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Abstract The effect of a weak azimuthal shear low on the Bénard convection in
a spherical shell is investigated numerically where gravity is directed to the center
of the spheres. Differential rotation of the spheres is introduced as the simplest
driving mechanism of the shear flow. Axisymmetric steady solutions are obtained
by an iterative method and their stability is analyzed. Bifurcation diagram of
the steady solutions is exiensively searched over the parameter space. It is shown
by botk the fully numerical calculation and the weakly nonlinear analysis that
the weak shear flow breaks the asymptotic reflection symmetry due to the self-
adjeintness of the linearized system so that the pitchfork bifurcation is deformed
and the saddle-node bifurcation occurs.

Keywords: thermal convection, spherical shell, saddle-node bifurcation, symme-
try breaking by differential rotation.



1 Introduction

Thermal convection in a spherical shell has attracted many researchers because of
its typical geometry in geophysics and astrophysics. The early studies of linear
stability are reviewed in the monograph by Chandrasekhar.[1] The system has the
spherical symmetry which causes the degeneracy of the linear solutions. The O(3)
symmetry breaking bifurcation and the consequent pattern selection have been
investigated by many authors since Busse initiated {2]. The bifurcation problem is
now intensively investigated in terms of the equivariant unfolding theory [3] and
bifurcation diagrams for steady solutions are obtained in detail for a single mode
interaction case [4] and for 2-modes interactions case (3.

The effect of rotation on the thermal convection within a spherical shell has
been one of the most important themes in the study of dynamics inside celestial
bodies. Among the models which take rotation effects into account, two typical
models exist. One is the solid-body rotation model where the whole system rotates
at a constant angular velocity. In this system the Coriolis force plays an important
roll and most researches have been devoted to the study of the effect of a solid-body
rotation on the thermal convection. The other i-s the differential rotation model
where two spheres rotates at different angular velocities. This is probably the
stmplest model which includes the effect of shear flow in the azimuthal direction
on the thermal convection.

The azimuthal shear flow in a spherical shell without thermal effects yields the
flow in the meridional direction by nonlinear interactions. This flow is known as the
spherical Taylor-Couette flow and has been studied from the engineering viewpoint
[6, 7, 8. The instability of the basic solution which causes the secondary Taylor
vortices is experimentally found to occur only for R > 4.35, where R is the ratio
of the inner sphere radius to the gap width[9]. The bifurcations of axisymmetric

solutions has been studied numerically by Mamum and Tuckerman[10].



There exist few works treating the effect of azimuthal shear flows on the ther-
mal convection in a spherical shell in spite of its importance in geophysics and
astrophysics. Araki, Yanase and Mizushima studied the effect of the differential
rotation on the thermal convection in a spherical shell[11, 12]. The axisymmetric
steady solutions are obtained numerically for the cases with and without rota-
tion. The coexistence of the pitchfork bifurcation and the imperfect pitchfork, i.e.,
saddle-node bifurcation is found([12].

From the point of view of bifurcation theory, the existence of rotation, whether
it is solid-body or differential, is interesting because it breaks the spherical symme-
try of the system so that the spherical symmetry is reduced to the axisymmetry.
This effect results in removing the degeneracy of the linear stability problem with
the spherical symmetry and changes the feature of the bifurcation. As for the
symmetry of the system, there are two types of bifurcation for the convection in a
spherical shell with retation. One is the bifurcation which breaks O(2) symmetry
and the other is the bifurcation which retains Q(2) symmetry.

it is well known that, in the solid-body rotation case, the most unstable dis-
turbance is a non-axisymmetric mode which is given by a sectoral harmonic and
the bifurcation is generically a Hopf type.

In our previous work we treated the problem with the differential rotation with
O(2) symmetry and in the present work, we still concentrate on the case with O(2)
symmetry. The reason why we treat only the axisymmetric solutions is as follows:
1. In order to investigate the full non-axisymmetric problem, the axisymmetric
solutions are the basis and the solutions are very diverse even if they are assumed
to be axisymmetric. Thus we must investigate the bifurcations of the axisymmetric
solutions at least as the first step to the full non-axisymmetric problem. 2. Under
the effect of the azimuthal shear, it is plausible that the axisymmetric convection

is the most unstable judging from the result of the Rayleigh-Bénard convection



with a plane shear{13].
For the bifurcation study, we utilize the Newton-Raphson’s iteration method

to obtain the nonlinear steady solutions. The time marching method is not appro-
priate for the present purpose to obtain steady solutions because they exclude un-
stable solutions, and it is often observed that some unsteady solutions stay around
an unstable steady state for an extremely long time. We also investigate the lnear
stability of the nonlinear steady solutions against axisymmetric disturbances.

