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Abstract

Many studies have used cable-in-conduit conductor (CICC) coils in trying to
develop an AC superconducting magnet because of its enormous potential if AC
losses were low and insulation voltage was high. The strands in the most recent
CICC magnets are coated with chromium or another metal with high electrical
resistance to order to induce current re-distribution among the strands and to
avoid a quench caused by a current imbalance. Current re-distribution is highly
complex and very difficult to analyze because the conditions of the strand
surfaces and the contact areas vary greatly with the operation of the conductor.
If, however, the cable currents were well-balanced, insulating the strands would
be the best way to reduce AC losses. We propose a new CICC magnet structure
featuring a current lead that balances the strand currents via its resistance.
Having calculated current balances, we find that strand currents are well within
the present parameters for nuclear fusion experiments and superconducting

magnet energy storages.
Keywords: superconducting magnet, quench, stability, current imbalance, CICC
magnet, current lead
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L INTRODUCTION

Cable-in-conduit conductor (CICC) magnets are used in nuclear fusion
experiments [1H2], and superconducting magnet energy storages (SMESs) [3]
because AC losses are lower and insulation voltage higher than in other types of
magnets. CICCs are called bundle conductors and are composed of a great
number of strands. The best way to minimize inter-strand coupling and AC loss
is to insulate the strands individually.

However, current imbalance problems were first observed in a small-scale
experiment [4], while Faivre and Turck [5] showed that the presence of resistance
in the strand circuit alleviates the current imbalance problem; but the presence
of resistance in the low temperature region of a superconducting magnet with its
near-zero resistance is not at all desirable from the standpoint of the engineer.
Faivre and Turck [5] also pointed out that a normal zone in the strands causes
current re-distribution between them, which should improve the imbalance of
the current and the performance of the superconducting magnet. A
medium-scale superconducting magnet was built that used completely insulated
strands [6], but the magnet was quenched ata current much lower than its design
value. Analysis of this quench showed the current imbalance to have been its
main cause [7]. The current imbalance is also created by an external field as a
circulation current is induced. Koizumi et al. [8] introduced a new stable
operation using a heater that creates a normal zone, improving the current
imbalance and the performance of the magnet system. However, when the cable
insulation breaks, a short circuit is created, and the current imbalance increases
[l In recent CICC magnets, the strands are therefore not completely insulated,
but their surfaces are coated by highly resistive material such as chromium [10].

We shall examine the principle of the current imbalance before proposing
anew method to avoid the current imbalance without creating any extra heat in
the superconducting magnet system. We then assess its performance and

discuss its future applications.

IL PRINCIPLE OF CURRENT IMBALANCE

Since multistrand CICCs are bundled, thus constitute a parallel circuit, and
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we studied the two-wire model shown in Fig. 1. If the power supply voltage

changes sinusoidally, the current ratio of these two wires is given by
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where 1, and I, are the currents of the two wires, ® is the frequency, i the
imaginary unit, R, the resistance, L, and L, are the self-inductances, and M is the

mutual inductance.

Since the self-inductances are almost the same, we used the coupling factor
k and introduced the parameters  and Y to analyze the circuit. Because of the
structure of the circuit, the value of B is small and the value of k is close to unity,
and the value of mutual inductance is therefore close to the value of
self-inductance. The parameter v is the impedance ratio. The absolute values of
the current ratios are plotted in Fig. 2. Self-inductances differ by only 1 %, but
when the coupling factor is between 0.96 to 0.99, the current ratio is over 1.5.
Variation of self-inductance will depend on the manufacture and size of the
conductor. If the magnet is large, the variation will be smaller than in a
small-scale magnet of identical strand diameter. This means that the current
imbalance problem is less severe in a large-scale magnet. Also, when the
impedance ratio is low, the current ratio is low. This means that the current
imbalance improves with higher resistance. When the impedance ratio is 400,

the corresponding resistance will dissipate 1 % of the magnetic energy of the
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magnet in one AC cycle.

IIL. PROPOSAL

Superconducting magnet system consists of a superconducting magnet,
power supply and current leads, as shown in Fig. 3. With the temperature of the
current lead ranging from room temperature to a low temperature of 4 K, the
conductors of the current lead are either in a normal or superconducting state.
Heat flow through thermal conduction from the room temperature side of the
current lead to the low temperature side and Joule loss created by the resistance
of the strands should be kept as low as possible to realize a stable
superconducting magnet system. The current lead should therefore consist of
many strands and allow the low temperature gas flow to reduce the heat on the
surfaces of the strands. The strands of the current lead should be insulated from
each other and connected with the strands of the superconducting magnet, as
shown in Fig. 4. This design allows the necessary resistance to be introduced to

the strand circuits in series, which leads to a current balance.

IV. PERFORMANCE OF PROPOSAL

Table 1 gives the parameters of CICC magnets for SMES and nuclear fusion
experiments, and Table 2 gives the parameters of current leads.

