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A mechanism of enstrophy generation is investigated numerically in 2 shock-dominated
turbulence driven by a random external force which has only the compressible component.
Enstrophy is generated, especially on collision of shock, as a pair of vortex tube of opposite
sense of rotation behind curved shocks. The roles of various terms in enstrophy equation
are clarified in enstrophy generation process. Generation of enstrophy is enhanced by

strong alignment of each ferm of the enstrophy equation with the vorticity vector.
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§1. Introduction

Organized vortical structures such as vortex tubes and layers often play significant roles in
{urbulence dynamics in incompressible turbulence.»® In a compressible turbulence, the tube
and layer structures of vortices also manifest themselves when the rotational component of the
fluid velocity is not small.>*) A transition of vortex structure from & layer to a tube due to the
Kelvin-Helmholtz instability was observed by Porter et al.# in their 512° numerical simulation
of an inviscid compressible flow, which is similar to that in an incompressible flow (see Kishiba
et al®)). When the compressive component of velocity is substantial, shocks (dilatational mo-
tions) take part in the dynamics in addition to vortical motions. Interactions between shocks
and vortical motions then make the flow field quite complicated. Shocks are distorted by vorti-
cal motions, which in turn leads to further generation of vorticity due to curvature effects.® 3
The strength of these interactions depends on relative magnitude of the dilatational and the
vortical components of motion. The interaction may be strongest when these two components
are comparable. Actually, in a compressible mixing layer, vortical structures are less organized
when the convective Mach number becomes closer to unity.”) It was reported that the com-
pressibility effect may reduce the growth rate of turbulence kinetic energy in a shear flow. See
Sarkar®) and references therein.

The interaction between shocks and turbulence has been investigated by many researchers.
The growth rate of turbulence kinetic energy was shown to be suppressed when a turbulence
passes through a planer shock front.?» The baroclinic generation of enstrophy across a bow-
shaped shock was analyzed using the Runkine-Hugoniot relation.® 3) The property of com-
pressible turbulence may be different depending on the relative magnitude of the dilatational
and the vortical components. In most of the above-mentioned work, a vortex-dominated turbu-
lence was considered. Here, on the contrary, we deal with turbulence in which the dilatational
motions dominate the vortical ones in order to investigate the mechanism of vorticity genera-

tion by shocks. A shock-dominated turbulence is excited by a random force which has only the



compressive component. We try to answer the following questions. (1) What kind of vortical
structure is generated in shock-vortex interactions ? (2) How does each term in the vorticity
equation contribute to the enstrophy generation 7

An outline of the simulation is described and some physical quantities are introduced in §2.
Formation of organized structures in the flow field is described in §3. It is shown that shocks
are generated, which in turn generate vorticity in their behind. A mechanism of vorticity
generation is investigated by a statistical approach in §4. The dynamical role of each term in

the vorticity and the enstrophy equations is studied. Concluding remarks are given in §5.

§2. Overview of numerical results

2.1 Basic equations and numerical simulation

The motion of a compressible viscous fluid may be described by the equations of continuity,

momenta and total energy as

2
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where p is the density, ; is the i-th component of velocity, p is the pressure,
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is the rate of strain tensor, f; is the i-th component of an external force, Et is the total energy,
T is the fluid temperature and 7 is the ratio of the specific heats at constant pressure C; and

at constant volume C,. The fluid obeys the equation of an ideal gas as

1

p = —rT.
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The internal and the total energies are expressed as
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Here, we have assumed for simplicity the bulk viscosity be zero and the shear viscosity u be
constant. All the physical quantities have been non-dimensionalyzed in terms of typical density
o, velocity ug and length ly. There are three control parameters, that is, reference Reynolds
number Rey = poteolp/pt, Prandt] number Prq = Cox/u and Mach number M; = uq/cy, where
K 15 the diffusion coefficient and ¢y = \/TO/_ME,Z 1s the speed of sound.

