.(A5) and (A6):

u _ (ueB) | 1 (Bo (B eXa
- *ﬁ(ﬁg‘w%) s

_ (uaB) 1 (_gg B %) Xun
By e

2 G _ 2 <QHGB> 1 (B (Bc)) cXa

€a

5. B op. (B | BO\B (B

. (BY) B

B (BY)] e

_ 2 <q!IaB> 1 (Ba (Be)\ cXa2
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APPENDIX B: PFIRSCH-SCHLUTER TRANSPORT EQUA-
TIONS

The relations between the parallel friction forces and the parallel flows are given by the
13M approximation in the same form as in Eq.(27), and are written as

Fia1 ] [lﬂ’ 3?3] [ o ]
_ Bl
[—Fuaz zb: 13 155 =qis (BL)

where the coefficients 1% are defined in Eq.(28). Then, the Pfirsch-Schliiter particle and heat
fluxes (JFS, J5) defined in Eq.(43) are rewritten as

EARE > Exidin L )] (B2)
1] T eB? 1 B | (% (B~ (Bagm)) |
Substituting Eq.(A7) into Eq.(B2), we obtain the Pfirsch-Schliiter transport equations:

o) Ee) ]

w1 _ a B3
I:szs Zb: (LPS) (LPS) Xao ( )
where the Pfirsch-Schliiter transport coefficients (L¥3)% are given by

wrog= C2 () (B)-Eh)m Gr-r e

From Eqs.(29) and (B4), we have the Onsager symmetry for the Pfirsch-Schliiter transport
as

(LIPS = (L), (k=12). (B5)
The momentum conservation property described by Eq.(30) reduces to
Z ea( LP9)E = (k=1,2). (B6)

which implies the intrinsic ambipolarity of the Pfirsch-Schliiter particle fluxes. We easily
find from Eqs (32), (B3), (B5) and (B6) that the Pfirsch-Schliiter transport equations for
the pairs (JI, X1 )anr, (55, Xa2) are given by

Tottasny = g}_(LPS)(f 1Xp1 + Z L) Xe

=3 (LPH X5 + Z (LP5)2 Xso (BT
b2
which shows that the transport coefficients (LF5)% are the same as in Eq.(B3) except for

the limitation (a, j),(b,k) # (I,1) and that the Onsager symmetry is valid for both of the
coujugate pairs.
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APPENDIX C: PARALLEL AND TOROIDAL VISCOSITIES

It is shown from the solution of the linearized drift kinetic equation that the parallel vis-
cosities in general toroidal configurations for all collision frequencies in the Pfirsch-Schliiter,
plateau, and banana regimes are given in the following form :

(B : V . Wa) ety ﬂal }BaQJ (u”aB) C [Xal]
= Ca | 'm0 2 —{Gy) ~ C1
[(B N V * @a> Taa »u’a2 #0-3 %: <ql[aB> < ) ea XaZ ( )
where ¢, and jt.; (j = 1,2,3) are the dimensionless parameters for the viscosity coefficents

and (G,) Tepresents the geometrical factor. The collision frequency 7., is defined in Ref.2.
The dimensionless viscosity parameters ji,; (7 = 1,2, 3) are written as

b1+ 2850 + Bis (for the plateau regime) (C2)
{(22 — 3V (V8 Taa)} (for the banana regime)

a

{ {z2(x2 — 3)7 Y (1%870.) 1} (for the Pfirsch-Schliiter regime)
flaj =

where the frequencies 7 and v} are given in Ref.2, and the velocity-space average {-} =
% J5° dz, e is used. The dimensionless coefficient ¢, is given by

3(vraTea)? (B - VIn B)?) / (B?) (for the Pfirsch-Schliiter regime)

Ca = { VTUTeTaa (BQ)_U 2 Yo 2710 B)py|?lmB? — nB¢| (for the plateau regime)
fif fe (for the banana regime)

(C3)

where f. and f; =1 — f. denote the fractions of circulating and trapped particles defined in
Ref.2 (or in Ref.7), respectively, and (In B}, are the coefficients in the Fourier expansion
oflInB :
In B =3 (In B)n, exp[27(mf — nl)).
m,n

The geometrical factor (G,) is written as

(B-VinB)%)™" [(B) (28E(B - VIn B)) — (By) (222(B-VinB))]
(for the Pfirsch-Schliiter regime)
-1 a
[Zrn (10 BYn2ImB? — nBE|) ™ S, (10 B) a2 (Be) + 1 {By) ) imBy=n
(for the plateau regime).

