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ABSTRACT

A numerical scheme for solving advection equations is presented. The scheme
is derived from a rational interpolation function. Some properties of the scheme
with respect to convex-concave preserving and monotone preserving are discussed.
We find that the scheme is attractive in surpressinging overshoots and undershoots
even in the vicinities of discontinuity. The scheme can also be easily swicthed as
the CIP(Cubic interpolated Pseudo-Particle) method 1% to get a third-order
accuracy in smooth region. Numbers of numerical tests are carried out to show
the non-oscillatory and less diffusive nature of the scheme.

Keywords : Computational algorithm, advection equation, convex-concave

preserving, monotone preserving scheme.

1. Introduction
As one of the most important physical processes in fluid dyﬁamics, advection is
conventionally described in terms of differential equation as a first-order hyperbolic
type like
of

"a*t‘-l-ll'vf:O- (1)

with f being the dependent variable and u the velocity.
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As a sophisticated numerical solver for advection equation, the CIP method
has been developed since the middle of 1980s. It has been applied to simulations
of various physical problems and proved to be well-performing [1-4]. The rudi-
mentary principle of the CIP, which makes the scheme quite different from other
advection solvers, is to treat the spatial derivatives of the mterpolation function,
which serves as free parameters in interpolating procedure, as dependent variables.
These additional variables are then calculated by their governing equation derived
by applying differential operation to advection equation with respect to spatial
independent variables. Hence, the free parameters needed in interpolation are de-
termined from the given differential equation rather than from combinations of the
values at dicretised grid knots as those, for example, done with Akima or Cubic

Bessel formula[5].

In practical implementation, an attractive advection scheme should be both
less diffusive and oscillation free. Many high order schemes have been proposed
to reduce the numerical diffusion. However, in the presence of discontinuity or
breaking down of smoothness, one is likely to meet overshoots or undershoots
by directly applying those high order methods. On the other hands, we often
encounter situations where the property of positivity appears to be of most 1m-
portance. Algorithms which can preserve the topological nature of data have been
calling for the interests from investigators. Usually, as applications of a high or-
der scheme, manipulations, such as numerical viscosity, are made to degrade the
scheme to be of lower order in the presence of discontinuities to eliminate spurious
oscillation. Some of these sort schemes are reviewed in [6].

In constructing a CIP-type scheme, the involved interpolation function is of
great importance, and some improvements can be expected by using some prospec-
tive interpolation functions. We can hope to construct schemes with some desired
properties, like TVD, monotone or non-oscillatory, by making use of a proper

function.

In this paper, we present an algorithm for advection equation by employing
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a rational function. The remarkable character of the scheme is convex-concave
preserving and monotone preserving. It makes this method quite desirable for
practical implementations where the break-down of positivity from numerically
spurious oscillation tends to cause serious problems in calculations or simulated
results. The scheme appears also less diffusive in sample calculations.

In section 2, the algorithm is presented and some related properties are dis-
cussed. Numbers of numerical tests are given in section 3, and a brief conclusion

follows in section 4.

2. The algorithm

For given data f(z1), f(z2), - f(2i) * f(Timaz) With T3 < Z9 < --- < 1; <
-++ < Timaz, We construct a piecewise interpolation function Fi(z) to f(z) by
limiting the number of free parameters to be 4 on each interval [z;, ;4]

The sth function piece Fi(z) is made to satisfy the continuity condition:

Fiz:)= f(z:),  Fi(ziy1) = flzin)
{2)

Fj(zi)=di, Fj(zi1) =diy;;  $=1,2,---imaz
here, {d;} are free parameters used to evaluate the derivatives of the interpolation
function F(z) and can be determined by various formula. In the CIP method,
{d;} are calculated from a governing relation derived from the original advection
equation, and we will use the same concept in this paper.