Equations (1)-(7) are solved numerically by the pseudo-spectral/Runge-Kutta-Gill scheme.
Aliasing interactions appearing in the pseudo-spectrum method are not removed completely.
Instead, Fourier components of |k| > N/2 are discarded, N being the number of grid points in
one direction. Control parameters are set to be Reg = 200, Prg = 0.7 and My = v/2. The time
increment is set to be A¢ = 0.05. The number of grid points is N = 643, An external force is
given at every time step in the Fourier components at k; = 1,2 and 3, k; being the wavenumber
in z;-direction, with a random phase and a constant amplitude . In the present simulation the
random force has only the compressive component, i.e. V x f = 0. The simulation starts with
a stationary state. Therefore, only irrotational motions are primarily excited, while vortical
motions are generated secondarily through nonlinear interactions of irrotational motions. For
details of the numerical method, including implementation of a random force, see Kida and

Orszag.'®)

2.2 Physical quantities

The kinetic energy is an indicator of flow activity. The compressive and the rotational
components of kinetic energy represent the dilatational and the vortical motions, respectively.

These two components are obtained by the Helmholtz decomposition of /Pu in the Fourier



space.'® 1) This definition of the decomposition is adopted in order to include effects of density
change explicitly. The time-developments of the two components of kinetic energy are shown
in Fig.1{a). The compressive component is about 100 times larger than the rotational one
throughout the simulation. The compressive component increases at first, attains the maximum
around ¢ ~ 50, then goes down to a statistically steady state by t ~ 70. The kinetic energy
lost during 50 < ¢ < 70 is absorbed into the internal energy to cause an increase of the
fluid temperature. A rapid oscillation of the compressive component in Fig.1(a) comes from
the energy-exchange mechanism between the kinetic and the internal energies through the
pressure work (cf. Miura and Kida')). In fact, the compressive component oscillates with
period T} = 2.9, which coincides well with the oscillation period of the pressure dilatation term
{pV - u) (figure is omitted).

The time-variation of the compressive component of kinetic energy may be understood as
follows. Lower-wavenumber components of the compressive component of kinetic energy grow
rapidly at first because dilatational motions are driven directly by an external force. The
lower-wavenumber components continue to grow while some of the energy is being transferred
to higher wavenumbers by the nonlinear interactions. The kinetic energy keeps growing until
the dilatation dissipation becomes comparable with the energy-input by an external force. Since
the dilatation dissipation keeps increasing, the kinetic energy turns to decrease. In the mean
time, the dilatation dissipation and the energy-input by an external force balance each other
and the fluid motion enters to a statistically steady state.

The kinetic energy spectra which represent the scale distribution of activity of the fluid
motion may serve as an indicator of accuracy of the numerical simulation. We plot in Fig.1(b)
the mean kinetic energy specira averaged over 30 < ¢ < 60 (an active period) and 80 < ¢ <
200 (a statistically steady period). It is seen that the compressive component decays almost
algebraically in the both period, implying that the resolution of the simulation is marginal.

The rotational component decreases also algebraically at large wavenumbers upto k& ~ 15 in



the active period and upto & ~ 10 in the steady period. The rise of the spectrum at larger
wavenumbers may be attributed to the aliasing interactions. This part will be discarded in
drawing isosurfaces of the enstrophy density in the following sections.

The importance of dilatational motions may be represented by the turbulence Mach number

- )

where ¢ = /T is a local speed of sound. Hereafter, brackets { ) are used for the volume-average
and an overbar — for the time-average. The mean values of M; averaged over 30 < t € 60 and
80 <t < 200 are 0.15 and 0.08, respectively. Although 37, is less than unity in average, local
maxima of the Mach number exceed unity, as will be seen later (§3.1).

Turbulence Reynolds number is defined by

Re =222 () (Ju), ®)

€E=¢€cter= Rieg (g <]V . u|2> 4 <|w|2>) (10)

where

is the energy dissipation rate and
w=Vxu (11)
is the vorticity. The first term of eq.(10), which is called the dilatation dissipation rate, repre-
sents the additional dissipation peculiar to compressible turbulence.!® '*) In the present simu-
lation the dilatation dissipation rate occupies 97% of the total. This is extremely opposite to
a nearly incompressible flow in which the dilatational dissipation is negligibly small (cf. Case I
simulation of Kida and Orszag!®). Time-averages of Re over 30 < ¢ < 60 and over 80 < ¢ < 200
yield Re ~ 11.6 and 8.0, respectively. Since Re is relatively small, a tube structure of vortices,
which is known to be formed as the result of the Kelvin-Helmholtz instability for a vortex sheet
in a high-Reynolds number turbulence, is rarely observed in the present simulation.
Time-developments of the enstrophy (thin solid line) as well as the maximum (thin dashed

