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Abstract

The process by which self-organization occurs for two-dimensional incompressible
viscous flow in a friction-free box is investigated theotetically with the use of numer-
ical simulations. It is shown by an eigenfunction spectrum analysis that two basic
processes for the self-organization are the specirum transfer by nonlinear couplings
and the selective dissipation among the eigenmodes of the dissipative operator, and
they yield spectrum accumulation at the Jowest eigenmode. It is also clarified that an
important process during nonlinear self-organization is an interchange beiween the
dominant operators, which leads to a final self-similar coherent structure, determined

uniquely by the lowest eigenmode of the dissipative operator.

PACS numbers: 47.10.4g, 47.25.-c, 52.35.Mw, 52.35 Ra

Typeset Using REVTEX



I INTRODUCTION

Theories and numerical investigations have been described for self-organization
in three-dimensional {3D) magnetohydrodynamic {MHD) plasmas [1-5], two-
dimensional (2D} MHD plasmas [6, 7], 2D incompressible viscous fluids [8-12}, and
solitons described by the Korteweg-de Vries (KdV} equation [13-15]. As Refs. [14,
15] have pointed out, most of these theories on self-organization involve a logic that
has in common the following four conceptual elements: (a) the system is described by
artial differential

ative nonlinear parti al
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the system has three or more quadratic or higher-order conserved quantities; (c) when
dissipation is introduced, one conserved quantity, A(q), decays faster than the others,
B(g), where A and B are functionals of the field variables ¢{¢,x), this feature being
known as "selective dissipation” between the invariants A(g) and B(g); and (d) the
self-organized state i1s determined by mininizing A under the constraint that B is held
constant. Dynamical systems of interest having n variables ¢,(2, x), with i = 1,2, ...n,
can generally be described by the following equations of motion

dg; N D
% = 1id + L7, ()

where L¥[q] and LP[q] denote the nondissipative and dissipative dynamic operators,
respectively, which may be either linear or nonlinear [16, 17]. In the conventional
theories of self-organization mentioned above, the nondissipative operators L [q] are
assumed to be dominant throughout the entire self-organization process, with the
dissipative operators LP{q] assumed to be miner and thus capable of being handled
perturbatively. Due to this implicit assumption, the self-organized states derived by
the conventional theories with the use of the conceptual element (d) have no depen-
dence on the dissipative operators LP[q] or on the dissipation parameters contained

therein [14].



On the other hand, if we start from a definition for the self-organized state as
that state for which the rate of change for the autocorrelations of instantaneous values
is minimmum, then the self-organized state so derived does depend explicitly on the
dissipative operator of the dynamical system [16-18]. Some simulations {18, 19] have
reported data that show the dependence of the self-organized state on the profile of
the dissipation parameters. Theoretical analysis and numerical simulations for the
self-organization of MHD plasmas [16-18, 20, 21] and solitons described by the KdV
equation with a viscous dissipation term [15] indicate that three basic processes for
the self-organization are (1) spectrum transfer and (2) selective dissipation among the
eigenmodes of the dissipative operators LP[q], and (3) interchange between the dom-
inant operators from the nondissipative nonlinear operators L¥[q] to the dissipative
operators LP[q] in the later phase of self-organization. The three basic processes lead
to a final self-similar coherent structure of the self-organized state that is determined
uniquely by the eigenfunction of the operators LP[q] with the lowest eigenvalue.

