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Abstract
Theory of current-diffusive interchange mode turbulence in plasmas 1s
developed in the presence of collisional transport. Double-valued amplitude of
stationary fluctuations is expressed in terms of the pressure gradient. The backward
bifurcation is shown to appear near the linear stability boundary. The subcritical nature
of the turbulence is explicitly illustrated. Critical pressure gradient at which the
transition from collisional transport to the turbulent one is to occur is predicted. This

provides a prototype of the transport theory for nonlinear-non-equilibrium systems.
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1. Introduction

Fluctuations and associated transport are important issues in the physics of non-
equilibrium systems. Anomalous transport phenomenon in confined plasmas is one of
typical exampies, and has been subject to tntensive study [1]. Theory for the transport
due to the binary collision of particles has been established [2], nevertheless it is
insufficient to explain many of the plasma dynamics. To investigate anomalous
transport phenomena in confined plasmas, much work has been done on the linear
stability of microscopic modes; to obtain the saturation level, the balance between the
linear growth and noniinear damping has been discussed [3]. Nonlinear damping
mechanisms are demonstrated in numerical simulations [4], but recent simulations have
shown that the plasma turbulence can belong to a class of subcritical turbulence [5,6].
The subcritical turbulence has been studied in fluid dynamics, and the conventional
methods like amplitude expansion or truncation of modes often encounter the difficulty
of the poor convergence [7]. To analyze the subcritical turbulence, analysis nearby the
equilibrium is not sufficient. The theory of subcritical turbulence in plasmas must be
advanced 1 order to understand the fluctuations and anomalous transport in confined
plasmas.

Recently, a theoretical method of self-sustained turbulence was proposed in the
analysis of magnetically-confined plasmas [8]. In this method, the vV v nonlinearity is
renormalized in a form of the turbulent-driven diffusivities. Dynamical equation for the
"dressed-test mode" was derived. In this paper, analysis using the dressed test mode is
made in the presence of both the thermal fluctuations (i.e., the Coulombic collisions in
magnetized plasmas) and the turbulence. The interchange maode turbulence, which is
the simplest example in the presence of inhomogeneous magnetic and plasma
pressures, is analyzed. The fluctuation ampilitude is analytically expressed in terms of
the global pressure gradient, which clearly shows the feature of the subcritical
turbulence. Critical pressure gradient at which the transition from the collisional
transport to the anomalous one is to occur is obtained. Comparison study with

numerical simulation 1s made and shows comprehensive agreement.
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2. Model Equation and Renormalization

We study the high-aspect-ratio, toroidal helical plasma with magnetic hill and
strong magnetic shear. The minor and major radii of the torus are given by a and R,
respectively, We use the toroidal coordinate (r, 8,(). The reduced set of equations for
the electrostatic potential ¢, pressure p, and current J are employed [9]. Equation of
avie + [¢, Vipl=V,J+ {Q’xa-Vp + 1, V10, the Ohm's law:
aa—lf =-V,¢- é—( % +(6,7]] ) +A.V2J and the energy balance equation:
aa—li- +{0, p]=1%.V 2p. The bracket [f,g] is the Poisson bracket, [f, g]= (V{xV g)g .

motiomn:

(b= B/By, Bo being the main magnetic field), Q' is the average curvature of the
magnetic field, W is the vector potential, and 1% denotes the finite electron inertia,

g = (5/&1)2 , & being the collisionless skin depth. The classical resistivity is neglected.
The transport coefficients W ; ., A, ¥, are the contributions from collisional diffusion
and are the viscosity for the perpendicular momentum, the current diffusivity and the

thermal diffusivity, respectively. In this article length and time are normalized to a and

poloidal Alfven transit time T,, Pressure and potential are normalized to B3/2ep, and
av ApBO’ (e= a/R)? This set of equations is very much simplified in the plasma
geometry, but is relevant to study the anomalous transport in the system of magnetic
hill such as torsatron/Heliotron {10] and the inside of q=1 surface of tokamaks.