line with positive values), the minimum (thin dashed line with negative values) and the mean
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square (thick solid line} of dilatation are plotted in Fig.2(a). The enstrophy is nearly zero until
t ~ 25, then begins to grow up rapidly, and keeps growing until + ~ 68 at which it takes a
maximum, then decays with decaying speed proportional to t1° (see Fig.2(b)). We have no
clear-cut explanations to this power, however. Every peak of the enstrophy (which is indicated
by an arrow in Fig.2{a)} has a corresponding strong surge of maxima and minima of dilatation.
By looking carefully at the flow field, we have confirmed that these surges appear when a
collision of shocks is taking place (see §3.2 below). It is interesting to note that the growth and
the decay in enstrophy occur later than those in the mean square of dilatation. This suggests
that enstrophy is generated by dilatational motions which are directly driven by a random
force. In the following analysis we concentrate on period ¢ < 100 since we are interested in the
active generation of enstrophy in ¢t < 68 (= t., say) and sudden reduction of the generation

around ¢ = ..

§3. Formation of coherent structures

3.1 Formation of shock surfaces and vorticity generation

One of the characteristic features of compressible turbulence is that strong vorticity is gener-
ated behind shocks. Figure 3 shows isosurfaces of dilatation and enstrophy density at £ = 28.5.
The grey isosurfaces represent the dilatation with a lazge negative value (shocks), the threshold
of which is minus twice of the standard deviation of dilatation. The blue (red) isosurfaces
represent enstrophy density with w, < 0 ( > 0), the threshold of which is twice of the standard
deviation of enstrophy density above the mean value. High-vorticity regions appear typically as
a vortex pair behind a curved shock. Two vortex pairs, which consist of blue and red isosurfaces
respectively, are observed in Fig.3: One is located at upper-left side attached to a long shock
surface, and the other around the center behind another shock.

In Fig.4, we draw contours of local Mach number around the shock located at the center of



Fig.3. The local Mach number is defined by |u — v4|/c where v, is the traveling velocity of the
shock which is estimated at the top of the bow-shaped contour, i.e. at (z;,z3) ~ (29,39) in
Fig.4. Supersonic regions are shaded. Thick contours show large negative dilatation. The thick
bow-shaped contours move upward in Fig.4 (rightward in Fig.3). The fluid is therefore subsonic
in front of the dilatation contours and supersonic behind them. The local Mach number on

this shock is about 1.1.
The vortex pair observed around the center in Fig.3 is enlarged in Fig.3, which is cut by

a plane parallel to the (zy, z;)-plane. The high-vorticity region is composed of a vortex pair
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Fig.5(a) run along the shock surface, which suggests that the vortex pair has been generated
by the baroclinic effect as follows.

As is well-known, a curved shock can generate vorticity {Crocco’s theorem'®). An analysis
based on the Runkine-Hugoniot relation for an inviscid compressible fluid® gives an expression

of the vorticity generated behind a shock, in a curvilinear coordinate system {gi1, ¢z, ¢s), a8

(1) 8h (1) &h
@ _ _Ys Ofs Y2 0P
W A( h3 aql €9 + h2 aql €3], (12)
1 4(M2-1)°
A = — ( s ) (13)

h(y+ ) MZ[(vy—1) MZ+2]
Here e; {j = 1,2,3) is the unit vector in the g,-direction, e; being normal to the shock surface,
h, is the metric for the g;-direction, M, is the Mach number in front of the shock, and the
superscripts (U and ® denote the quantities in front of and behind the shock, respectively.
In the case of a spherical shock, the coordinate system is given by {(g1,92,43) = (r,6,6) and
(h1,ha,hs) = (1,r,rsinf). Then the vorticity generated behind a spherical shock may be

expressed as

w® =

RS

(—ug)eg + ug,l)e¢) : (14)

which clearly runs along the shock surface in an anti-clockwise direction facing the back side

of the shock. This explains the topological structure of vortex lines and the sense of rotation
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of a vortex pair observed in Fig.4.