In this paper, we present a theoretical and numerical investigation of the process
by which self-organization occurs for a 2D incompressible viscous flow in a friction-free
box. We will show that the self-organized state in this flow is the lowest eigenmode of
the dissipative operator, resulting from the three basic processes of (1)-(3) mentioned
above. In Sec. II, we present a theory of the self-organization and the eigenfunc-
tion spectrum analysis [16, 17] applied to the 2D incompressible viscous flow in a
friction-free box. Results of a simulation of 2D Navier-Stokes flows and discussion

are presented in Sec. IIL.
II. THEORY OF SELF — ORGANIZATION

We apply here the self-organization theory of [16, 17], which is based on the

realization of the coherent sturcture with the minimum change rate of autocorrelations



for their instantaneous values, to 2D incompressible viscous fluids. Taking the curl
of the Navier-Stokes equation, we use the following vorticity representation

aa—t: =—(u- Vv + vV, (2)
where u 1s the fluid velocity, w = V x u is the vorticity, v is the kinematic viscosity,
and V -u = 0. The nondissipative and dissipative operators L¥[q] and LP{q] of
Eq.(1) correspond, respectively, to the — (u- V)w term and the » V3w term in Eq.(2).
The global autocorrelation W, of w and its dissipation rate W, /8t are written,
respeciively, as W, = fw-w dV and 8W, /6l = -2 fw - (vV x V xw) dV, where V -w
= 0 is used. Using the variational calculus to find the self-organized state for which
the rate of change for the autocorrelations of instantaneous values 1s minimum, and
defining a functional F' with the use of a Lagrange multiplier « as F = —0W, /8t —
aW, , we obtain the following Euler-Lagrange equation from éF = 0 for the self-
organized state w* [16, 17]:

* g *
VxVxuw = 5@ - (3)

When we work in the velocity representation of the Navier-Stokes equation, we cbtain
the same type of Euler-Lagrange equation for the velocity u* at the self-organized

state, as follows [16, 17):

04
VXxVxu = —u". 4
xVxu' = —u (4)

The eigenfunctions of Eqs.(3) and (4) can be obtained for given boundary values of u
and w, as boundary value problems. Using the same procedure in [16, 17], we obtain

the following:

W* = e W 5" = e~ / [we™(x)]? dV (5)

Wt = wpt(x)e T (6)



W2 = e *Wag® = e o / [wp*(x)]2 dV (7)

U = ug*(x)e %t (8)

where wx*(x) and uz*(x) denote the eigensolutions for Eqs.(3) and (4) for given
boundary values, which are supposed to be realized at the state with the minimum
dissipation rate. We find from Eqs.(5) - (8) that the eigenfunctions of w*(x) and
u*(x) for the dissipative operator —vV x V x w { or —vV x V x u ) constitute the
self-organized and self-similar decay phase during the time evolution of the present
dynamical system.

From 6°F > 0, we obtain the following associated eigenvalue problems for critical
perturbations fw and éu that make 6%F vanish, and the condition for the state with

the minimum dissipation rate [16, 17}:

VxVxéwk—)\iéwkzo, (9)
VxVxéuy — Xéu =0, {10)
0 < @ < &g . (11)

Here, A} = o4 /2v, oy and ), are the eigenvalues, §w; and éu; denote the eigensolu-
tions, o is the smallest positive eigenvalue, the boundary conditions are éw,, - dS =
0, and the subscript w denotes the value at the boundary wall. When we work inside
a square friction-free box in the z, y plane, with edge length 1, Eq.(3) becomes equiv-
alent to Eq.{9). Therefore, the decay constant o of the autocorrelation W* { or W
) at the self-organized state in Eq.(5) [ or Eq.(7)] is equal to the smallest eigenvalue

oy (= 2vA? ), and w* coinsides with the lowest eigensolntion 8w .



We now describe a physical picture for the self-organization process by using
an eigenfunction spectrum analysis associated with the dissipative operator [16, 17].
Owing to the the self-adjoint property of the present dissipative operator [16, 17], the
eigenfunctions, ai, for the associated eigenvalue problem of Eq.(9) form a complete

orthogonal set and the appropriate normalization is written as:

]ak-(Vxanj)dV :/a]-(Vxank)dV
= )\i/a,-ade

2
- A’k 5;,;: y (12)

where VxV xa, — A a; = 0 is used. For the present case inside a square friction-
free box with edge length 1 in the z, y plane, the normalized orthogonal eigensolutions

of a,; for the vorticity and a,; for the velocity are obtained as follows:
a,rx = 2sin lywzr sin myny K, (13)

