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An electromagnetic instability in a magnetic neutral sheet is investigated by
means of a 2% semi-implicit particle simulation code. Electromagnetic waves
are excited slowly in a field null region after saturation of the lower hybrid drift
waves excited in an early time on both sides of the neutral sheet. This instability
is found to be a new instability, independent of the lower hybrid drift instability.
Examination of its characteristic properties indicates that the new instability is
highly related to the meandering motions of ions in the neutral sheet. The growth

of the instability gives rise to anomalous resistivity in the neutral sheet current.
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1. INTRODUCTION

Magnetic reconnection’ is thought to be one of the most attractive and im-
portant concepts in space and Iaboratory plasmas, because it plays a vital role in
an explosive energy release process such as solar flares and magnetospheric sub-
storms, and in plasma confinement. such as tokamak sawteeth and disruptions.

The primary role of magnetic reconnection is to change the topology of mag-
netic field lines and to convert a stored magnetic energy swiftly to plasma kinetic
energy. It is well known that electrical resistivity plays a crucial role in trigger-
ing magnetic reconnection. However, violent phenomena triggered by magnetic
reconnection are often observed in a rarefied and high temperature plasma, in
which binary collisions between particles hardly occur, namely, in a collisionless
plasma. In this respect, Horiuchi and Sato? has recently demonstrated that mag-
netic reconnection can be driven in a collisionless plasma without invoking a direct
generation of wave-induced anomalous resistivity. However, anomalous resistiv-
ity caused by unstable waves still remains to be a possible cause of collisionless
reconnection.

Many kinds of instahility have been proposed so far as candidates of anomalous
resistivity in a neutral sheet region. lon acoustic instability was proposed to
explain anomalous resistivity in laboratory plasmas®*, but it required such a high
ratio of electron temperature to ion temperature as 7, /T 2 10. Thus, ion acoustic
instability is unlikely to occur in a normal condition. Because the diamagnetic
drift speed in the neutral sheet is usually much lower than the electron thermal

speed, Buneman instability is neither expected to occur.



Among these instabilities, the lower hybrid drift instability (LHDI)*~'2, which
has a large growth rate and saturation amplitude, has attracted the attension of
fusion plasma experimentists and space plasma physicists. Krall and Liewer®
proposed that the LHDI could be excited in the vicinity of the neutral sheet and
showed that the low frequency wave (£, < w < Q..; Qn, Q.; are ion and electron
cyclotron frequencies, respectively) becomes unstable for any ratio of T,/T;. But
the local and nonlocal studies show™!? that the growth rate of this instability
does depend on the plasma beta ( ratio of plasma pressure to magnetic pressure)
and becomes vanishingly small in a high beta region. In other words, the LHDI
must be localized somewhat away from the neutral sheet and the eigenfunction
does not reach to the field null region.

Generally, 1t is difficult to solve self-consistently the nonlinear process in an
imhomogeneous region (neutral sheet), by means of the mathematical methodol-
ogy alone. The previous numerical simulations'®~'? have shown that sufficiently
large growth of the LHD wave is observed away from the neutral sheet, but the
unstable region cannot penetrate into the field null region. This implies that the
LHDI cannot be directly responsible for anomalous resistivity in the neutral sheet.

91112 have shown that a growing mode is

On the other hand, some simulations
excited at the center of the neutral sheet. Nevertheless, little attention has been
given to this mode, nor its physical characteristics and roles have been studied
in a satisfactory way. The true nature of the mode and associated anomalous

resistivity remain to be revealed.

In section 2 we describe the fundametal equations, the initial condition, the



boundary condition used for the present simulation study. Simulation results are
described in section 3 in the following order: First, the development of an electro-
magnetic instability in the neutral sheet is demonstrated. Then, independence of
this electromagnetic instability from the lower hybrid instability is discussed and
the amount of generated anomalous resistivity is derived. Also, the parameter de-
pendence is investigated to examine the nature of the electromagnetic instability

in the neutral sheet. Summary is given in section 4.