In §2, the basic equations and the numerical method are given. The section 3 is
dedicated to the presentation of the numericai resulis. The symmeiry of the system
and the symmetry breaking by a weak shear flow is analyzed in §4. Summary and

discussions are given in §5.

2 Basic equations

Consider a fluid layer between two concentric spheres as sketched in Fig.1. The
radii of the inner and outer spheres are ry and r; + d respectively. The gravity
acceleration is directed to the center of the spheres and its amplitude is proportional
to r~2. The inner sphere rotates at an angular 'velocity 2, and the outer one is
fixed. The temperature of the inner sphere is kept to be Ty + AT and that of the
outer one is Ty. The spherical coordinates (r, 4, ¢) are introduced.

The perfectly conducting boundary condition is adopted for the temperature
and the rigid boundary condition for the velocity. Then, the boundary conditions

are

u=rilsinde,, T=T,+AT atr=r], (1a)
u=290, T="Ts atr=r; +d, (1b)

where e, is the unit vector in the ¢ direction.

The variables are nondimensionalized by using the gap width d, the thermal
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diffusivity & and the temperature difference AT. Then, the present system has
four dimensionless parameters: the aspect ratio R = r;/d, the Rayleigh number
Ra = agoATd?/kv, the Reynolds number Re = r#Q)/v and the Prandtl number
Pr = v/k, where « is the coefficient of thermal expansion and gq is the gravity
acceleration on the inner sphere.

In this paper we assume that the flow is axisymmetric with respect to the rota-
tion axis. Under this assumption, the incompressible velocity field u is expressed
in terms of the meridional stream function ¥ and the azimuthal stream function

W as
1 oV 1 oY w

T Rsnv a9’ T Trsindor’ T rsing

(2)

Under the Boussinesq approximation, the equation of motion and the equation

of thermal conduction for ¥, w and T are given as follows:

8Dy R?\ 8T .
= Ni(w, w)+ No(¥, ¥) + PrRa (;—2-) 55 sin ¥ + PrD*D?¥, (3a)
Z—‘: = J(¥, w)+ PrD%, (3b)
% = J(¥, T)+ AT, _ (3c)

where J, Ny, N», D? and A are operators defined by

1

_ 0fdg 8fdyg
9 = Tas (araﬁ 61967')’ (12)
2f g dg sin ¥
N = —— T (Hosv- 2
(£, 9) P2 sin? 9 (81' YT B ) (4b)
NQ(fa g) = j(fﬁ ng)+Nl(D2f1 g)y (4(:)
82 sm9d 1 8
p* = 43X _- 2
a2 T 72 39smo 99’ (4d)
8
A = 1929 1 9 sinr?i. (4e)

2or or @ r2smdod 8v
We calculate the steady solutions of Eqs.(3a)-(3c) numerically by using the collo-

cation method together with the Newton-Raphson’s iteration method. The linear



stability analysis of the obtained steady solutions is carried out by the collocation

method with the double QR algorithm.

For the sake of convenience for numerical calculation of the steady sciutions, w

and T are divided into two parts as follows:

w(r,9) = wu(r,d)+o(r,9), (5a)

T(r,9) = T (r)+T{rd), (5b)

where w,; is the Stokes solution and T,, is the conductive solution. The Stokes
solution w,; which satisfies D*w,; = 0 and the boundary conditions {1a) and (1b)

is given by
welr, 4) =

RePrRsin®d [(R+1)3 2 ()
(R+1)*— R? ’
The conductive solution 7., which satisfies the equation AT, = 0 and the bound-

r

ary conditions {la) and (1b) is given by
R+1
Tofr) = 25+ R(Z1=—1). ™

The dependent variables ¥(r, ), &(r,9) and T'(r,9) are expanded as

M N+1
T(r,d) = Y > T,(1 —-zz)zT (z)P(cos ), (8a)

i, o ]
r, ) = >3 &n(l — 23T (2) Pi(cos ¥), (8b)