2 . . .
A = ———— (mysin mz cosmyumyi — Il cos e sin mymy j),  (14)
24+ m?

where A2 = 72(IZ + mi), [ > 1, my > 1, Iy and m; are mode numbers in z and
y directions, tespectively, and i, j and k are the unit vectors in z,y, and z direc-
tions, respectively. Here, V x a.x = m/ + m2 a,i. The distributions of w and u
at each instant can then be expanded with the use of these normalized orthogonal

eigenfunctions a., and a,, as follows:

W = D Cuk Ak - (15)
k=1

u = Z Cuk Buk (16}
k=1

where 7\/IZ + m? cur = Cux, and the spectraof ¢, and ¢ (=1, 2, --- ) depend now
on time ¢. Substituting Eqgs.(15), {16} and {9) into Eq.(2), we obtain the following:
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oo 8Cw o0 o] oo
Wkawk = (Z Cuk Auk 'V)(Z Cuk awk) - Z V‘)‘g CokBut - (17)

k=1 k=1 k=1 k=1

With the use of Eqs.(13) and (14), the nonlinear coupling terms and the dissipative

terms in Kq.(17) are written respectively as follows:

Zz ( Cur Ay * v )CwJ Ay

=1 5=1
= io: i Cuwi Cw’ { (ml, — Ly} sin (4, + 1)) w2z sin (my; + m, 7wy
T —sin (I, — L)mz sin (m, — m, )7y |
— (m, 0, + L,m,)[ sin (I, + )7z sin (m, — m,) 7y
—sin ({; — )7z sin (m, + m,)ny | } k. (18)
— i VAL CorBor = — i 2w (lf + mi) cor sin Lz sin mymy k. (19)
k=1 k=1

We see the followings from Eq.(18): When 2 = j, the nonlinear coupling terms are
equal to zero, i.e. the eigenmode {I,, m,) does not have the nonlinear coupling with
itself. When 7 # 7, then the nonlinear coupling terms induce spectrum transfers to
both the higher and the lower eigenmodes of ( ; £{, , m, +m, ). The dissipative
terms of Eq.(19) show the selective dissipation among the eigenmodes, i.e. the higher
spectral components dissipate more rapidly in proportion to the decay comstant of
vr?(i2 + m2). Compareing the right hand sides of Eqs.(18) and (19), we find that
after a long term dissipation with the spectrum transfers and the selective dissipation,
spectral components ¢, will become smaller so that | c ic,,{(ml, £ Lm,) /(12 + m?) |
< 2un?(l2 + mi)e,r even to the lowest eigenmode (1,1), and the dominant operator
changes consequently from the nonlinear coupling terms to the dissipative terms.

As reported in {16, 17, 15, 18, 20, 21], we find the following physical picture for
the self-organization process from the eigenfunction spectrum analysis shown above

with the use of Eqgs.(17) - (19): (1) The nondissipative nonlinear operator induces
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the spectrum transfer toward both the higher and the lower eigenmode regions of the
dissipative operator. { Since there exists a limit to the lower eigenmode, the spectrum
transfer toward the lower eigenmode region may yield spectrum accumulation at the
lowest eigenmode. On the other hand, there is no limit to the higher eigenmode,
the spectrum transfer to the higher eigenmode region may result in the spread of the
spectrum to the infinity. ) (2) At the same time, the dissipative operator yields the
selective dissipation among the eigenmodes of the dissipative operator, i.e. the higher
spectral components dissipate more rapidly with decay constants of vA%. (3) In the
later phase of selforganization, there occurs an interchange between the dominant
operators from the nondissipative nonlinear operator to the dissipative operator, and

the lowest eigenmode persists to the end as a final self-similar coherent structure.