Since regions with large negative dilatation (shocks) travel much faster than high-vorticity
regions, the latter are likely to be left behind the shocks. Once a lump of the high-enstrophy
density (in many case it is or was a vortex pair) leaves from a shock surface, it decays rapidly.
In Figs.6, we draw isosurfaces of large negative dilatation {grey), high-enstrophy with w; > 0
{blue) and with wy < 0O (red) at three consecutive times. A high-enstrophy density region
extended horizontally in the bottom in Fig.6, which is left apart from a shock, shrinks rapidly
as time goes on, while portions of the other blue and red isosurfaces, which are attached to
shocks surfaces, keep their magnitudes because of continual generation of enstrophy by curved
shocks. This behavior of the time-development of high-enstrophy regions is typically observed
in active period {f < ¢.). It suggests that when there is no special source of the enstrophy
density such as shock collisions or curved shocks, vortical motion is weakened rapidly by the
viscous effect. We note here that behavior of enstrophy lumps are somewhat different in the
period when the enstrophy decays slowly (t > £.}. In t > t., many of enstrophy lumps, which
are apart from shocks, live longer times. As will be seen in the next section, contribution of

the viscous effect to decrease the enstrophy becomes smaller as the enstrophy decays.

3.2 Collision of shocks

In the present simulation, shocks collide with each other from time to time. Each collision
may be identified with a steep peak in variation of dilatation (see Fig.2(a}). A strong collision
of shocks happens to occur at t =~ f,. In Figs.7(a) and (b), we draw isosurfaces of dilatation
with a large negative vatues before (¢ = 67.3) and after (¢ = 68.8) the collision, respectively.
To make the shock structure clear, each shock was rimmed. In Fig.7(a), there are three well-
defined shock surfaces denoted by A, B and C, each of which travels in the direction denoted
by arrows. Around the center, shocks A and B are about to make a head-on collision. These

two shocks are intersecting almost orthogonally with shock C.



In Fig.8(a), we overlay isosurfaces of high-enstrophy density on Fig.7(b). It is seen that high-
enstrophy density is generated around the center, i.e., behind all of the three shock surfaces.
We observe also a pair of lumps of high-enstrophy density right to the center (in front of a
shock), each of which rotates in opposite sense. We have checked that this vortex pair has been
generated before by another collision of shocks. Figure 8(b) is a magnification of the region
bounded by three shocks in Fig.8(a). There are several pairs {blue and red) of high-enstrophy
density behind shocks. There is one along a curved shock in the left of the shock-bounded
region. A pair of blue and red vortices at the top are portions of large isosurfaces. In the right,
a large lump of blue isosurface constitutes a vortex pair with a large red isosurface behind
it. Finally, in the upper-right, outside the shock-bounded region, there is another vortex pair.
From these observations, we conclude that a typical structure of vorticity generated by collisions

of shocks is a vortex pair.

84. Enstrophy budget

4.1 Vorticity and enstrophy equations

In order to clarify the generation mechanism of vorticity observed in previous sections, we
investigate contributions of various terms of vorticity equation

B VpxVp 1V 1 VpXx [Vz’u +3V(V- ’“)]
- = -V v LSS SIS |
> X [(uw-V)u] + 7 + R 5 e 7 , (15)

and enstrophy density equation

8Q Vpx Vp
5 = —w'{VX[(ﬂ'V)ﬂ]HW'T
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Re p Re i ’ (16)
where
1 2
@ = 3l (17)



is the enstrophy density. Taking a spatial average of eq.(16), we obtain

iQ Vo x Vp
19 —<w-{Vx[(u-V)um+<w‘—7—>

‘1"<£"Z—%>“é<w'{m[Wzﬁwwm)' (18)

Re

Each term in the rhs. of eq.(18) is called the rotational, the baroclinic, the viscous and the
viscous-compression terms in order.

Time-developments of these four terms are shown in Fig.9 for ¢ < 100. All terms are small
until £ ~ 25. But around ¢ ~ 25, the baroclinic {thick solid line) and the viscous-compression
(thick dashed line) terms begin to increase faster than the others. This is because these two
terms contain Vp as a factor and are linear in w (while the others are quadratic in w). In
period 25 < t < 75, the viscous-compression and the baroclinic terms play a dominant role in
vorticity generation while the viscous term (thick dotted line) opposes it. These three terms
show sometimes steep peaks simultaneously, which synchronize with peaks of the dilatation,
and therefore with collisions of shocks (cf. Fig.2(a)). The contribution of the rotational term
(thin solid line) is quite small. One of the most prominent features in Fig.9 is a sudden reduction
in magnitude of the baroclinic, the viscous and the viscous-compression terms around { ~ t.
when the enstrophy arrives at the maximum (see Fig.2(a)). A mechanism of this reduction will
be discussed in the next section. After ¢, the baroclinic and the viscous-compression terms,
which are still positive, are reduced in magnitude to the level of the rotational term. While
the viscous term retains relatively large negative values, it is also reduced drastically. The
reduction of these terms makes the vorticity generation to be inactive after ..