Our scheme is derived from a piecewise rational function in a form as

flzi) + Ali(z — ;) + A2i(2 — z;)?
1+ Bi(.’.!,‘ - IE,’)

Fi{z) = Ri(z) =
From condition {2), one reads
Al; =d; + fiB;
A2; = 5;B; + (Sz — di)Ai_l
B; =((8i ~ di)/(di41 — Si} — 1JA™
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where
Aj=zipy — i

Si = (fira — f)AT
df
{ B (a; 3
When d; < §; < d;yq or d; > S; > d;4 is not satisfied, B; < —A,—'l in (3) is
observed, and computation will be broken as the denominator of (3) approaching

zero at a point within [z;, 2;11]. Thus, for implementation, we modify (3) as

_ f(z,) + Al,‘(.’t - .’1:,') + A2,—(:c - x,-)2 + A35($ - a:.,-)s

14 aBi{z — ;) (4)

Fi(z)

((Al; = d; + fiaB;

A2, = S;aB; + (Sz' — dg)A,'_l — A3;A;
< (5)
A3; = [d; = Si + (diy1 — Si)(1 + aBiA)]A; 2

[ Bi = [|(Si = di}/(dig1 = S| - 1A
a € [0,1] is a switching parameter. The new term A3;(z — z;)® is determined
in such a way that A3; vanishes for (5; — d;)/(dix1 — Si) > 0 with & = 1 and
recovers the coefficient of (z — 2;)® term in a cubic interpolation fucntionl!l, i.e.
A3; = (d;i +dip1 — 2Si)A,-_2, for a = 0.

We write the one dimensional form of the advection equation (1) as

of  of _

The equation governing 8f/8z can be derived directly from eq.(6) as
84(8: f(,1)) — ud:(8: f(z,1)) = —82u(,1)8: f(z,1) (7)

where 9, refers to 3/9z and 3, to 8/9¢
Usually, it is convenient to handle the right hand side of (7) in nonadvection
phase like the treatment in the CIP which solves equations by time splitting into

advection and non-advection phases. Thus then, in advection phase, eq.(6) and

8,8, f(2,1)) — udy{(8, f(z, 1)) = 0 8)
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need to be dealt with.

When f!* and 0, f" are known for ¢ = 1, +i,,,, with n denoting the time
steps, coeflicients Al;, A2;, A3; and B; can be calculated by (5) , and then, both
fFt! and 8, ! may be predicted by shifting along the characteristics as

TP+ ALE 4+ A2,6% + A3,88
9
1+ aBif (%)

FEH = Fifai - uit) =

and

B fMt! = 8, Fi(z; — ult)
_ Ai 2426 +343,8  aBi(f7 + ALE + A% + A3:85)  (9D)
- 1+ aB;t (14 aBi)?

where £ = —uAt. Eq.(9) is derived for u < 0. When u > 0, we need only take the
places of A; and ¢ +1 by —A;_; = z;,_; — z; and ¢ ~ 1 in foregoing expressions
respectively.

Next, let us state and prove some facts about algorithm (9). By keeping in
mind that the scheme is a sort of upwind, without losing generality, we limit our
discussions to the case of v < 0,

PROPOSITION 2.1. When the switching parameier « is set be zero, algo-
rithm (9) is identical to the CIP method.

proof. The proof is straightforward by eliminating the terms including o in
(9) and comparing the resulting expression with eq. (3) in reference [1].

From PROPOSITION 2.1, we know that the CIP method is a particular case
of algorithm (9). By letting a = 0, the scheme can be switched to the CIP of the
third-order in smooth region. Furthermore, one can recover the first-order upwind
scheme by setting d? = dF,; = 57 instead of (9b). Algorithm (9) provides us a
flexible form for a class of polynomial based schemes.

Pertaining to the interpolation function itself, we have

LEMMA 2.1. Assuming a = 1, the interpolation function defined with
(3) is retrieved from that defined with (4) if the condition: d; < S; < dj3; or
d; > S8; > d;41 is satisfied.



proof. The proof is trivial because the coefficient A3; vanishes for the ad-
dressed condition.

LEMMA 2.2.Under the condition of LEMMA 2.1, we have

F!'(z) 2 0 for d; < diy, and F{'(z) < 0for d; 2 dis

in every closed subinterval of [z;, Ziy1]-

proof. With LEMMA 2.1, by considering function F(z) defined with (3), we
easily arrive at
Fli(z) = Adiys — S)*(Si—dif{z —2i)?

[(dit1 = Si)(zia1 — ) + (Si — di)(z — =)

It states that FI'(z) > 0 is always true for d; < §; < dij1, and Fj'(z) < 0 for
di > 8; > dig1.