(Ga} =

(C4)
The geometrical factor (G,) for the banana regime is given in Ref.7 (or in Ref.9) as G;. When
we put (In B}, = 0 for all n # 0 in Egs.(C3) and (C4), the expressions for axisymmetric
systems are reproduced. In the axisymmetric case, (G,) is independent of the collision
frequency and is given by (G,) = (B,) /B? for all particle species.
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It is shown that the toroidal viscosities are given in the following form for both of the
Pfirsch-Schliiter and plateau regimes :

[(Bt.v.ﬂ'a)] _ e {aal /L,QJ ([ {u.B)

(B;-V-0,) | faz fras % (q”aB>

Tua

— (G 85 [ﬁ;]) (C5)

where fi,; (§ = 1,2,3) are the same as given by Eq.(C2) and

3(vraTea)?{(B- VIn BY(B - Via B)) / (B?) (for the Pfirsch-Schliiter regime)
VTVaTaa (B2 P T 27|10 B) a2~ nBC)ﬁ—gf{Z—ggl (for the plateau regime)
(C6)

(B:- VI B)(B - VIn B)) ™! [(B;) (%E(B, - VI B)) - (By) (28E(B, - VinB)}|
(for the Pfirsch-Schliiter regime)

Gu) = -
(G [Sonin (0 By PEPEADE BN (10 B2 (B + 1 (Bo)) e
(for the plateau regime).
(C7)
The expressions similar to Eq.(C3) has not been obtained yet for the banana regime. We find
from Eqs.(C3), (C4), and (C6) that the ratio between the toroidal and parallel viscosities
CiafCa 18 Telated to the geometrical factor (G,) by the following equation

Cta (B2> _Be(Ga)

c BS(BY) — (B) (c8)

1 -

which is an essential relation for showing the Onsager symmetry of the total neoclassical
transport. We find from Eqs.(Cl) and (C5) that the toroidal viscosities are written in terms
of the parallel viscosities and the thermodynamic forces as

Kg:fgfgﬁ] [fg v 3“;]”"”“%((@) <Gm>)-—[ﬁzﬁﬂ [ﬁ;] (c9)
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APPENDIX D: DRIFT KINETIC EQUATION AND LEGEN-
DRE POLYNOMIAL EXPANSION

The linearized drift kinetic equation is written as
- Vi + Vao - Ve — ’UuEufao— Cr(far) (D1)

where f,; and f,o are regarded as functions of the phase space variables (x, E.u) (E =
1mav? + €,® : the particle's energy ; p = m,v} /2B : the magnetic moment). Using (x,v,§)
(€ = vy/v) as the phase space variables instead of (x, E, ), we consider the expansion by
the Legendre polynomials Py(€) (Py(€) = 1, Pi(€) = £, Py(€) = 362 — %, ) for an arbitrary

function F(x,v,§) as

Fix,v,¢ ZF(l)xvg)
=0

FO{x v,8) = P;(f)ZJT_H /Mll dnP(nF(x.v,n). (D2)

The /th Lengendre component corresponds to the [-order tensor Hermitian moment part in
the Hermitian moment representation employed by Balescu in Ref.3. The first term in the
left-hand side of Eq.(D1) is rewritten in the new phase space variables as

‘E afal
2 %

We have the following formulae for the Legendre polynomials :

(§n Vfi—-(n Vin B) )zAﬁﬂ. (D3)

€R () = 5 lIBA(§)+ 1+ DRa(E]
0-e 5 - TR0 - R (04

We find from Egs.(D3) and (D4) that the operator A (= yyn- V with (x, E, i1} as the phase
space variables) in the drift kinetic equation (D1) transforms the /th Legendre component
to the linear combination of the (! + 1)th components :