T(r,9) = Z Z’f’m;(l — 22T (2) Pi(cos ), (8¢c)

m=0 [=0
where T,,(z) is the m-th order Chebyshev polynomial and 2 = 2(r — R) — 1. The
function Pi(cos®) is the Fth order Legendre polynomial and Pi(cos®) is defined
by
- ad
Py(cos V) = sin z?—P;(cos ¥) = sin 9 P! (cos ). (9)
For the linear stability analysis of the steady solution, the disturbances for ¥,

w and T are expanded in the same way as Eqs.{8a)-(8c) for the spatial variables
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and the time dependence of the disturbances is assumed to be exp(ot) where o is

a complex number.

3 Results of numerical calculation

Time independent solutions Egs.(3a)-(3c) are obtained and their linear stability
against the axisymmetric disturbances are analyzed in the parameter range of
2500 < Ra < 3000 and 0 < Re < 70 for the aspect ratio R = 2.23. The Prandtl
number Pr is fixed to 7. In the following we call the solution symmetric with
respect to te equator as the symmetric solution and the solution which has no
symmetry with respect to the equator is called as the asymmetric solution. We have
studied the bifurcation of the asymmeiric solution and the effect of the differential
rotation has been treated in Ref.[12]. In the present paper we concentrate the
study of the bifurcations of the symmetric solutions.

In the numerical calculation, the truncation numbers M and N in the r- and
#-directions were taken to be 8 and 64 respectively. To obtain the symmetric solu-
tions we take 32 modes with even {'s in the ¥-direction considering the equatorial
symmetry. The linear stability analysis of the obtained solutions is, on the other
hand, carried out for both the symmetric and antisymmetric disturbances. We as-
sured the numerical accuracy by observing that the Nusselt number defined below
does not change in five significant digits with doubling the truncation numbers M
and N.

When the differential rotation is absent, the most unstable disturbance of the
linear stability of the fluid at rest is given by the symmetric mode of I = 8 in
the range of 2.10 < R < 2.40{14]. (Remember that the system has the spherical
symmetry for Ke = 0 so that each eigenfunction of the linear stability problem
must be expressed by a Legendre function Pj(cos¥)} with a fixed L) In the case

of the aspect ratio R = 2.23 the critical Rayleigh number Ra, is 2541.7. At



this aspect ratio, the difference between the critical Rayleigh number Ra, and the
second eigenvalue Ra (for I = 7 or 9, antisymmetric) is the largest so that the most
unstable mode is thought to be least influenced by other modes. This is the reason
why we take the value R = 2.23 in the present work.

We adopt two quantities characterizing the nonlinear steady state: the ratio
of convective heat transfer to conductive heat transfer Nu — 1 where Nu is the
Nusselt number and the radial velocity at the equator vy = u,(R+1/2,7/2). The

Nusselt number is defined by

o7
— sin dddde R41y M .
J 52 sinvavae m=0
r

where the integration is carried out on the outer sphere r = R 4 1.

N

First we consider the case without the differential rotation (Re = 0} over the
range Ra < 3000. For R = 2.23, the most unstable mode is symmetric with [ = 8
and the critical Rayleigh number Ra, = 2541.7. Up to Ra = 3000, there are the
second and the third symmetric unstable modes which correspond to = 10 and
{ = 6 and their critical Rayleigh numbers are 2732.0 and 2786.5 respectively. The
values of vy and Nu — 1 of the solutions bifurcated from these unstable modes are
plotted for Re = 0 in Figs.2(a) and (b) respectively. The contours of ¥(r,9) for
these solutions are also depicted for Ra = 3000 in Fig.2(b).

The bifurcation diagram for u, in Fig.2(a) shows that the bifurcations are
the supercritical pitchfork ones. The absolute value of ug of the upward solution
(o > 0) is slightly larger than that of the downward solution (ug < 0) for an
assigned Ra and the difference grows as Ra increases. In the following, we name
each branch after the direction of flow at the equator and the number of convection
rolls in the solution. For example the name of the branch denoted by open circles
is the upward 8-roll solution.

The symbols used in the Fig.2(b) are the same as those in Fig.2{a). The
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Nusselt numbers are nearly proportional to Ra — Ra, for both the upward and the
downward 8-roll branches. This result implies that the amplitude equation of the
bifurcation is well approximated by the cubic Landau equation.