We, for further discussion, note some concept as

DEFINITION 2.1. The data {(z4, fi,d;),i = 1,2,--+,imaz} are said to be
nondecreasing if f; € fp < +++ < fimaz or nonconcaveifdy < 5; <dy < 5, <dz <
oo K dimaz—1 < Simaz—1 < dimaz; or conversely they are said to be nonincreasing
if fi > f2 > - 2 fimag Or nonconvex f dy > S) 2 dy 2 53 > dy > --- 2
dimaz—1 2 Simaz-1 2 dimaz-

DEFINITION 2.2. Let a scheme for eq.(6) be in a form as
frH=R1(AL A, f7,d7),

and
d™t! = R2(AL A, f,dY)
with f* = {fI'}, d" = {d}'} and A = {A;}.

It is said to be convex-concave preserving if

I <ot <. < @3l

— imazx

is always true for given nonconcave data {(z;, fI',d?)}, or

d‘111+12d;l+12“_2dn+1

imaz
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for nonconvex data {(z;, f*,d*)};

E 2 )

It is said to be monotone preserving if

st << il

imazr
is always true for given nondecreasing data, or

s > L >

= Jimaz

for nonincreasing data.

The scheme is said to be non-oscillatory if there exists

f?‘+1._ n
0< <1,
T — K

:=1,2,---,zmaz.

About the monotone and convex-concave preserving properties of a given
scheme, we address an obvious fact as

LEMMA 2.3. A scheme for linear advection equation is monotone preserving
for nonincreasing data if it is monotone preserving for nondecreasing data; and
similarly, a scheme is convex-concave preserving for nonconcave data if it is convex-
concave preserving for nonconvex data.

proof. The proof can be constructed by considering another data set generated
as {(zi,pi = C — f;),t = 1,2,---,imaz} ,where {f;} is the original profile and
C € R areal constant. {p;} has opposite properties in monotonicity and convexity
to {fi}, and a solution for {p;} is equivalent to that for {f;} in sense of the
transformation.

Now, with respect to algorithm (9), we can give following results

PROPOSITION 2.2. Let & = 1, under the CFL condition, i.e. £ < A, scheme
(9) is convex-concave preserving.

proof. (i}). For nonconcave data {(z;, f*,d?),: = 1,2,-- -, imaz}, there exists
d? < 8P < d?,,. From (9b) {d;} are advanced as df*' = F!(z; +¢). By LEMMA
2.2, and noticing that Fj{(x;) = d? < Fj(xi41) = d?,;, we find that F/(z) reachs

.



its minimum at z = z; and maximum at z = x;4;. Since the CFL condition can
be interpreted as z; < z; + £ < z;y1, we obtain the convex-concave preserving

preperty as following inequality

+1
df <di™ <dy,

(i1). For nonconvex data, we get the result directly by recalling LEMMA 2.3.
PROPOSITION 2.3. Let o = 1, under the CFL condition, scheme (9} is
non-oscillatory if the given data {(z,, fI*,d?)} satisfies anyone of followings
o 0 < df < ST £dY,, (nondecreasing and nonconcave),
o d? > S > dZ,, > 0 (nondecreasing and nonconvex),
o d? < ST <d¥, <0 (nonincreasing and nonconcave),
e 0 >d? > S!' > d}y, (nonincreasing and nonconvex).
proof. The situation of S = 0 is trivial. We only consider that of S7* # 0.
From LEMMA 2.1 and (9), we have

- 1 n 2
NE T T Qe oS, BT AN
—_ 1 T n 2 (S?—d?) 2
- (1+Bif)S¢pAi[di§+Si B+ =

(i) For the case of nondecreasing and nonconcave data (0 < d* < 8P < d?,,),
we know that S* — d? > 0, and then by CFL condition, get {S? — d?)¢(2/A; <
(8P — df)¢. Therefore,

_ 1 n _ £
7 < AT B.65A; [STE(L + B:&)] = A

<1

meanwhile,
d*(1—£/0:)6+ (1 + AB; )S“Ez/A
(14 B;£)SrtA;

From d? > 0 and CFL condition, we get

i=

1+ B; A

TrBe /A

Ty 2
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By (5) one knows that 1 + B;A; = [(SP —d?)/(diy, — ST)| > Cand 1 + B =
(8P —d2)/(d?, — SPHE/A: + (1~ €&/A;) 2 0, and consequently 7; > 0.