AFO = (ARYEY 4 (AR, (D3)

Contrastively, from the velocity space isotropy of the collision operator discribed in Eq.(3),
the operator CL transforms the /th component to only the lth one. The second and third
terms in the right-hand side of Eq.(D1) are rewritten from Eqs.(18) and (20) as

E + %Pz(f)} T2 [V ‘ug+ (J:i — g) %V : qla] Jao (D6)
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and
BQE“

'Uffq(] (D7)

respectively. The former is proportional to the divergence of the diamagnetic flows and con-
tains only the 0th and 2nd Legendre polynomial components while the latter is proportional
to the parallel electric field and contains only the 1st Legendre component.

Now, let us write the drift kinetic equation (D1) by each Legendre component, separately.
The 0th Legendre component (or the scalar moment part) of Eq.(D1) is given by

2
DPa

(Afcgizl))(l=0) =+ -§-.’L‘2 [V L P ( 2 _ §) V- q_l_a} faU = CL( Fu= G)) (DS)

Here, the I = 1 Legendre component f FU=1) of the distribution function is expanded by the

Laguerre polynomials L(S/ g2y (LY 2)(1' y=1,L8P(z2) = 5_g2,...) as

3\ 2 ¢qya 1
fa’ = wie + (27 = 5) § 9| foo + 2 (D9)
2/ 5 pa
where f_’ffi’j =2 denotes the sum of the Jth Laguerre polynomial components with 7 > 2,

which is neglected in the 13M approximation. The first term of Eq.(D8) is rewritten as

- 2 2 —1.4
(A= = 5373 [V A{uyem) + (333 - g) gp—v ' (Q§|an):| fao + (AFSHZD)=0 (D10)
Then, Eq.(D8) reduces to
2 Y 2 =1.4 - —
3% [V et (2= 5) 5.9 qa] foo + (AFT )0 = CHEET). (D1

Integrating Eq.(D11) multiplied by 1 and 2 over the velocity space, we obtain the incom-
pressibility of u, and q, :
V-u,=V-q,=0 (D12)

where we used the particle number and energy conservation by the collision operator de-
scribed in Eq.(2). (Exactly speaking, V - q, = 0 is valid to the lowest order of the small
mass ratio as in Eq.(9).) Thus, we have

(A‘f‘ﬁ:le?})(l:B) CL( Fli= 0) (D13)

from which the contribution from the scalar moment part f(r =) of the distribution function
to the kinetic form of the entropy production is given by

f(IO

A0 =~ [ f CL o) = = [ doft—afi922), (D14)
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In the 13M approximation, #/=% vanishes.
Taking the 1st Legendre component {or the vector moment part) of Eq.(D1), we have

eaEua

LA + Fr)ey — =t o = CHIGT) (D15)

We obtain the following parallel momentum balance equations from velocity integration of
Eq.(D15) multiplied by m,v€ and mavé(z? — 2)

n- (Vpal +V- ﬂ-a.) - naeaE]i = -F“al
n- (Vgal +V- @a) = Fnaz. (Dl6)

Using Eqgs.(D9) and (D15), the contribution from the vector moment part ffl:l) 0 the kinetic
form of the entropy production is given by

I_
g=t) = /d3 f—:{ (—(1 1))

1
Tanaeaulla /d3 f -A(fc(zli g +f_‘rﬁ 2))
1

= T Matalo By —

1 2 gjia
TTG, ['u,“an . (Vpa1 +V- Wa) + gfol—ian - (V9a1 +V- @a)

#I=1,7>2)
- [@elt A+ ) (17

where the last integral vanishes in the 13M approximation.
The 2nd Legendre component (or the tensor moment part) of Eq.(D1) is given by

AT+ 2,1 P2(§)x [V uy,+ (:173— ‘2‘) gz“v'fha] fao = CHFT?) (D18)

which is rewritten by Eqs.(D9) and (D12) as

2Py(§)7; [ua+(e: -0 ] (Vin B)foo + [AFETZ + firN0=2 = CHAT).