The current of strands in superconducting magnets ranges from 30 to 120 A
and the voltage differential in current leads from 35 to 155 mV. The diameter of
a current lead strand is around 1 mm and its current around 100 A. Since the
current of the strands in both the current lead and the superconducting magnet
are of the same order of magnitude, it will be easy to connect them directly in
series. The standard deviation of self-inductance was found to be 1.4 % , while
the coupling factor was found to have a minimum value of 0.956 and a
maximum value of 0.994 [9]. Current rise and fall times in nuclear fusion
experiments and SMES are designed to be 1 fo 100 seconds. Since we can gather
the variations of the self-inductances and mutual inductances from an analytical

model and experiments [4, 9], we can calculate the current of each
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superconducting magnet strand: Here, the current balance is estimated by Eqgs.
(1) to (4). The variation magnitude of (L-M) is order of 10° to 10°° even in a
large magnet [4, 10] because the coupling factor in the large magnet is high and
the variations of self-inductance and mutual-inductance decrease. The

magnitude of frequency @ is 10" to 10°, on the other hand the resistance of
current lead is the order of 10° to 107, so the resistance part is at least 10° to 10"
times larger than the inductance part in Eq. (1). This means that the cutrents are
balanced even with a 2 to 20 mV voltage drop in the above-mentioned

parameters. Since these voltage drops are lower than the voltage drops of the
current leads (see Tables 1 and 2), our proposal solves the current imbalance

problem.

V. DISCUSSION AND CONCLUSION

Present CICC strands are coated by highly resistive layers and are not
completely insulated from each other. This means that normal zones and
current re-distribution occur during the rise and fall in the current, which
makes it impossible to establish a stable magnet system. When we apply our
proposal, the current imbalance, induced by itself or an external field, will
disappear, creating a more stable superconducting magnet.

If the current of one strand increases, the Joule loss increases raising the
temperature and with it the resistance of the strand, which automatically
decreases the current again bringing the current back into balance and making
the system essentially stable. However, we have to consider the possibility that
external factors lead to normal zones. A strong magnetic field, for example,
would create strong magnetic forces, and the friction would generate heat. A
time variable magnetic field would create an eddy current, and this would also
generate heat in the structure of the superconducting magnet. With heat
flowing into the magnet, normal zones would occur in the strands. When the
strands are completely insulated from each other, the end of the strands in the
room temperature connection terminals of the current leads facilitate current
re-distribution. This re-distribution process is of great importance to the

recovery of the superconducting state and depends on the parameters of both
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magnet and current leads.

The number of strands in Table 1 is over 200, and connecting each pancake
of the superconducting magnet and the current leads separately will require a
new connection method. However, it will not be difficult to build this
connection because whatever its resistance, it will be smaller than that of the
current lead. In present CICC magnets, it is very difficult to build the
connections because their resistances should be identical to avoid current
imbalances. High temperature superconducting material (HTSC) has recently
been developed and is being used in current leads because thermal conductivity
is lower than in the usual metallic materials (see Table 2). This high
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heat flow to the low temperature side and lower operation costs. HTSCCLs
currently have a capacity of several hundred amperes, and many efforts are
being made to develop a high current capacity HTSCCL. HTSC is very well
suited for our proposal because current lead resistance occurs mainly on the
room femperature side, while HISC is used on low temperature side. If we
apply our proposal, many low current capacity HTSCCLs could be used separately
to form one high current capacity HTSCCL system. This part of our proposal is
just entering the experimental phase. While our proposal complies with the
parameters in Tables 1 and 2, the commercially available frequency does not
support a current lead voltage differential great enough to bring the current back
into balance. A high voltage differential would not be a suitable solution in a
superconducting magnet system, and we are currently investigating other

approaches to this problem.
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Figure Captions
Fig. 1. Circuit of a two-wire model. R is the resistance of the wires, L1 and
L2 the self-inductances of the two wires, and M their mutual

inductance.

Fig. 2. The vertical axis shows the current ratio and the horizontal axis the

coupling factor. Impedance ratios were 100, 200, 400.
Fig. 3. Schematic drawing of superconducting magnet system.

Fig. 4. Connection of current lead strands with superconducting magnet

strands.
Table 1. Parameters of CICC magnets for SMES and nuclear fusion studies.

Table 2. Parameters of various current leads.
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Table 1

Number Current of

Temp. (K) Field(T) Current(kA} ofStrand Strand (A) Material Comment

SMES

JAERI
ITER-TF
ITER-CS

45
45
45
42
45
4.5

6.2
5.6
3.0
10.0
125
13.0

40.0
60.0
21.0
10.0
46.6
39.0

324
972
486
153
1152
1152

123.46
6173
4321
65.36
4045
33.85

Nb3Sn
Nb3Sn
NbTi
NDb3Sn
Nb35n
Nb3Sn

Ref. [18]
Ref [17]
Ref. [16]
Ref. [15}
Ref. [9]
Ref. [9]




Table 2

Ideal Gas Cool Commercial-1 Commercial-2 Direct Cool
CL (Gas Cool CL) (Gas CoolCL) Bi-oxideCL
Voltage Drop 80 mV 50 mV 35-55mV 61 mv
(single)
Current 50 A 50kA 30 kA 31.1A
Comment Ref. [11] Ref. [12] Ref. [13] Ref. [14]
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