The linear stability analysis of the steady sclutions shows that both the 8-roll
solutions are stable to axisymmetric disturbances and all the other solutions are
unstable to axisymmetric disturbances.

Next we consider the case with the differential rotation. In the present work,
we investigate the range over Re < 70 and Ra < 3000. For this parameter range
of the Reynolds number, the centrifugal instability of the spherical Taylor-Couette
flow may not occur. It should be remarked that, when the differential rotation is
exerted, a steady circulating solution appears and the trivial (motionless) solution
no longer exists.

The values of ug and Nu—1 of the solutions are plotted for Re = 20 in Figs.3(a)
and (b) respectively. These figures show that pitchfork bifurcations which occur
for Re = 0 become imperfect for Re > 0. The bifurcation branches split as follows:
(I) the smooth transition from the 2-roll solution to the upward 8-roll solution,
(II) saddle-node bifurcation to the downward 8-roll solution and the 2-roll solution
that is smoothly connected to the downward 10-roll solution, (III) saddle-node
bifurcation to the upward 10-roll solution and the 2-roll solution that is smoothly
connected to the upward 6-roll solution and (IV) saddle-node bifurcation to the
downward 6-roll solution and the 2-roll solution. The symbols on the branches in
Figs.3(a) and (b} are chosen considering the topological continuity with those in
Figs.2(a) and (b). For example, the branch with open circles in Figs.3(a) and (b)
{(the branch (I)) are obtained from the branch with the same symbols in Figs.2(a)
and (b) (the upward 8-roll solution} by changing ihe Reynolds and the Rayleigh
numbers adiabatically.

It is remarkable that the deformation to the saddle-node bifurcation occurs



at all the symmetric solution branches. These deformations are regarded as the
result of the symmetry breaking by the weak shear flow induced by the differential
rotation of the boundaries. What kind of symmetry of the system is relevant and
how this symmetry is broken? We discuss this symmetry breaking in the next
section.

The Nusselt number of the 8-roll solutions in Fig.3(b) shows the almost linear
dependence on the Rayleigh number. In the same figure, the meridional stream
functions for Re = 20 and Ra = 3000 are also depicted.

The iinear stability anaiysis of the steady solutions shows that the solution on
the branch (I) and the 8-roll part of the branch (II} are stable to axisymmetric

disturbances and all the other solutions are unstable to axisymmetric disturbances.

4 Symmetry of the solution

It was numerically assured that all the symmetric solutions experience the pitchfork
bifurcation when differential rotation is absent (Re = 0) and that these pitchfork
bifurcations become imperfect for the case of Re > 0. These facts imply that
the reflection symmetry which exists in the systém for Re = 0 is broken by the
differential rotation. In our previous work[12] the bifurcation of both symmetric
and asymmetric solutions were investigated numerically and it was shown that
asymmetric solution branches appear via a pitchfork bifurcation even when the
differential rotation is exerted. What makes the difference between the symmetric
solution case and the asymmetric one? What kind of symmetry is relevant to the
pitchfork bifurcation of the symmetric solution? In this section we will analyze the
symmetry which the system intrinsically has and the mechanism of the symmetry
breaking which causes the deformation of the pitchfork bifurcation into the saddle-

node bifurcation.
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4.1 equatorial symmetry (Z, symmetry) of the system
and pitchfork bifurcation of asymmetric solution

We write the basic equations (3a)-(3c) symbolically as

6X
5 = FX), {11)
X = (¥(r, 9, 1), w(r, 9, 1), T(r, 9, 1)). (12)

The system has a reflectional symmetry with respect to ¥ = 7/2, i.e., Z; symmetry.
In the following we call this symmetry the equatorial symmetry. Let T be a

equatorial reflection operator, which acts on X as
T (¥(8), w(@), T(9)) = (=¥(x - 9), w(r=7), T(r-19)). (13)
It is easy to verify that F is Z, equivariant,
I(F(X)) = F{I(X)), (14)

even for the case with the differential rotation.