2. SIMULATION MODEL

We use a 2% semi-implicit particle simulation code?*?!® in which the time-
decentered discretization technique is used for time advancing and the implici
algorithm is used for the field equations. By using this technique and taking a
large time step, high frequency modes are eliminated, so that the desired low

frequency phenomena can be resonably well dealt with.

The equations to be solved are Maxwell’s equations,

19B

rotE = o (1)
rotB = 5 1 %%f— 2
divE = 4mp, (3)
divB =0, (4)
and the equations of motion
d q v;
(%) = —~(E+ -~ xB), (5)
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de;
T, (©)

where @;(t), v,(t), m,, and g, are the position, the velocity, the rest mass, and
the charge of the jth particle, and the relativistic vy factor of the jth particle is
defined by

W= 1/4/1- (’UJ ’ ”J)/cg (7)

The current density j(,t) and the chrage density p(i, £} are defined by summing

up all the particles,

j(m,t)=§q,-vj(t)5[m—w;(t)1, (8)
pla,t) = Y., 5T - 2,1}, (9)

where N is the total number of particles, and S(2) is the form function of parti-
cles, which is expressed by a triangle with the base length equal to twice the grid
separation.

We numerically solve the time evolution of these field-particle coupled equa-
tions, egs. (1), {2), (5), (6) and (8). Equations (3) and (4) are initially sat-
isfied. Spatial homogeneity in z-direction (8/8z = 0) is assumed, namely, a
two-dimensional geometry is chosen.

As an initial condition, we adopt the MHD equilibrium
1.
I B=Vp (10)
with the Harris-type antiparallel magnetic field configuration'?, namely,

B.(y) = Bytanh{y/L), (11)



j{y) = jo sech*(y/ L), (12)
p(y) = po sech?(y/L), (13)

where jo = ¢By/4nL, pp = BZ/8r, and L is the scale height along the y axis.
There is a magnetic neutral sheet along the mid-horizontal line (y = 0) in the
initial equilibrium. We assume the electric field initially to be zero in the entire
simulation box. We also assume that the initial particle distribution is a shifted-
Maxwellian with a spatially constant temperature, and the average particle ve-
locity is equal to the diamagnetic drift velocity. The drift speed of electrons and
ions Vg, Vi, and the temperatures T, T;, satisfy the relation, Vg /T, = =V, /T,
which means the charge neutrality condition. The particle position and velocity
are determined from the pressure and the current density. For the sake of nu-
merical stability, one third of the whole particles are loaded as the background
particles which have no diamagnetic drift velocity. Both an ion and an electron
are loaded at the same position at the initial time.

In the actual calculations all variables are normalized by the following four
basic quantities: ¢ (velocity of light), e (elementary charge), m, (electron mass),
Wpeo (electron plasma frequency defined as wyep = \/W, where ng is the
average total number density in the system). Accordingly, the time, the length,
the electric field, and the magnetic field are normalized by wp'e%,, C/Wpeo, MeCupen/ e,
M Clpen /€, TESPEctively.

The simulation region is a rectangular box which is bounded by z = 0, z = L,
y = —L,,and y = L,. The periodic condition is imposed at the boundaries, z = 0

and z = L,. The simulation domain (L, x L,) is divided into 67 x 67 grids. The



number of loaded particles is 120000; hence the average particle number density

is about 27 particles per cell.
3. SIMULATION RESULTS

Typical simulation parameters are as follows: the mass ratio is m,/m, = 180,
the magnetic field intensity is By = 0.3 m.cwpep/e. the scale height of the initial
magnetic field is L = 5 ¢/wye, the simulation region is L, = 30 ¢/wyeo and L, =
32 ¢/wpeo. The Alfvén transit time 74 (= L/V,, where V, = By//&wnem; is the
Alfvén velocity) becomes about 223 w;e}g for these parameters. The temperature
ratio is T; /T, = 2 and the ratio of the ion drift velocity to the ion thermal velocity

is V:ﬁ/‘/;h!‘ ~ 2.1.
A. Development of two independent eiectromagnetic instabilities