The above observations suggest us to divide the period of the present numerical simulation
into two parts at t., before which the baroclinic and the viscous-compression terms are active
in vorticity generation, and after which they become too weak to maintain the enstrophy. In

the following we consider the difference in vorticity dynamics before and after 2.
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4.2 Reduction of vorticity generation

As seen in Fig.9, the contribution from each term in eq.(18) is reduced around .. We
consider here how the large vorticity generaticn is sustained before ¢, and what is the reason
of the sudden reduction around ¢,.

Equation (18) is rewritten, by expressing the vector products explicitly, as

%?_) = —(jw|- |V x [{w-V)u]|cosb.) + <|u] . jvﬁ_xzvff cos€b>
2 2 1 .
+E}E<iw|' Vp“’ C059V>+é<lw|- Vp x [V u:;g,V(V ’u)] cosf)vc> (19)

where 6;, 8, 8, and 6, are respectively the angles that the rotational, the baroclinic, the viscous
and the viscous-compression terms make with the vorticity vector. Notice that the magnitude
of each term in eq.(19) depends not only on the magnitude of the corresponding term in eq.(15)
but alse on the probability distribution of the above angles. Therefore the reduction of each
term in eq.(18) may be caused by the reduction in magnitude and by uniformalization in

distributions of these angles. We investigate below these two possibilities.

4.2.1 Magnitude of each term in the vorticity equation

The time-evolutions of the root-mean-squares of the rotational {thin solid line), the baro-
clinic (thick solid line), the viscous (thick dotted line) and the viscous-compression (thick dashed
line) terms are compared in Fig.10. All of them are reduced in magnitude around ¢,. The reduc-
tion in magnitude of the baroclinic and the viscous-compression terms is attributed to the reduc-
tion of the compressive component of kinetic energy (Fig.1(a)) because Vp, Vp and V (V - u)
become small then. On the other hand, the reduction of the rotational and the viscous terms s a
result of the reduction of the vorticity magnitude because they are linear in w. {Note that the ro-
tational term in eq.(15) may be expressed as Vx[(u - V) u] = (z - V) w+w (V- u)—(w - V) u.)

A key observation important in the following discussion is that relative magnitude of the

four terms in Fig.10 is different from that in Fig.9. While the rotational term is the largest in
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Fig.10, contribution of this term to the enstrophy generation in Fig.9 is small. On the contrary,
the viscous term takes large negative values in Fig.9 in period 25 < < {., whereas it is the
smallest in Fig.10. These features suggest the importance of the probability distribution of
angles between the vorticity vector and these terms in estimating the contribution to enstrophy

generation.

4.2.2  Alignment of the vorticily vector

Motivated by the above discussion, we examine probability density function (pdf) P(f) for
8 =48,.6,,0, and 6,.. We compare it with an |w|*-weighted pdf, denoted by P,.(8), in order to
study the contribution from high-vorticity regions. (We also calculated a |V - u|?-weighted pdf,
which turned out to be similar to [w|*-weighted ones.)

The pdfs, P(f;) and P.(8,), of the angles between the vorticity and the rotational term
are shown in Figs.11(a) and (b), respectively. The contour levels are higher in darker regions.
The resolution of these contours is 180 in the ordinate and 1,000 in the abscissa. It is seen in
Fig.11(a) that P(6,) has two peaks around #; = 0° and 180° in £ < 20 while there is only one
peak around 6, = 180° in 20 < ¢ < .. The existence of these peaks is more evident in Fig.11(b},
where two peaks around #, = 0° and 180° in ¢ < 20 are more clearly seen. Furthermore, in
20 < t < t., another peak appears around #, = 0° which are not observed in Fig.11{a). On
the other hand, P,(6;) takes smaller values around 8, ~ 90° than P(f;). Hence, we see that
P.{6.) is quite localized around 6, = 0° and 180° before ¢, and that it is uniform after ¢..
These observations lead us to the conclusion that the contribution of the rotational term to
the enstrophy generation is small after a volume average because parallel and anti-parallel
components cancel out each other both in before and after ¢.. It explains the reason why
the rotational term in eq.(18} do not play a significant role to the enstrophy generation while
magnitude of it in eq.(15) is larger than the other terms.

The localization of P,(f;) around 8, = 0° and 180° before ¢, may be explained as follows.