III. COMPUTATIONAL RESULTS AND DISCUSSION

We solve Eq.(2) in dimensionless unit, inside a square friction-free box in the z,y
plane, with edge length 1. The fluid velocity u = Vi x k, where the stream function
1 = (2, y,t) is independent of z, as are all other field variables. The vorticity w =

V x u = wk, and the relation between « and ¢ is given by
Vi = —w (20)

We solve the hyperbolic equation of Eq.{2) by using one of two new type schemes,
named the CIP {Cubic Interpolated Pseudo-particle) scheme [22, 23] and the KOND
(Kernel Optimum Nearly-analytical Discretization algorithm) scheme [24, 25], both
of which have high numerical accuracy and stabitilty. We use the SOR (Successive
Over-Relaxation) scheme [26] to solve the elliptic type equation of Eq.(20). Numerical
procedures at each time step are as follows; 1) solve Eq.(20) by the SOR scheme to
get new values of ¢, 2) get new values of u from the new ¢, 3) solve Eq.{2) by the
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CIP scheme or by the KOND scheme to get new values of w, and 4) go to 1) for the
next time step. The boundary conditions at the friction-free wall are given by v, =
0 and wy = 0, where the subscript w denotes the values at the boundary wall. The
simulation domain is implemented on a (101 x 101) point grid. The time step is At
= 0.0001. The kinematic viscosity v can, in the dimensionless units, be interpreted
as the reciprocal of a Reynolds number R based on unit length and a unit initial rms
velocity, i.e. R=v7L

We show here typical results of simulations for two cases with R = 500, whose
initial flow structures are different with each other and do not contain the lowest
eigenmode (1,1). In these cases, since the smallest eigenvalue corresponding to the
eigenmode of (1,1) is A; = v/2 7, the theoretical decay constant oy ( = 2022 ) of
the autocorrelation W at the self-organized state in Eq.(7) has the same value of
0.7896 x 107!, which was compared with the simulation results.

First, we present typical results of simulations with the use of the CIP scheme for
the procedure of 3) to solve Eq.(2). Figure 1 shows the typical time evolution of the
vorticity structure during the self-organization process, which starts from an initial
flow given by superposition of two eigenmodes of (1,3) and (2,4) with the use of
Eq( 14) for the velocity. Here, the bold and the thin lines in the figures show contour
plots of positive vorticity and those of negative one, respectively, and the hight of
contours is normalized by the maximum absolute value of either the positive or the
negative vorticity in each figure. It is seen from the vorticity contours at t = 0.5
that the nonlinear process changes the initial simple structure of vorticity at ¢ = 0
into the more complicated structure with small scale deformations. The small scale
deformations of vorticity structure gradually vanish away, as is seen from the vorticity
contours at ¢ = 0.5 and ¢ = 1.5. The two negative vorticity centers at ¢ = 1.5 merge

into the larger structure with one negative center at ¢ = 4, in the similar way as



reported in [8-12]. Rotating counterclockwise around the center of the box ( cf. the
vorticity contours at ¢ = 0.5, 1.5, 4 and 8 in Fig.1 ), the two outside positive vorticity
centers gradually vanish, as is recognized from the two contour plots of vorticity at ¢
= 4 and ¢t = 8. We find finally that the simplest structure with one negative vorticity
center persists to the end, as is shown in the figure of the contour plots at ¢ = 32.
In order to check the physical picture for the self-organization process described
in the previous section, we applied the eigenfunction spectrum analysis associated
with the dissipative operator [16, 17] to the simulation results of the self-organization
process shown in Fig. 1. Multiplying the simulation data of vorticity at each time by
the normalized orthogonal eigensolutions a,x of Eq.(13) and integrating the results
over the square box, we obtain numerically the spectral components of ¢, at each
time. Figure 2 shows the time evolution of the resultant spectral componets of vor-
ticity during the self-organization process of the flow structure, which are obtained
from the simulation data shown in Fig. 1. Here, the horizontal scale represents the
square of the spectral eigenvalues A2 = #2(I2 + m?) for eigenmodes (Ix, mi), and the
vertical scale is normalized by the maximum absolute value of either the positive or
the negative spectral components ¢,y in each figure. The vorticity spectrum at £ = 0
is shown to have only two spectral components of (1,3) and (2, 4), which correspond
to the initial flow given by superposition of two eigenmodes of (1,3) and (2, 4) with
the use of Eq.(14) for the velocity. We note here that the vorticity spectral compo-
nent of eigenmode (2,4) is larger than that of eigenmode (1, 3) because of the relation
V x a,: = mJ £ + mf a ;. We find from the spectrum at { = 0.5 that the nonlinear
process yields the spectrum transfer toward both the higher and the lower spectral
eigenmodes, in other words, it yields both fo the normal and the inverse cascades |
cf. the vorticity contours at ¢ = 0.5 in Fig. 1 and also Eq.(18) |. It is seen from