Figure 1 shows the time development of the magnetic field in 2 — y plane.
The left panels are the contours of z—component of the total magnetic field B,
and the right panels the contours of z—component of the perturbed magnetic
field 6 B,. (The maximum and minimum values are indicated on the top part of
the panels.) The distzibution of B, (6B,) along the y axis at y = 0 is shown
in the upper margin and the distribution along the z axis at = 13 ¢/wpeq 1s
shown in the right margin. At T = 800 w;elo a wavy structure in the contour |
lines is observed on both sides of the field null region, but one cannot see any
appreciable penetration of the side modes into the field null region. Because of
the particle diffusion caused by the modes, the density profile becomes less steep
and the modes stop growing. At T = 2800 w;eb a new large scale wavy structure
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appears at the field null region. At 7 = 4000 w;j} this new wavy structure at
the field null region becomes remarkable and the amplitude reaches more than
a half of the initial magnetic field. Thereafter it is gradually decaying, but at
T = 8000 wp_e}) the structure still remains significantly.
Figure 2 shows the time development of the electric field. The left and right
panels are the contours of  and y component of the electric field, respectively.
As can be seen clearly at T = 800 wz;%,, fluctuations appear on the both sides of
the field null region. But the value at the field null region remains small. After
T = 2800 w_;e}] there appear electric field fluctuations around y = 0. However, the
structure is more like the side modes and no clear one-to-one correspondence to
the magnetic modes of Fig. 1.

Figure 3 shows arrow plot of the electron flow vector. (The maximum speed
is indicated on the top shoulder of each panel) On carefully examining the
arrow plot one can find a small vortex structure corresponding to the side modes.
However, the structure is not so conspicuous as the central modes. The central
modes appear in the plot at 7 = 2800 w;e%). The snaky structure develops more
at T = 4000 w;e%. Thereafter the structure gradually decays as is seen at 7 =
8000 w;elo. We note that the ion flow is not shown here because the structure

cannot be seen so clearly as the electron flow.
B. Lower hybrid drift instability

Let us now attempt to identify the observed two modes, i.e., side modes
and central modes. Figure 4 shows the dispersion relation at y = 0 and at
Y = 5 c/wpeo. The circles in Fig. 4(a) show the dispersion relation of E, at
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Y = 5 ¢/wpeo, which is obtained by the Fourier spectrum, and the solid lines show

the analytical dispersion relation of the LHDI?, namely,

202 2wZ, AN
=kV,—2 (1 L Pe 14
v ‘ kv, ( * kv, * Qze) (%)

where €, is the electron cyclotron frequency and wy, is the ion plasma frequency.
A fairly good agreement is seen between the numerical and analytical results
with respect to the modes less than sixth. The open square in Fig. 4(b) show
the dispersion relation of B, at the field null region. Obviously, the dispersion
relationship is quite different from that of the LHDI andv the frequencies are on
the order of the ion cyclotron fregency.

We shall next examine the spacio-temporal evolution of the Fourier-expanded
mode in the z direction. Shown in Fig. 5 is the evolution pattern of the lowest
six Fourier modes of the magnetic field B, in y — ¢ domain. In the early phase,
m, = 5 and 6 modes grow in the regions with steep density gradient, though not
so clearly seen because of the low amplitude. In contrast, m, =1 and 2 modes
grow gradually at the center of the neutral sheet. These central modes develop
into a fairly strong structure compared to the side modes.

The temporal evolution of the Fourier mode of electric field E, is shown in Fig.
6. The implication of this figure is the following. First, the electric perturbations
stay almost at the same places on the y axis and do not propagate in the y
direction and are more dominant on the higher modes (m, = 5 or 6). Secondly,
comparing Fig. 5 and Fig. €, one can find that the side modes (the LHDI modes)
present a more electrosfatic nature, while the central modes are dominant for
lower modes (m, =1 and 2) and exhibit a more magnetic nature.