(i) For the case of nondecreasing and nonconvex data (df > SP > d?,, > 0),
by SP — d? < 0 and CFL condition, we get (SP* — d7)£2/A; > (S — d?)¢, and

then
1

;>
i< 1+ B;O)STA;

On the other hand, #; can be rewritten as

[SPE(L+ Bi)] = ~§—~ > 0.

(d2, — S —€/A:)°
(1+ B;§)s?

Noticing df > S?' > d?_; > 0 and CFL condition as well, one finds that the last

an
=1+ 0 (/A - D+

two terms in above expression are less than 0, and then 7; < 1;

(ii1) For nonincreasing data we have similar inequalities, or we can complete
the proof by LEMME 2.3.

From PROPOSITION 2.3, it is obvious that (9) leads a solution valued be-
tween the maximum and minimum within the cell. Thus, no new extremes will be
created. As a corollary of PROPOSITION 2.3, we give another fact as

PROPOSITION 2.4. Let a = 1, under the CFL condition, scheme (8) is
monotone preserving if the given data is nonconcave or nonconvex.

Above discussions are undertaken with respect to the interval [z;, z;44] , and
we reach results in a sense of piecwise. For making use of the algorithm, one
needs to determine {d;} in advance. One of the choices can be as d? = S?, i =
1,2,---imaz, obviously, the {d?} meet the condition of d} < §? < d},, or & >
S > d?, |. As calculation proceeds, the data is adapted to fit a rational function.
Due to the properties of convex-concave preserving, new extremum is suppressed.
We can expect a non-oscillatory profile with the scheme. In the next section, we
will give out some numerical tests. The non-oscillatory and less diffusive property

is stressed even in the case with extremely irregular initial data.

3. Numerical tests



In this section, we present some sample calculations to test algorithm (9) in

a completely rational sense, We refer to the scheme (9) with @ = 1 as ‘completely

rational’.
EXAMPLE 3.1. We solve one dimensional linear initial problems as
%:; + % =0, (t,z) € [0,00) % (—00, +00); (10)
f(2,0) = f°(z), =z €&(—o0,+c0) (11)

with following initial conditions

)

f%(z) = sinm(z + 1) (12)
(i) .
- {1 izt
G
—zsin(3/2rz?), -1<z<-1/3
oy _ | Isin(2r2), 2 <1/3
Fie)= 2r — 1 —sin(2rz)/6, 1/3<z <1 (14)
oz +2).

Equally spaced grid points of Az = 0.02 and a CFL number of 0.2 are used.

Initial condition (i} is used to demonstrate the accuracy of the scheme in
smooth region. For comparison, we include also the result of the first order upwind
scheme in Fig.1. Scheme (9) appears to be highly accurate when applied to smooth
data, and no noticeable errors in amplitude are observed. The first order upwind
scheme, however, produced a diffused profile due to its low order in accuracy.

Fig.2 illustrates the result from condition (ii). We get a non-oscillation solu-
tion by directly using (9). In common, high order schemes tend to generate spu-
rious oscillations in the presence of discontinuities or steep gradients, and many
modern high resolution scheme use well specified artificial viscosity to add dissi-
pation near local discontinuities. We fulfill the same task by employing a proper

interpolation function.
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With condition (iii), we extend the scheme to an extreme case of strong discon-
tinuities, yet the result shows a resolution competitive to many prevalent schemes
mentioned in references [7] and [8].

EXAMPLE 3.2. We now turn to a set of two coupled differential equations

[9] as
LA
ot dz
(15)
BTS—T -T
ET

It is a two phase model of the dynamic response of porous media and packed
beds systems to any inlet temperature. Ty and T, are dimensionless tempera-
ture of fluid and solid respectively, z the heat capacity ratio of fluid to solid, ¢
dimensionless time and z dimensionless spatial coordinate. Interested readers are
recornmended to refer to [9] and references therein for physical background of the
problem.