comparisons between two spectra at ¢ = 0.5 and ¢ = 1.5 that the higher spectral
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components dissipate more rapidly. We recognize from the time evolution of spec-
tra after { = 1.5 that the spectrum transfer toward the lower eigenmode region yields
gradually spectrum accumulation at the lowest eigenmode of (1, 1}. In the later phase
of self-organization, the dominant operator changes from nonlinear coupling terms of
Eq.(18) to the dissipative terms of Eq.(19}), so that the lowest eigenmode of (1,1)
persists to the end, as is shown by the spectrum at ¢ = 32. It should be noted here
that the eigenmode of (1,1) was not contained in the initia! flow at ¢ = 0, but has
been induced nonlinearly during the self-organization process.

Figure 3 shows the time dependence of the flow energy F for the case of Fig. 1,
where E is defined here by £ = fu-u dV and is equal to the global autocorrelation
W, with respect to the velocity u [ ¢f. Eq.(7) ]. After a rapid decay lasting until
around # ~ 12, the decay rate of F is seen to become almost constant. A{ around {
= 25, the decay constant has a value of 0.790 x 107, which agrees very well with the
theoretical decay constant of oy = 2047 = 0.7896 x 10~1

Next, we present typical results of simulations for another case of different initial
flow structure, with the use of the KOND scheme for the procedure of 3} to solve
Eq.(2). Figure 4 shows the typical time evolution of the vorticity structure during the
self-organization process, which starts from another initial flow given by superposition
of two eigenmodes of (2,4) and (1,5) with the use of Eq.(14) for the velocity. It
is seen from the vorticily contours at ¢ = 1 in Fig. 4 that the nonlinear process
changes the initial simple structure of vorticity at £ = 0 info the more complicated
structure with small scale deformations, similarly to the case of Fig. 1. The small
scale deformations of vorticity structure gradually vanish away, as is seen again from
the vorticity contours at ¢ = 1 and ¢ = 1.5. Rotating clockwise around the center of
the box this time ( ¢f. the vorticity contours at ¢ = 1, 1.5, 4 and 10 in Fig.4 ), the two

large positive vorticity centers at { = 1.5 merge gradually into the larger structure
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with one positive center at ¢ = 10. The two outside negative vorticity centers rotate
clockwise around the positive vorticity center and gradually vanish again, similarly to
the case of Fig. 1. We find finally again that the simplest structure with one positive
vorticity center persists to the end, as is shown in the figure of the contour plots at
t = 34, eventhough the initial flow structure is different from that of the former case
shown in Fig. 1.