13



The rotational term in eq.{18) can be rewritten as
—(w-{V x[(u-V)u}) = —% (o] (V- )} + (- [(w - V) ul). (20)

The first and the second terms are called the compression and the vortex-stretching terms,
respectively. In the present numerical simulation, the magnitude of the former is about five
times larger than that of the latter (figure is not shown). Since the compression term consists
of the inner product of w and ~w (V - u), they are always parallel or anti-parallel according to
the sign of the dilatation, which explains the two peaks around 6, = 0° and 180°.

Next we consider the baroclinic and the viscous-compression terms. As will be seen below,
the pdfs of angles relevant to these two terms are similar. Since p, p and V - u obeys the
same wave-equation in the acoustic limit, i is reasonable that the baroclinic and the viscous-
compression terms behave in a similar way when the flow field is dominated by dilatational
motions. The time-developments of P(6,) and P(f,.) are shown in Figs.12(a) and (b), respec-
tively. At the very early stage of evolution (¢ < 10), both of them are highly localized around
6,0 = 0°, showing that the vorticity is almost parallel to the baroclinic and the viscous-
compression terms. Since the vorticity generation in this period is mainly caused by these
terms (see Fig.9), it is natural for the vorticity vector to be aligned with them. After ¢ ~ 25,
both P(6) and P(#,.) are almost uniform. Such uniform distributions seem to conflict with
large contributions of these terms to the enstrophy generation seen in Fig.9 because the regions
with 6,8, < 90° and > 90° should cancel each other after a volume average. However, such a
conflict is solved by investigating the jw|2-weighted pdf.

The time-developments of F,(6;) and F,(fy.) are shown in Figs.13(a) and (b), respectively.
The both pdfs have a sharp peak around 8, 8,. = 0° in the easly period (¢ < 25), which is
similar to Fig.12. In a later period (25 < ¢ < t.), they have two peaks around 6,8, = 0°
and 180°, which are not observed in Fig.12. Since the peaks around y,6,. = 0° are much
lazger than those around #, 6, = 180°, the contributions of these two peaks to the enstrophy

generation do not cancel. This leads to a large contribution of the baroclinic and the viscous-
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compression terms to the enstrophy generation. Hence, the rapid growth of the enstrophy
observed before ¢, in Fig.2(a) is caused not only by the large magnitude of these two terms but
also by an alignment with the vorticity vector. An anti-parallel alignment of the vorticity vector
and the two terms occurs either behind curved shocks or tips of shocks. Behind shocks, the
density and the pressure oscillate like an acoustic wave, and a phase difference between these
two oscillations may cause the reverse of the direction of baroclinic term. Another feature in
Figs.13 is a drastic uniformalization of the pdfs. It implies that contribution of the baroclinic
and the viscous-compression terms to the enstrophy generation becomes small after ¢, when
the average is taken over the whole angle. The mechanism of uniformalization around #. will
be discussed in the next section.

Finally, we investigate the pdf of #, in order to find the reason why the viscous term takes
large negative values in Fig.9 though the magnitude of it in eq.(15) is the smallest of all terms.
We plot P(f,) and P,(8,) in Figs.14(a) and (b), respectively. P(f,) has a sharp peak around
8, = 180° before £, while the peak is gradually broaden after £ ~ 22 to be spreaded to f, = 0°.
A localization of the distribution density of #, around 180° is more clearly seen in Fig.14(b).
Most of P,(f,) gathers in 6, > 165°. Such a strong alignment of the vorticity vector and the
viscous term causes a rapid decay of the enstrophy lumps which are apart from shocks (see
Figs.6). The strong alignment also explains why the viscous term makes a large and negative
contribution to the enstrophy generation in Fig.9 whereas magnitude of it is the smallest of the
four terms.

While 8, gathers around 180° at the most of time, temporal uniformalizations of P(f,) and
P,(8,) are observed at several times such as t ~ 14,22, 34,46,53,64 and 68(= ;). Similar
behaviors are also observed simultaneously in Fig.11(b), Fig.13(a) and (b) though they are not
so clear as in Fig.14(b). All these uniformalizations synchronize with peaks of the square root
of the dilatation in Fig.2(a) and therefore with collisions of shocks. Because of the difference

in the traveling velocity, the high-vorticity regions generated by collisions of shocks are left
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behind the shocks. The vorticity apart from shocks can orient rather independently from the
direction of shocks, which may cause uniform distributions of angles observed above. Note
that the uniformalization around f. are different from others in the sense that the alignment
of the vorticity and the four terms are not recovered. The uniformalization of the pdf makes
the viscous dissipation of enstrophy inefficient to cause a relatively long life-time of lumps of
high-enstrophy density regions after £.. The mechanism of the eternal uniformalization around

i. will be discussed in the next section.