9



C. New low frequency electromagnetic instability

In order to study whether the low frequency mode at the field null region
is the nonlinear mode caused by the LHDI or a new instability mode, we have
performed a simulation run in which the fast growing LHD modes (m>4) are
artificially eliminated. Figure 7 shows the time sequential plots of the magnetic
field contours and the perturbed magnetic field contours. The meandering struc-
ture corresponding to the low frequency electromagnetic mode at the field nnll
region is generated after ¢ = 2800 w;e}]. Also shown in Fig. 8 is the temporal
evolution of Fourier modes of the magnetic and electric fields, B,, E,. The mode
of the field null region grows and exhibits a similar pattern to that of Figs. 5 and
6. From these results we come to the conclusion that the growth of LHDI does
not affect the growth of the low frequency electromagnetic mode at the field nuil
region. Thus, it is concluded that the low frequency, central mode is a new mode.

In order to examine the dependence of the system size on the newly found
mode, we have performed a run whose simulation size in z—direction L, is twice
as large as that in the typical runs, ie., I, = 60 ¢/w,. and the grid number in
the z—direction is 131. Figure 9 shows the time sequential plots of the magnetic

field and the perturbed magnetic field. The meandering structure is observed

after T = 2800 w_L

o Figure 10 shows the temporal evolution of the Fourier

amplitude of the magnetic field B,. The dominant mode is obviously m, = 4.
Remembering that the dominant mode in the run with Z, = 30 ¢/Wpeo is M, = 2,
we can conclude that the wavelength of the dominant mode does not depend on

the simulation length, namely, that the observed meandering structure of the field
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null region is an intrinsic process of the neutral sheet.

Let us consider the characteristic time governing the development of the mean-
dering structure of the magnetic field in the neutral sheet region. The time of the
present simulation is normalized by the electron plasma frequency w,,. However,
since the observed slow phenomenon seems to be independent of the electron time
scale, we shall replot the characteristic time (75, ) of the meandering structure in
terms of the ion gyro period, T,, = 27Q,'. Examining the data of the results
of Tananka and Sato!!, and Winske®, Brackbill et al.}*, we obtain T}, ~ 0.39 T,
{wpe/Qee)? = 0.55, m,/m, = 185), 0.44 T,, (Que/wp ~ 0.5. m,/m. = 100).
and ~ 0.32T, (wpe/Qe = 9.9, m,/m, = 100), respectively. We may thus infer
that the time required for the meandering structure to become sizable is on the
order of Tr,. In our case the characteristic time is T, & 2000 w,. = 0.54T,.
Besides, the frequency of the present electromagnetic wave in the neutral sheet is
about 0.47€2. These results suggest that the new low frequency electromagnetic
instability in the neutral sheet is strongly related to the ion cyclotron motion.

Winske® pointed out three probable origins of the instability at the field null
region. One is that the turbulence on both sides of the field null region heats the
particles near the null point anisotropically to drive a Weibel instability!”. How-
ever, this possibility should be rejected, because the electron distribution function .
in the field reversal region exhibits no appreciable anisotropy. A second possi-
bility is that the nonlinear penetration of the LHDI causes this electromagnetic
mstability. As seen in the previous subsection, this possibility cannot be accepted

either. A third possibility, which was proposed by Yamanaka'®, is that ions with
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the meandering orbits would play an important role in triggering an instability.
Considering the fact that the required time for occurrence of the electromag-
netic instability in the neutral sheet, this third possibility appears to be the most
probable. The meandering motion of ions can resonate W-ith electromagnetic fluc-
tuations to excite them. Substituting the parameters of the present simulation
into Yamanaka's formula, the frequency of the dominent mode m, = 2 is given
by roughly 9.3 x 107* Q.q, which is about three times as large as the frequency
obtained from the simulation, 2.62 x 107% Q.. Since Yamanaka approximated
the magnetic field near the neutral sheet as a linear function to carry out the
orbit-integral analytically and took the limit that the ion drift velocity is much
larger than the ion thermal velocity. In other words, the effct of complicated me-
andering motion was very poorly evaluated, which may make a considerable error.
Nevertheless, judging from the overall circumstantial conditions, it appears that

the electromagnetic instability can be caused by the ion meandering motion®®.
D. Anomalous resistivity

Since the appearance of the m, = 0 mode of the electric field is indicative of
generation of anomalous resistivity, we shall here examine the temporal behavior
of this zero mode with particular attention. Figure 11 represents its behavior.
In the early period, the growth of the m, = 0 electric field mode caused by
the LHDI is observed on both sides of the neutral sheet region, but no electric
field at the field null region is observed. With the passage of time, the m, = 0
electric field decays but the new m, = 0 mode appears at the field null region.
This m, = 0 mode of electric field at the field null region is associated with the
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new electromagnetic mode at the field null region. This appearance of the new
electromagnetic mode must be related to the generation of anomalous resistivity
at the field null region.