Let H be the function space of the solutions of Eqs.(3a)-(3¢). Since I'? = id.
where id denotes the identity operator, the eigeﬁva.lues of T are £1. Thus A is
decomposed into two subspaces according to these eigenvalues. We denote the
subspace that corresponds to eigenvalue 1 by Hg and that to eigenvalue —1 by
Hy. According to this decomposition, any solution X can be decomposed into

symmetric components Xg and antisymmetric components X 4 as follows:
X=Xs+X4 (15)

where

1 1
stg(x+rx)6}{57 XA:E(X—FX)EHA. (16)

Because the nonlinear interactions between antisymmetric components yield

symmetric components, no antisymmetric solution exists. Therefore the system
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allows symmetric solutions X = X5 and asymmetric solutions X = Xg + X,4. It
should be remarked that all the symmetric solutions are the fixed points of the
operator I'.

Now we discuss the qualitative character of the bifurcation from the trivial
{motionless) solution X = 0 for Re = 0 and from the steady symmetric solution
X = X for Re > 0, which occurs as the Rayleigh number Ra increases. For
these steady solutions, the unstable disturbance at the critical point is antisym-
metric or symmetric. Our purpose is to make it clear that the characters of the
bifurcation differ according to whether the unstable disturbance is antisymmetric
or symmetric.

When an antisymmetric disturbance becomes unstable, the bifurcated solution
is asymmetric. In this case one may understand that the equatorial symmetry
guarantees the pitchfork bifurcation whether the differential rotation exists or not
in the following manner (see Fig.4). Suppose that an asymmetric solution branch
X = Xs1+X 4 bifurcates from a steady symmetric solution Xgq¢ after an antisym-
metric disturbance is destabilized. Due to the equatorial symmetry, one can obtain
another branch X by operating I' on the branch; ie., Xo = I'(X;) = Xg; — X 1.
The branch X, also stems from the solution Xg¢. As the solutions X; and X,
approach the bifurcation point, the antisymmetric component X 4; tends to zero
and the two branches coincide at the point. Thus one can obtain the bifurcation di-
agram of pitchfork type. Therefore these two solutions on the bifurcation branches
have exactly the same physical properties such as the Nusselt number for assigned

Ra, Re and R.
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4.2 self-adjointness of the linearized system, the pitch-
fork bifurcation of symmetric solution and symmetry
breaking by a weak shear flow

The egquatorial symmetry discussed in the previous subsection is not relevant to
the pitchfork bifurcation of the symmetric solutions. The discussion given above
made use of the reversal of the antisymmetric components X 4 by the operation of
I'. All the symmetric sclutions X5, on the other hand, are the fixed points of I":
I'(Xs) = Xs. Thus in the equatorial symmetry we cannot find any mechanisms
that guarantee the reversal of a solution from one branch to the other.

For the symmetric solution case, the reflection symmetry is a consequence of
the self-adjointness of the linearized system. It can be demonstrated by use of
the weakly nonlinear perturbation analysis, the details of which is presented in the
Appendix. Following the perturbation analysis, it is shown that the self-adjointness
of the linearized system inhibits the appearance of the quadratic term and that
the nonlinear term of the normal form must begin with the cubic term. At O(é?),

we obtain the amplitude equation for Re = 0,

dA :
E = (Ra — Rac))\gA =+ AlAs, (17)

where ¢ = v/ Ra — Ra. and A is a real variable which represents the amplitude
of the convection and depends on the time £, and Ag, A; are constants given by
the solvability conditions. Thus the bifurcation is a pitchfork so that the resulting
amplitude equation possesses an asymptotic reflectional symmetry with respect to
the change of the sign of A. The term 'asymptotic’ is used here because in the
non-perturbative system, the rigorous symmetry holds only asymptotically around
the bifurcation point. The numerical result that the Nusselt number is almost
a linear function of (Re — Ra.) implies that the dynamics of the system is well
approximated by this amplitude equation and that the perturbation analysis upto

this order is adequate for discussing the symmetry of the system qualitatively.

13



How does, then, the differential rotation break this symmetry? We observed
that the pitchfork bifurcation branches break into two parts, two branches from
a saddle-node bifurcation point and a smoothly extended branch. This type of
bifurcation diagram generically occurs when a constant term is added in the normal
form (17).