The Lagrangian nonlinearity is included in a form of [, - -] in the set of basic
equations. These terms are renormalized as follows. (Detailed procedure is given in
[11].) We take a test mode (denoted by k) and study the interaction with back-ground
fluctuations {denoted by k;). The driven mode (ky), which is generated by the mode
coupling between the test mode and fluctuations, are caiculated. The back-interaction
of the driven mode with back-ground fluctuations generates the test mode. Taking this
nonlinear process (called direct interactions), the nonlinear term for the test mode,

[0, Y], is written as [¢, Y = E}[q)_l, [6,, Y]], where ¥ is a component of the test mode.
(The suffix 1 indicates k;.) The spatial inhomogeneity of {luctuations is assumed to be

much weaker than the mode number, and the diffusion approximation is employed as



(0.1, (01, ¥]]=(190,/0c[73*¥ /12062 + | 3¢,/r08 "0*¥ /or2). Without loosing generality,
the simplification of the isotropic turbulence, 3¢, /0r [2) = (30,108 %) = ([ k |0, P2, is
made. Bracket <> means a spectrum average. Only the diagonal elements are kept in
the following. After these renormalization processes, the set of basic equations is

expressed in terms of the dressed test mode with renormalized transport coefficients as

av2 3

_"E)"tﬁ =V, i+ (Q XC)'VP +(H N+ Mc)vi‘b (1
‘aa—‘f =-V,0- "é“%:‘ +HAg+ 7Lc)V_L;_J (2)
ap . W 2 id

3¢ =N+ %IV Ip =10, pol 3

In deriving these equations, the nonlinear diffusion coefficients for the test mode,

{U - Ay Xi)» due to the back-ground turbulence appears, which 1n principle can
depend on the choice of k. Then the mean field approximation is employed: the range
of the test mode k is not distinguished from that of the back-ground turbuience, and
common ranges are taken for k; and k;. Summing up over the background

fluctuations, k;, a set of diffusion coefficients {1y, Ay, X} Was explicitly given as

2
ko, 1 LT Ym[“_ k3:Go
KT 2 Kiyil[ Yul'Yplk%Ll

2 2 2
XN=Z|kJ.1‘P11 1 ‘Yul'rl_{_ gkﬁl Klz’l’uﬁ’k“ £ + k5;Gy and ) =
2 K Ypl[ kquuﬂj i

SRR Yplk_z}.l
(8/a)2ue, where Yy = Y(1) + Ty, Vi1 =¥+ T vp = Y1)+ T,y W1) is the

Un=Z

eigenvalue of the k; mode, 3{U,,J;, py Jot="v(1}{U, I}, p; }, Tuy, Tj1, and I'pg

denote the decorrelation rate of Uy, J1, and py. Other notation is: U is the vorticity,
. : : d
U= —-kf_q), Go is the normalized pressure gradieat, G, = Qldiro’ and po 1s the

equilibrium pressure profile. The transport coefficients, which operate to the test
mode, are explicitly expressed in the presence of the collisional components W, A, ¥,

and turbulent terms py, Ay, X -

3. Stationary Solution and Backward Bifurcation
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The stationary solution is studied. The limit of Y— 0 is taken, and the relations
Yor = (i + BT 1 V) 1= (e + He K1 Yp 1= (U + Xk}, and
K, ={tty + B Jk3 (1 + C) are obtained, where C is defined by
C =8k} K 3¥al7y L + Gk iv3lvpe. (Note that A s related to the electron
viscosity as ?\.(Njc) = (c/au)p)zpe(N' c).) In this limit, we have the relation between the

turbulent transport coefficient and fluctuation amplitude as

TNTRESTRET & @1
e iHe N + Ho o) = P2 (4-2)
It + o) = Q% (43)

where the normalized fluctuation amplitude & is defined as $° = X | ¢, 2 +2C) . The

coefficients P and Q, (which are refated to Prandtl numbers) are defined as

PZE{Zlcpl[z[l +—k%—1G%}(1 +C)'1}{EI(P1 oty

ulYplkJ_l

I IR LR

1Y

The coefficients P and Q are the ratios of the moments of turbulent fluctuation
spectrum, and vary much more siowly than the turbulence level itself. They are
approximated as constanis. In the strong turbulent limit, ratios i, n/Hy = P and
EnUyn = Q are found to be close to unity [12].