We shall here evaluate the amount of the anomalous resistivity caused by the
new electromagnetic instability. Figure 12 shows the temporal evolution of m, =
0 Fourier mode of the electric field E,, the electric current J,, and the resistivity
at y = 0. The enhancement of the F, (m, = 0) is observed around ¢ = 4000 w;e%
when the new electromagnetic mode is dominantly excited. The electric current
increases to the peak at T ~ 3000 w;e}] and gradually decays afterwards. By
comparing the temporal behaviors of E, (m, = 0) and J, (m, = 0), one can

obtain the value of the anomalous resistivity # to be of the order of 0.002%;%]

during the time from T = 4000 wpeo to T 2 12000 wpeo-

4. CONCLUSION

We have investigated electromagnetic waves in a magnetic neutral sheet by
means of a 2% semi-implicit particle simulation code. The main results are sum-
marized as follows.

(1) A low frequency electromagnetic wave is excited in a magnetically null
sheet region after the decay of the lower hybrid (electrostatic) drift instability
excited in the region away from the neutral sheet. Generation of this electro-
magnetic instability is not related to the LHDL (2) The generated anomalous
resistivity in the neutral sheet is estimated to be 7 & 2 x 107 w;!. (3) The
instability develops into a meandering structure of the neutral sheet. (4) The

meandering structure develops into a sizable structure roughly in one cyclotron
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period. (5) The frequency of this mode is of the order of the ion cyclotron fre-
quency. (6) This mode may be caused by the meandering motion of ions.

The present simulation study thus concludes that a low frequency electro-
magnetic instability is excited at the field null region and generates anomalous
resistivity in the magnetic neutral sheet, which might cause collisionless recon-

nection.
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FIGURE CAPTIONS

Fig. 1. Time sequential plots of (left) the magnetic field contours and (right) the
perturbed magnetic field contours.

Fig. 2: Time sequential plots of (left) E, contours and (right) E, contours.

Fig. 3: Time sequential plots of the electron flow velocities.

' Fig. 4: (a) Dispersion relation of E, at y = 5 ¢/wpe (circle). The solid curve
is the theoretical dispersion relation for the LHDI. The frequency is normalized
by the lower hybrid frequency at y = 5 ¢/wpeq. (b) Dispersion relation of B, at
Yy = 0 c/wpeo {square). The frequncy is normalized by the ion cyclotron frequency
Qo

Fig. 5: The color-coded contour map of the Fourier components of the magnetic
field in the time (T')-space(y) domain.

Fig. 6: The color-coded map of the Fourier components of the electric field in
the time(7T')-space(y) domain.

Fig. 7: Time sequential plots of (left) the magnetic field contours and (right) the
perturbed magnetic field contours when the m, > 4 modes are eliminated.

Fig. 8: The color-coded contour map of the Fourier components of the magnetic
field and the electric field in the time(T)-space{y) domain when the m, > 4
modes are eliminated.

Fig. 9: Time sequential plots of (left) the magnetic field contours and (right) the
perturbed magnetic field contours for the L, = 60 ¢/we0.

Fig. 10: Temporal evolutions of the Fourier amplitudes of B, for (a) L, =

30 C/U.Jpeg and (b) Lz =60 C/wpeo.
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Fig. 11: The color-coded contour map of the m, = 0 mode of the electric field in
the time(T')-space(y) domain: (a)=15 <y <15 (b) -5 <y < 5.
Fig. 12: Temporal evolutions of the m, = 0 Fourier modes of £, J;, and 7 at

y=0.
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