4.2.83  Uniformalization of angle distributions

Here we consider why the alignment of the vorticity vector with the four terms is lost around
1. to cause uniformalization of distributions of 6, 8y, 6,. and 8,. Since the vorticity vectors and
all of the four terms are aligned in paralle! or anti-parallel before ¢, at high-vorticity region, there
should be a characteristic direction which dominates the flow field. Recall that the vorticity is
generated mainly by shocks. As mentioned before, the |V - u|*-weighted pdfs show a similar
behavior to the |w]?-weighted pdfs. Thus we may as well say that the alignment occurs around
shock regions. In the following we consider an alignment of the vorticity vector related to the
density gradient which may represent the directions of shocks. A decomposition of the vorticity
into parallel and perpendicular components o the density gradient defines corresponding two

components of the enstrophy as

@ = (Qn> +2(Q.), (21)

@ = {(5) )
]

QL) @-{(Qy))- (23)

il

Here the perpendicular component is multiplied by % because the degrees of the freedom of
this component is twice of the parallel one. The density gradient looses the meaning of the
shock direction where the dilatation takes positive or small negative values. Nevertheless, the

decomposition of the enstrophy by the density gradient is useful because the orientation of the
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baroclinic and the viscous-compression terms {and therefore the vorticity generated by these
two terms) depends on the density gradient vector.

In Fig.15(a), we plot the two components of the enstrophy. Before ¢, the perpendicular
component of the enstrophy (dashed line) is larger than the parallel component (solid line),
while an equipartition of the two components is achieved after .. It implies that the vorticity
field is aligned tangentially with shocks before t. while it decorrelates after ..

In order to study the alignment effect on the four terms in eq.(15), we decompose them
by the use of density gradient. The two components of the viscous term in eq.(18), which
are parallel (solid line) and perpendicular (dashed line) to the density gradient, are depicted
in Figs.15(b). The perpendicular component is larger than the parallel component before {.,
whereas they equilibrate after £.. It implies that the viscous term can be aligned tangentially
with shocks when the compressibility is strong enough even though it does not contain Vp
explicitly. We note here that the rotational term shows similar behavior with the viscous
term. The perpendicular component of the rotational term takes larger values than the parallel
one. Note also that the baroclinic and the viscous-compression terms have only perpendicular
component because the corresponding two terms in eq.(15) contains outer products of Vp.

From the above results, we may understand the uniformalizations of the angle-distributions
around ¢, in Figs.11—-14 as follows. Before t., the vorticity vectors and the four terms are highly
aligned as seen in Figs.11—14. This alignment comes from existence of shocks. (Recall that the
|V-u|*-weighted pdfs give similar results with | |>-weighted ones. The alignment of the vorticity
vector and the four terms occurs at high-dilatation regions as well as high-vorticity regions.)
When the compressibility becomes weaker due to the decrease of the compressive component
of kinetic energy, the baroclinic and the viscous-compression terms in eq.(15) become weaker
(see Fig.10). Since these two terms contribute to generation of (@), the reduction of the
compressibility around t, directly leads to the reduction of (@) relative to <Q”>. Based on

researches on incompressible homogeneous turbulence, we may expect that direction of the
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vorticity vector tends to be decorrelated with shocks when there is no strong mechanism to
force the vorticity to be aligned. Consequently, the vorticity tends to orient isotropically to
all directions, to cause uniformalization of pdfs in Figs.11—14. To sum up this subsection,
strong compressibility causes alignment of the vorticity and the four terms to sustain the large
enstrophy generation while the alignment is lost when the compressibility becomes weak enough

to cause reduction of the enstrophy generation.

§5. Concluding Remarks

In this article, vorticity generation in a compressible turbulence has been investigated by
executing the numerical simulation with an external force which has only the compressive
component. It has been shown that the main structure of the vorticity is a vortex pair which
is generated by curvature effects and collisions of shocks.