Figure 5 shows the time evolution of the spectral componets of vorticity during the
self-organization process of the flow structure, which are obtained from the simulation
data shown in Fig. 4. The vorticity spectrum at ¢ = 0 is shown to have only two
spectral components of (2,4) and (1,5}, which correspond to the initial flow given by
superposition of two eigenmodes of (2,4) and (1,5) with the use of Eq.(14) for the
velocity. We find again from the spectrum at ¢ = 1 that the nonlinear process yields
the spectrum transfer toward both the higher and the lower spectral eigenmodes , i.e.
both of the normal and the inverse cascades [ cf. the vorticity contours at ¢ = 1in Fig.
4 and also Eq.(18) ]. Tt is seen from comparisons between two spectra at ¢ = 1 and
t = 1.5 that the higher spectral components dissipate more rapidly. We recognize
again from the time evolution of spectra after ¢ = 1.5 that the spectrum transfer
toward the lower eigenmode region yields gradually the spectrum accumulation at
the lowest eigenmode of (1,1). In the later phase of self-organization, the dominant
operator changes from nonlinear coupling terms of Eq.(18) to the dissipative terms of
Eq.(19), so that the lowest eigenmode of (1,1} persists to the end, as is shown by the
spectrum at ¢ = 34. It should be noted here again that the eigenmode of (1,1) was
not contained in the initial flow at ¢ = 0, but has been induced nonlinearly during
the self-organization process, in the same way as the former case of different initial
flow structure shown in Fig. 2.

Figure 6 shows the time dependence of the flow energy F for the case of Fig.
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4. After a rapid decay lasting until around ¢ ~ 12, the decay rate of E is seen to
become almost constant again. At around ¢ = 25, the decay constant has a value of

0.791 x 107!, which agrees very well again with the theoretical decay constant of oy

= 202 = 0.7896 x 1071

IV. SUMMARY

We have presented the application of the self-organization theory by one of the
authors (Y.K.) [16, 17] to the 2D incompressible viscous fluids in Sec. II. We have
shown that the self-organized state predicted by the theory for the vorticity structure
inside the square friction-free box is the lowest eigensolution of Eq.(9) and the the-
oretical decay constant & of the autocorrelation W ( or W ) at the self-organized
state in Eq.(5) [ or Eq.(7) ] is equal to the smallest eigenvalue a; ( = 2vA2 ). We
have also described a physical picture for the self-organization process [ from Eq.(12)
to Eq.(19) ], by using the eigenfunction spectrum analysis associated with the dissi-
pative operator [16,17]. We have clarified following three points from Eqgs.(18) and
(19): {A) The nonlirear coupling terms induce the spectrum transfers to both the
higher and the lower eigenmodes of ( ; =1, , m, £ m, ), while the eigenmode (/,,m;)
does not have the nonlinear coupling with itself. (B) The dissipative terms yield
the selective dissipation among the eigenmodes, i.e. the higher spectral components
dissipate more tapidly in proportion to the decay constant of vx?([7 + mZ). (C) AL
ter a long term dissipation with the spectrum transfers and the selective dissipation,
spectral components ¢, will become smaller so that | c,:c,,{mil; £ Lm,) /(2 + m?) |
< wm*(l2 + ml)e, even to the lowest eigenmode (1,1), and the dominant operator
changes consequently from the nonlinear coupling terms to the dissipative terms.

In order to demonstrate the self-organization process predicted by the theory in

Sec. II, we have presented in Sec. IIT the typical resulls of numerical simulations
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for the two different initial flow cases with R = 500, whose initial flow structures
are simple but do not contain the lowest eigenmode (1,1). It has been shown by
the time evolution of the vorticity contours that the nonlinear process changes at
first the initial simple structure into the more complicated structure with small scale
deformations. Without dependence on the different initial structures, however, the
nonlinear process leads finally to the simplest structure with one vorticity center ( cf.
Figs. 1 and 4 ), accompanying the merger of two same sign vorticity centers into the
larger structure with one center, in the similar way as reported in [8-12]. It has been
shown clearly by the numerical eigenfunction spectrum analysis for the two cases that
the nonlinear process yields the spectrum transfer toward both the higher and the
lower spectral eigenmodes ( i.e. both of the normal and the inverse cascades ), and
the higher spectral components dissipate more rapidly ( i.e. the selective dissipation
among the eigenmodes of the dissipative operator ). The spectrum transfer toward
the lower eigenmode region yields gradually the spectrum accumulation at the lowest
eigenmode of (1,1), which persists to the end, without dependence on the different
initial structures { cf. Figs. 2 and 5 ). It has been shown by the time dependence
of the flow energy E obtained numerically for the two cases that, after the initial
rapid decay, the decay rate of flow energy E becomes almost constant with a value
of 0.790 x 107! in Fig. 3 and with that of 0.791 x 107! in Fig. 6. Both of the two
numerical decay constants agree very well with the theoretical decay constant of o,
= 2vA? = (.7896 x 1071,