When the differential rotation exists, the significant feature of the basic equa-
tions (3a}-(3c) is that azimuthal flow w is not zero so that the azimuthal flow term
Ny(w,w) in the equation (3a) does not vanish. Thus the amplitude equation (17)
is modified into

dA

—a—t— = (Ra -_ RGC)AQA + A]_-A'-S + A?’ (18)

where A; is given by B

Ao — <X:-t(N1(w: w)v 0))
T (X MX)

{about notations see Egs.(4) and the Appendix). Eq.(18) and (19) constitute the

(19)

normal form of the present problem. Because the equation of w couples with ¥,
A; is not a constant in general but a function of 4. We expand A, by the power

series of 4 as

A2 = Az + A1A+ A22A2 + ...

The first term Ay is relevant to the saddle-node bifurcation, i.e., the breaking of

reflectional symmetry.

We did not consider here the correction of A due to the nonlinear coupling
between ¥ and w. The amplitude A must be corrected as A + §4 where § A may
be determined solely by the Reynolds number. This § A correction may also causes
the symmetry breaking discussed here. It is difficult, however. to determine the
correction § A analytically in general.

To illustrate how the azimuthal shear flow breaks the symmetry, we study here

the simplest case when the azimuthal flow is approximated by the Stokes’ solution
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which is given by Eq.(6). In this case, since the amplitude of the Stokes’ flow can
be determined independently of the Rayleigh number and the amplitude of the
convection, X; is expressed only by the first term Agp. The azimuthal flow term is

reduced to

Re?

Ni(was, wat) = == [(

PrR } [(R+1)3

R+i)p - B — :—2] Py(cosd). (20)

iy
Since this term has a component of a Legendre polynomial P(cosd) of [ = 2, we
will study the case when the critical (neutral) mode of the linear stability of the
trivial solution is given by { = 2. {Remember that the system has the spherical
symmetry when the differential rotation is absent so that the critical mode X of
the linear stability problem must be expressed by a Legendre function Py{cos¥)
with a fixed [, ie,

X ! (W;(r) P{cos 9), Tr{r) P{cos ¥)) (21)

where U,, T; are the functions of r. Thus the function subspaces on which whole
dynamics are projected are labeled by the order of Legendre polynomial [.)

The equilibrium amplitudes of perturbative analysis are compared with the
numerical soltion for the case of R = 0.5 and 6700 < Ra < 6900 in Fig.5 (Re = 0)
and in Fig.6 (Re = 0.1). Solid lines denote the value of ug for the numerical
solutions. Dotted ones, on the other hand, denote the value of uy computed by
extracting only the { = 2 mode from the numerical solutions, i.e., the amplitude
of the solutions projected on I = 2 subspace. Broken ones are the amplitude
calculated from the perturbative analysis of Egs.(17) and (18). The coincidence
of the amplitudes of the numerical solution and the weakly nonlinear amplitude

equation is very well around the bifurcation point.
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5 Summary and discussion

We investigated the effect of the differential rotation of the inner sphere on the
thermal convection in a spherical shell. Differential rotation is thought to be the
simplest way to create an azimuthal shear flow to the fluid between the concentric
spheres. Axisymmetric steady solutions are obtained numerically by the Newton-
Raphson’s iterative method and their linear stability to axisymmetric disturbances
is analyzed.

It is found that the pitchfork bifurcation, which occurs when the differential
rotation is absent, is structurally unstable and becomes imperfect when the differ-
ential rotation is present. The solution branches of the perfect pitchfork bifurcation
splits into two parts: one is a smooth transition from the 2-roll to the upward so-
lution, and the other is a saddle-node bifurcation to the 2-roll sclution and the
downward solution. It is quite interesting that this splitting occurs not only on the
most unstable branches but on all the symmetric solution branches.

The intrinsic symmetries of the system are discussed and it is found that the
relevant symmetry that assures the pitchfork bifurcation is different between the
symmetric solution case and the antisymmetric ;)ne. The cause of the imperfect
bifurcation of the symmetric solution is the breaking of the asymptotic reflectional
symmetry by the weak shear low where the symmetry is a consequence of the self-
adjointness of the linearized system. Weakly nonlinear analysis is carried out and
the result is compared with the numerically obtained solution for the case when
the shear flow is approximated by the Stokes’ solution.

We comment the reason why we restricted our study to the axisymmetric case
and the relation of our study to the non-axisymmetric stability problem. For
Re > 0 the trivial solution no longer exists. Differential rotation yields the merid-
ional circulation (spherical Couette flow) whose analytical expression has not been

found yet. It is obvious that non-axisymmetric bifurcation must stem from the
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solution branch obtained here. The present study illustrates the multiplicity of the
axisymmetric sclution at assigned parameters and their complex and interesting
bifurcation features. Thus we regard our present work as the inevitable first step
to the more general, non-axisymmetric stability problem.