For a boundary forcing problem, with ~c0 < t < 00 and T} = (0,t) = ¢(2),

one ends up with a solution as
o
Ti(z,t) = e "g(t — zz) + e“”':r”zf T2t L [2(2r) g (t — 22 — T)dT (16)
0

and

T(z,t)=¢"" j:o e " L[2Az7) gt - 22 — 7)dr (17)

where Iy and I; are the Oth and 1th order modified Bessel function of the first
kind.

We calculate the numerical solution to the problem by making use of the first-
order upwind difference scheme, Lax-Wendroff scheme and algorithm (9). The {ime
varying function is specified as g(t) = cos($t) and the heat capacity ratio z = 9.
A uniform grid system with Az = 0.025 is used. The results at ¢ = 31.5 are
depicted in Fig.4.

As a process of propagating and damping boundary perturbation, this sample

problem is suitable for testing the errors in amplitude and phase speed for a given
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advection scheme. Upwind scheme, as expected, gives a heavily diffused solution
(Fig.4(a)), and few or no variations are observed in the area farther than 3 wave
lengths from the forcing source. On the other hand, the Lax-Wendroff scheme
appears less encouraging in phase speed. From Fig.4(b), we find an increasing
error in phase speed as the distance from forcing source increases, and somewhere,
the solution takes on a nearly opposite phase compared with the exact one.
Fig.4(c) shows the result from (9). No significant errors observed in both
amplitude and phase speed.
EXAMPLE 3.3. As an application to nonlinear problem, we turn to one
dimensional shock tube problem which was originally used by G.A.Sod|[10],
do _9f(w)

Bt + " 9r =0, (t,7) € [0,00) x {00, +00)

w(z,0) = w(z), T € (—o0,+00)

with following discontinuous initial conditions

o _ jwr, <05
w(z)—{wR, z>05" (19)

(18)

where w = (u, pu, pE)T, f(w) = (pu,p + pu?,u{p + E))T; p is the density, u the
velocity, p the pressure, and E the total energy. For a polytropic gas, there is a
relation p = (v —1){E— 7 pu®). Numerical test was carried out with (py, pr,u) =
(1,1,0) and (pr, pr, ur) = (0.1,0.125,0). As done in [1], eq.(18) was rewritten in
a non-conservative form and computational process is divided into advective phase
and non-advective phase in terms of (p,u, E). An artificial viscosity based on the
Rankine-Hugonoit relation in a form like eq.(29) in [1] was used.

Result at ¢ = 0.277 is depicted in Fig.5. We can see, with a proper artificial
viscosity, as the CIP method, the present scheme demonstrates ability in capturing
both discontinuity and shock wave with a satisfactory accuracy. Compared with
the CIP, the scheme (9) tends to produce a less fluctuating solution, even though

it appears more diffusive in some senses.

4, Conclusion
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We developed a scheme for solving advection equation by making use of a ra-
tional function. Numerical tests and theoretical discussions show that the scheme
has a high accuracy in smooth region and no oscillation appears in the vicinities of
discontinuities or steep gradients. These properties are commonly desirable for all
high resolution schemes. Unlike other high-order schemes, our scheme suppresses
spurious oscillation by using a convex-concave preserving interpolation function in-
stead of the flux limiters used in many conventional high resolution schemes. The
scheme can reach a high order accuracy in smooth region and produce a ‘proper’
dissipation in the neighbor of discontinuity automatically to eliminate numerical
oscillation. It is also noted that the CIP method can be easily recovered from
present scheme. Furthermore, the extensions to multi-dimensional version of the
scheme is straightforward. The works about 2 and 3 dimension will be presented

in a separate paper.
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Figure captions

Linear propagation of a sinusoidal wave after 500 time steps (u At/ Az = 0.2)
with the first-order upwind scheme and the algorithm (9).

Linear propagation of a square wave after 1600 time steps {u At/ Az = 0.2) with
the algorithm (9).

Linear propagation of a profile given by (14) after 500 time steps (uAt/ Az = 0.2)
with the algorithm (9).

Dymnamic response of two phase model to a periodical variation of inlet temperature
at ¢ = 31.5. (a) with the first upwind scheme, (b) with the Lax-Wendroff scheme,
(¢) with the algorithm (9).

Density output at ¢ = 0.277 of one dimensional shock tube problem with the
algorithm (9).
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