A numerical estimation of contributions of various terms in eq.(18) to the vorticity genera-
tion has shown that the viscous-compression term is as important as the baroclinic term when
the viscous effect is finite. The decrease of dilatational motions causes the reduction of the
enstrophy generation by these two terms in two ways. One is the reduction of the dilatation,
density and pressure gradients in magnitude. The other is a uniformalization of angle distribu-
tions between the vorticity vector and each term in the vorticity equation. This investigation
has revealed that the strong enstrophy generation in the present simulation is sustained by a

strong alignment between these terms and the vorticity vector.
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Figure captions

Figure 1 (a) Time-developments of mean values of the compressive (solid line) and the rota-
tional (dashed line} components of kinetic energy. (b} Time-averages of the compressive
and rotational components of kinetic energy spectra. White (black) circles are the com-
pressive component of kinetic energy spectrum averaged over 30 < ¢ < 60 (80 <t < 200).
White (black) boxes are the rotational component of kinetic energy spectrum averaged over

30 <t <60 (80 <t < 200).

Figure 2 (a) Time-developments of the enstrophy (thin solid line), the mean square (thick solid
line), maximum {dashed line with positive values) and minimum (dashed line with negative
values) of the dilatation. The maximum and minimum values of the dilatation are multiplied
by § x 107* and the mean square value by 1072, Sharp peaks of the maximum and the min-
imum values of dilatation correspond to shock-shock collisions. Typical peaks are indicated
by arrows. Oscillations of the mean square value of the dilatation come from acoustic waves.
(b) A graph of t*°{Q). The graph becomes almost horizontal after ¢ ~ 100, which implies

that the enstrophy decays with ~1* speed.

Figure 3 Isosurfaces of the dilatation (grey) with a large negative value and the enstrophy
density (blue and red) with a large positive value. The blue (red) isosurfaces shows the
regions in which w; < 0 (> 0). The blue and red isosurfaces constitute vortex pairs behind

shocks.

Figure 4 Contours of local Mach number. Thin contours represent local Mach number and a
shaded region represents that the flow is supersonic. Thick contours show the dilatation
with large negative values (shock). The flow is supersonic (subsonic) in front of (behind) the

bow-shaped shock, which travels upward.

Figure 5 A magnification of a vortex pair observed in Fig.3. Vortex lines are shown with yellow

lines. Vortex lines come from the left side, turn to the right and go into the paper.
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Figure 6 Isosurfaces of the dilatation and the enstrophy density at (a) ¢t = 39.0, (b) t = 39.3
and (c) t = 39.5. A portion of blue isosurface which lies horizontally in Fig.6(a) fades away

gradually in (b} and (c).

Figure 7 Schematic pictures of shocks (a) before (t = 67.3) and (b) after (¢t = 68.8) a collision.
Shocks travel to the direction of arrows. Shocks A and B collide face to face while they are

intersecting shock C almost orthogonally.

Figure 8 (a) Shocks (light grey) and high-enstrophy regions (dark grey) are drawn simultane-
ously at £ = 68.8. High-enstrophy regions are generated behind shocks A, B and C. {b)
Magnification of (a). There are several pairs of blue (wy < 0) and red (wy > 0) vortices

observed inside as well as outside of shock-walls {grey).

Figure 9 Contributions of four terms of the enstrophy equation to the ensirophy budget in
period ¢ < 100. The baroclinic (thick solid line) and the viscous-compression (dashed line)
terms generate enstrophy, while the viscous term (dotted line) dissipates it. The rotational

term (thin solid line) does not play a significant role.

Figure 10 Comparison in magnitude of the rotational (thin solid line), the baroclinic {thick solid
line), the viscous (dotted line) and the viscous-compression {dashed line) terms in the rhs.

of the vorticity equation.

Figure 11 Contours of (a) pdf and (b) the [w|*-weighted pdf of angle f,. Contour levels are and
107%,3x 1073, 7 x 107, 1072 and 3 x 1072. Levels 10 and 3 x 10~ are not observed in

(a). The contour levels are higher in the darker regions.

Figure 12 Contours of (a)P(6,} and (b)P(8,.). Levels and shades of contours are the same with

Figs.11.

Figure 13 Contours of the |w|*weighted pdfs of {a)é, and (b)f,.. Contour levels are 10~%,

3% 1073, 107% and 3 x 10~? (higher in the darker regions).
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Figure 14 Contours of (a) pdf and (b) the jw|>-weighted pdf of angle #,. Contour levels are the

same with Figs.13.

Figure 15 Decomposition of (a) the enstrophy and (b) the viscous term into parallel (solid line)
and perpendicular components (dashed line) to the density gradient. The perpendicular

components are halved.
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