The analytical and the numerical investigations for the self-organization of the 2D
incompressible viscous flow presented here may lead to the following physical picture
for the self-organization process:

(1) The nondissipative nonlinear operator induces the spectrum transfer toward

both the higher and the lower eigenmode regions of the dissipative operator. ( The
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spectrum transfer toward the lower eigenmode region yields spectrum accumulation at
the lowest eigenmode. The spectrum transfer to the higher eigenmode region results
in the spread of the spectrum to the infinity. )

(2) At the same time, the dissipative operator yields the selective dissipation
among the eigenmodes of the dissipative operator, i.e. the higher spectral components
dissipate more rapidly with decay constants of vA2.

(3) In the later phase of self-organization, there occurs an interchange between
the dominant operators from the nondissipative nonlinear operator to the dissipative
operator, and the lowest eigenmode persists to the end as a final self-similar coherent
structure.

The study of the self-organization presented here suggests that the principle of the
minimum dissipation rate of enstrophy { W, = [w-w dV ) can be used for the theory
of self-organization as well as the principle of the minimum dissipation rate of energy
( £ = [u-udV ). However, the more essential physics contained fandamentally is
the principle of the minimum dissipation rate of autocorrelations { W,; = [ ¢, - ¢ dV
) in the dynamical systems [17].

It is interesting to note that the physical picture shown above is alsec common to
the two self-organization processes in solitons described by the KdV equation with a
viscous dissipation term [15] and in 3D resistive MHD plasmas [21], while this picture

has not been applied yet to other nonlinear dissipative dynamical systems.
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Figure captions

Fig.1. Typical time evolution of vorticity structures during self-organization. The
initial flow at £ = 0 is given by superposition of two eigenmodes of (1,3) and (2, 4)
with the use of Eq.(14) for the velocity. The bold and the thin lines show contour
plots of positive vorticity and those of negative one, respectively. The hight of
contours is normalized by the maximum absolute value of either the positive or

the negative vorticity in each figure.

Fig.2. Time evolution of spectral componets of vorticity during self-organization,
obtained from the simulation data shown in Fig. 1. Horizontal scale is given by the
square of spectral eigenvalues A2 = 7%(lf + m}) for eigenmodes (ix, mx). Vertical
scale is normalized by the maximum absolute value of either the positive or the

negative spectral components c,; in each figure.

Fig.3. Time dependence of the flow energy F, defined by £ = fu-u dV, for the
case of Fig. 1. The numerical value of the decay constant at around { = 25 is

0.790 x 1071

Fig.4. Typical time evolution of vorticity structures during self-organization,
where the initial flow at ¢ = 0 is given by superposition of two eigenmodes of (2, 4)
and (1,5). The bold and the thin lines show contour plots of positive vorticity
and those of negative one, respectively. The hight of contours is normalized by
the maximum absolute value of either the positive or the negative vorticity in

each figure.

Fig.5. Time evolution of spectral componets of vorticity during self-organization,
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obtained from the simulation data shown in Fig. 4. Vertical scale is normalized
by the maximum absolute value of either the positive or the negative spectral

components ¢, in each figure.

Fig.6. Time dependence of the flow energy F for the case of Fig. 4. The numerical

value of the decay constant at around ¢ = 25 is 0.791 x 10~1.
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