It is well known that a non-axisymmetric (sectoral) disturbance gives the critical
Rayleigh number for the thermal instability in a spherical shell with solid-body
rotation. In the present problem, on the other hand, there are two reasons which
make it plausible that an axisymmetric (zonal) mode is the most unstable.

The thermal convection problem with sheared flow between the horizontal par-
allel plates has been investigated by many authors. Deardorff[13] found that the
critical Rayleigh number is given by a longitudinal roll whose axis is parallel to
the direction of the shear flow. The transversal rolls whose axis is not parallel to
the direction of the shear flow is stabilized in the presence of the shear flow. This
result suggests that an axisymmetric (zonal) disturbance gives the marginal mode
and non-axisymmetric (tesseral) disturbances are stabilized under the effect of the
differential rotation.

When the differential rotation is present, the yielded spherical Couette flow
intrinsically has finite amplitude zoral components of even I’s. Thus, one can
expect that one of these components is amplified by the buoyancy effect more
easily than tesseral modes which is not contained in the spherical Couette flow.

The stability against non-axisymmetric disturbances is our next concern. It is
of our interest what kind of bifurcation occurs. It is well known that, when the
differential rotation is absent, the neutrally stable modes are degenerated due to
the spherical symmetry. How this degeneracy is removed and what is the role of

the differential rotation? The investigation of this problem is under way.
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Appendix

In the Appendix, the weakly nonlinear analysis of the bifurcation of the symmetric
solution for Re = 0 is reviewed. We will show in the course of the derivation of the
amplitude equation that the system for Re = 0 has an asymptotic reflectional sym-
metry and that the self-adjointness of linear problem is relevant to this symmetry
rather than the geometry of the system. It should be remarked that the content
of this section is somewhat a paraphrase of the result of Joseph and Carmif{15].
Following the usual procedure, we take Ra — Rac as a bifurcation parameter
and expand the variables in powers of € = \/Ra — Rac. The Rayleigh number,

time, stream functions and temperature fluctuation are expanded as follows:

Ra = Ra.+é, (22a}
t = €ty +eft+o(e). (22b)
U = €U+, + T, + 0(63), (22¢)
w = ew; +€ws +wy +oed), (22d)
T = €T +€T+ T, + o(€), (22e)

Substituting Eqs.(22) into the basic equations (3a)-(3c), we obtain at O(e)

LQX] = 0 (23&)
Dw; = 0 (23b)
where
2
Pr D*D? Ra, sind (%) % \ o
L = r ;= i ; =
0 R(R+1) 3 A J, X; ( T ) (=1, 2,3,...).
risind 99 (20
24

Eq. (23b) has only a trivial solution, wy = 0. On the other hand, Eq. (23a) has

a non-trivial sotution X at the critical Rayleigh number Ra, under the boundary
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conditions (1a) and (1b). To solve Eq. (23a) the collocation method with the
expansions (8a)-(8c) is adopted. The eigenvalue problem is solved using the double
QR algorithm.

At O(e€?), we have

LOX2 = —NX(Xl,Xl), (253.)
D*uy = 0, (25b)

where
Nx(X,,X,) =(No(T., T,), J(T;,T,)). (26)

The equation for w, also has only a trivial solution. In order to obtain the solvability
condition for the inhomogeneous equation for X,, we introduce the following inner

product:

drddde Pr Ra.R _ 2 .
(Xa,Xp) = —/fj U, ¥ pr + R+1 ]] Ty Tpr’sinddrddde, (27)

for any X4 ={W4,Ta) and Xp ={(¥p,T5s), and the integrations are carried out
on the whole spherical shell. This inner product yields the relation that LT = Lo
where LT is the adjoint operator of Ly. This condition is slightly stronger than
the self-adjointness which is usually found in many literatures. The solvability
condition for X is that r.h.s. of the equation has no projection on the kernel of

the linear operator Ly, i.e.,
<XT,NX(X1,X1)> ~ 0. (28)

Because the linear operator L; is self-adjoint, 1i.e., xi = CX,; where C is an
arbitrary constant and because X; = 0 at the boundaries, this condition(28) is

exactly satisfied. Thus the equation for X, can be solved as

Xy = —(Lo) 7 Nx (X1, Xy), (29)
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where (L)™' denotes the inverse operator of L. Singular value decomposition
algorithm is used to solve this equation numerically.