2 5p
{(D19)
The contribution from the tensor moment part f'ﬂ =2) to the kinetic form of the entropy
production is given by

Hi=2
5U= = _ / B fa1 o CL( ‘(1_9))
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1 2
- T I:(pla - pla)ua + (6“0. - @_La)sp

-V
7 EanB

2 e |
- [ .:z%ﬂflmA( Fust22) 4 =3 (D20)
a0
Similarly, for higher order tensor moment parts with [ > 3, we have

AP 4 FENO = cHFD)  (for 1> 3) (D21)

from which we obtain

Taking the magnetic surface average of each order moment part of the entropy production
in Egs.(D14), (D17), (D20), and (D22) gives

( (1—0) </d3 fa.l Af(l 1]>2)>

<6rff:1)> = %naea <u”aE”> - Tl (u”an (VP +V -7,) +

F(i=1,j>2)
<jd3 f —(1 0) f—(t 2))>

(= 1 2
(ng 2)> =7 <[(p1ia ~ Plag + (O — @Jha)ggqa] : V1HB>

(o5

(a9} < / &y “1A (Fa b+ f(’“))> (for 1 > 3) (D23)

which are summed up to

(@) =3 ()

=0

g%n- (V8 +V- ea)>

=2
f( ) ‘(I 1,522) f-‘(ll=3))>

1 1 2G|
= -i-naea (u”aE”) — T_a <U|1an . (Vpla +V- Wa) + gp—an . (Vﬂla +V- @a)>

- Ti <[(P||a — pLa)ta + () - @m%qa} Vin B> . (D24)
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Here, we have used the following cancellation formula for arbitrary functions x and ¢ of

e < / PoX f):() > < j d%--—Ax) -0 (D25)

which is derived from the following properties of A :

A(x¥) = xAv + Ay

<f d%AF(x,v,{)) =0

AG(V,v) =0 (D26)

where F and G are arbitrary functions of (x,v,&) and (V,v), respectively. After some
calculations, Eq. (D24) is rewritten in the same thermodynamic form as in Eq. (46) :

T, (5,) = J¥ X1 + T2 Xon + Jo3 X (D27)
of which the species sum is given by
ZT (7o) = Z (T2 X a1 + I35 Xo2) + T X (D28)

It should be noted that the above neoclassical thermodynamic forms of the entropy
production are derived from the kinectic form only through the magnetic surface average
and sum of all the [-th tensor moment contributions of the distribution function. In Chap.17
of Ref.3, Balescu used only the vector Hermitian moments of the distribution function to
calculate the kinetic form of the entropy production, which is written in our notation as

ST ((3a) + (50°1) (D29)

Here, as is understandable from the form of f,; shown in Eq.(17), the contribution of the
vector Hermitian moments contains G, which is defined by Eq.(16) and written in the classical
thermodynmamic form of Eq.(21). In the Pfirsch-Schliiter regime, the higher order moments
representing higher anisotropy become small so that the [ = 2 tensor moments corresponding
to the viscosities {and therefore to the banana-plateau and nonaxisymmetric transport fluxes)
are smaller than the [ = 1 vector moment corresponding to the classical and Pfirsch-Schliter
fluxes by a small factor vpa7ee/L (L: the scale length of the magnetic configuration). In this
case, the { > 3 moments are further smaller and the total entropy production is approximated
in the lowest order of vr,7ae /L with the 13M approximation by Eq.(D29) as

EACARICHIED BRI CARSC o)
o 3 () + T88) Ko + ((J4) + T25') Xen)

+J9X;  (for the Pfirsch-Schliiter regime) (D30)
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which takes the thermodynamic form consisting of the products of the thermodynamic forces
and their conjugate classical and Pfirsch-Schliiter fluxes. (Here, it is noted that the classical
fluxes Jj_lf (7 = 1,2) is defined not by the magnetic surface average but by the local quantity
in Eq.(22).) However, for small collision frequencies as in the plateau and banana regimes,
contributions from higher order tensor moments with [ > 2 are comparable to the ! = 1 vector
moment and are indispensable in order to derive the complete neoclassical thermodynamic
form including the banana-plateau and nonaxisymmetric transport fluxes.
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