Basic equations (1)-(3) are linearlized for the dressed test mode, so that the
nonlinear marginal stability condition is derived. (See [6,11] for the details of the
solution of the eigenmode equation.) The marginal stability condition for the least

stable mode was derived as



Gy? (A + &) _
ST (o 1) T + 1™

5

where 3. is a critical [toh-number and is of the order of unity. Equations (4) and (5)
determine the fluctuation level and turbulent transport coefficient as a function of the
equilibrium pressure gradient, i.e., §(Go) and %(Gy).

[n order to examine the bifurcation nature of this mode, we consider the neutral
condition in the vicinity of the linear boundary. The linear stability is obtained by

taking the limit of §— 0 as
Gy G, (6)

where the cnitical pressure gradient is given from Eq.(5) with ;= Ay =Yy =0as

G.= Szﬁ(sa(np/c)%xcpcle;%B. By expanding Eq.(5) near G = G, as

Go=G. .+ (acozaéz) @)2 +-+, the amplitude ¢ near the marginal condition is given as
$°=(0G /08 l(GO -G,). From Eq.(5), the derivative is calculated as

3G /28" = (@38 Wte + )+ (/B8 Y3(k + 1) — 2(0H 38 3(utcc + G
Noting the relation Eq.(4) and taking the limit of 6— 0, we have

3G /94 = (Q¥y2 + 1132 - 2P*3u )G, near Gy = G,. Relations =%, and

He << % usually hold. For coilisional diffusion, the relation He /X ~ \/le holds,
where m/m, is the mass ratio. Under this circumstance, the relation aGOIBéZ < 0 holds

near Gy = G, and
§" = - (33, 12P*Ge/G - 1) ©)

This result shows the backward-bifurcation: small but finite amplitude of ¢ is expected
at the pressure gradient that is below the critical pressure gradient, Gy< G..
The branch of the large fluctuation amplitude is also obtained from Egs. (4) and

(5). In the large amplitude limit, Xy >> %, Eqgs.(4) and (5) reduce to the relation
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x=8="5 (a5 (®)

where the typical mode number scales ask ,~ G 2sacop/c:. Ttus branch corresponds

to the strong turbulence limit of the self-sustained turbulence. The lower branch (7)
and upper branch (8) are found to merge at particular pressure gradient, Go= G«. The
merging point is given from the singularity condition, 3G/d9 = 0. This condition is

satisfied at (= X — Ke o1t the limit of ¥ ~ Y>> i, ., with the pressure gradient

Gp=G.=z 35’3(2samplc)4/3xcm )

At the critical pressure gradient G, the turbulent transport coefficient is expected to be
of the order of the collisional transport. Figure | illustrates the theoretical prediction of
the fluctuation level as a function of the pressure gradient, Gp. Explicit muitifold forms
of &){GO) and ¥(G,) are seen. The lower-amplitude branch is thermodynamically
unstable. Anomalous transport is predicted to occur due to the subcritical excitation, if
Gy exceeds the critical value G, which is much smaller than the linear stability
boundary G..