At O(e?), we obtain the the equation

a

Lo X3 = '5%"‘MX1 - (Ra - RGC)Lgxl — NX(XQ,X]_) - NX(XI: X2), (30&)
2
D*u; = 0, (30b)
where
D? 0 0 sind (r)—a—
Mz(o 1)’ Lﬂ:(n TR E (31)
by U o /

The equation for w; has only a trivial solution. The solvability condition for the

inhomogeneous equation for X; leads to

é% <XT, MX1> — (Ra — Ra.) <XT’ L2X1>

(32)
= (XF, M (%2, X3) + Nx (X1, Xo) ) = 0.
Now we assume the X; is separated as
X; = A(t2) X(r,9), (33)
where 4 is a real variable and X is a vector in Ker(Ly).
Substituting (33) into (32), we obtain the amplitude equation
d4
T (Ra — Ra.)AgA + A\ A% (34)
The coefficients Ay and A; are given by
L _RLX) (X x(ReX) + N (X X)) (35)
6= T =0 A = = = ; 5
(X, MX) : (X.MX)

where we put Xt = X and X, = —(Ly)"*Nx(X,X). Numerical integrations are
carried out according to the Gauss-Chebyshev quadrature formula in r-direction

and the Gauss-Legendre quadrature formula in 9-direction.
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Figure captions

Fig.1.

Fig.2.

Fig.3.

Fig 4.

A sketch of configuration.

The Rayleigh number Ra dependence of the symmetric solutions for Re =
0: (a) uo, the radial velocity u, at (r,9) = (R + 1/2,7/2}, (b) Nu — 1,
The used symbols are as follows: 8-roll solutions are denoted by circles (o),
10-roll solutions by squares {0) and 6-roll solutions by triangles (A). The
upward solutions are denoted by open symbols and the downward ones by
solid symbols. The contours for the meridional stream functions ¥(r,d)
in the upper hemisphere for Ra = 3000 are also depicted in (b) with the
abbreviated name of the solution. Only the upper hemisphere part of each
stream function is depicted since the flow is symmetric with respect to the
equator. The solid lines depict the clockwise circulations and the broken lines

the anticlockwise circulations.

The Rayleigh number dependence of the symmetric solutions for Re == 20:
(a) uo, (b) Nu — 1. The symbols on the branches are consistently chosen
with those in Fig.3. All the solutions with assigned symbols in this figure are
obtained from those with the same symbols in Fig.3 (Re = 0) by changing
the parameters Ra and Re adiabatically. The solution on the 2-roll branch
bifurcated from the third saddle-node point is denoted by a cross symbol
(x). The contours for ¥(r,¥) in the upper hemisphere for Ra = 3000 are

also depicted in {b) with the abbreviated name of the solution.

A Schematic diagram of the bifurcations of a symmetric solution and an
asymmetric solution. The vertical direction represents the antisymmetric
subspace H4. The horizontal directions represent the symmetric subspace
Hg and the bifurcation parameter Ra. Because the equatorial reflection op-

erator I reverses the sign of the antisymmetric component of the asymmetric
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Fig.5.

Fig.6.

solution, the symmetry guarantees the pitchfork bifurcation of the asymmet-
ric solutions (X; and X,) bifurcated from a symmetric solution (X;). All
the points in the symmetric subspace (hatched plane in the figure) are, on
the other hand, the fixed points of the operator I'. Therefore the pitchfork

bifurcation of the symmetric solution is not guaranteed by this symmetry.

The Rayleigh number Ra dependence of uy for R = 0.5 and Re = 0. Sold
lines show ug of the numerical solutions. Dotted ones, on the other hand,
denote the value of uy computed by extracting only the ! = 2 mode from

the numerical solutions. Broken lines are uy calculated from the amplitude

equation (17).

The Rayleigh number dependence of uq of the symmetric solutions for R = 0.5
and Re = 20. Solid lines and dotted lines are same as those in Fig.5. Broken

lines are ug calculated from the amplitude equation (18).
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