This analytic estimation is compared to the numerical simulation. Direct
nonlinear simulation of the basic set of equations was performed [6]. The two-

dimensional turbulence has been calculated in a system of the size |x{ <L, and

|yl<L,. (The surface x=0 is the mode rational surface, and z-axis is in the direction of
the magnetic field at x = 0. Parameters in the simulation were: [, = ¥, = O.2(c/a0)p)2,
Moo= 0.0l(c/acop)z, s=0.5, L, =40(c/aw)and L, = 6.4n{c/awy).) For this system,
the linear stability boundary is given as G, = 0.4, i.e., 3, = 0.25. Nonlinear excitation
of the fluctuations was confirmed in the simulation. Figure 2 compares the theoretical
result (the solution of Egs.{4) and (5), the solid line) of the transport coefficient and
that from the numerical simulation (black points). We see that the steady state

turbulence is realized even below the critical pressure gradient against the linear
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instability, G, = 0.4. The theoretical formula (5) well reproduces the subcritcal nature

of the turbulence which is obtained by the nonlinear simulation.

4. Summary and Discussion

[n summary, the nonlinear theory of the current-diffusive interchange mode
turbulence in confined plasmas was developed. A nature of the subcritical turbulence
was shown from the theoretical formula. Comparison study with the result from the
direct nonlinear simulation was made. The critical pressure gradient for the transition
from collisional transport to turbulent transport, G, = G«, was obtained. The analytic

rm Y s 1 i 1 t oot 1¢ £, th
form of the turbulent transport coefficient, Eq.{®), is consistent with the result from the

scale invariance technique of the original nonlinear equation [13]. The critical gradient
G: is given in experimental variables as a/L; = (e22Q)s%gm /m, ) *(av.iv, }*°, where
IL,=- B’/ﬁ, g is the numerical factor introduced as ¥, = gv,p?, and v,, p; and vy, are
collision frequency, gyro radius and thermal velocity of ions. In the usual experimental
circumstances, the condition G > G« is satisfied; The relevance of Eﬂ (8) with
expenimental observation is given in [8]. The finding in this article replaces the
conventional view of the turbulence theory, in which the forward bifurcation was
predicted [3]. The new analytic insight deepens the understanding of the turbulence
driven by the pressure gradient in toroidal plasmas, and develops a transport theory for
the nonlinear and far-non-equilibrium systems. The pressure gradient coupled to the
bad magnetic curvature plays a role of the order parameter to characterize the state of
nonuniform plasma. Similar result is obtained for the current diffusive ballooning
mode turbulence, which is relevant to tokamaks [11]; the extension will be discussed in
elsewhere.

The particular forms of ¢ and G» may depend on the choice of the fluid
description of the plasma [9], but the basic nature of subcritical exciiation is not limited
by this assumption. The mechanism for the subcritical excitation is very general, i.e.,
the parallel electron motion is impeded by fluctuations. (Similar mechanism was also

studied in relation to the drift mede [14].) The normal cascade of the spectrum by the
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electron nonlinearlity is important. If collisional resistivity alone is taken into account
[15], the nonlinear excitation was not obtained. Recently theoretical efforts are also
made for the ion temperature gradient (ITG) modes [163. The impact of the subcritical
excitation for such mode will be of interest. Finally, the result of Fig.2 is based on the
two-dimensional (2-D) simulation. The 2-D model does not limit the relevance,
because the radial mode structure is localized, by the shear, compared to the typical
mode separation distance, 1/sk g; The nonlinear normal cascade by electron dynamics
exists in both the 2-D and three-dimensional (3-D) models. Three-D simulations
become possible these days [17]. A future test by use of 3-D simulation would be

fruitful. These problems are left for the future study.
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Figure Captions
Fig.1 Turbulent transport coefficient (solid line) and fluctuation level {dashed line) as

a function of the pressure gradient parameter Go which is normalized to (samp/c)%xg’?

Thin dotted line shows the level of collisional transport. ¥, and 0 are normalized t0 (..
(Parameters are j1 = ¥ = y m/m, L, . and m/m, = 1836. 3.=0.25)

Fig.2 Theoretical prediction for the turbulent transport coefficient (solid line) is
compared to the result of the direct nonlinear simulation (dot with error bar). () is

normalized to (c/awp)z.) Subcritical appearance of the turbulent transport above the

collisional one is confirmed by the simulation. Mixing length estimate,

yMiXing — YL/ki, is also shown for comparison (Y : linear growth rate).
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