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ABSTRACT

A Zeeman polarimeter with high time resolution is developed to measure poloidal magnetic field of a
tokamak plasma from the analysis of circular polarization of Hell 4686A. The polarimeter is successfully

applied to fast current ramping experiments in He-doped deuterium plasmas of JIPP T-ITU.
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1. Introduction

The experiments for controlling the local plasma current density profile have been carried out in
various ways{1-6] in many tokamaks to investigate the effect of the current density profile on plasma
confinement. In JIPP T-ITU, the current density profile is controlled with rapid ramp up or ramp down of
the plasma current. In order to measure the current density profile in such tokamak experiments, we
constructed a Zeeman polarimeter with high time resolution. The polarimeter consists of a photoelastic

modulator, a fast scanning Fabry-Perot interferometer and so on[7].

The internal poloidal magnetic field prescribed by the current density profile is generally deduced from a
polarization analysis of the spectral line emitted from a plasma[8,9]. When we observe the spectral line in
the direction along the magnetic field line, we can find each component of the left-hand and right-hand
circular polarizations in the spectral line. The maximum difference between modulation ratios on the
polarizations opposite each other is directly proportional to the magnetic field component in the observation
direction. Therefore, if we set many observation directions in the tokamak poloidal plane, we can easily
determine the poloidal magnetic field distribution, that is, the toroidal current density profile from
measuring the polarization modulation. So, according to such principle, we tried applying the developed
polarimeter to He-doped plasmas in JIPP T-IIU which is a medium sized tokamak with a 0.91m major

radius and 0.23m minor radius.

2. Zeeman polarimeter

Figure 1 shows a schematic diagram of the newly developed Zeeman polarimeter. This measuring
system consists of a photoelastic modulator(PEM), band-pass filter(BF), polarizing beam splitter(PBS),
Fabry-Perot interferometer(F-P) and photomultiplier tubes(PMT1,2).

The Fabry-Perot interferometer scans a selected wavelength in the spectral line profile by changing the

distance between a etalon with a piezoelectric element. The time resolution of the polarimeter was improved



up to 1.5ms by using this interferometer in the measuring system. The left-hand and right-hand circular
polarizations are converted to the linear polarizations orthogonal to each other(I, and Ig) by the photoelastic
modulator and the liner polarizations are separated with a polarizing beam splitter and detected separately
with the photomultiplier tubes. The two photomultiplier tubes are located far from the plasma by using
optical fibers purposing not to pick up various noises due to the hard X-ray and so on. These output
signals are processed by a computer for data analysis, being converted to the line profile signal(ly +Ig) and
the modulation signal(l; -Iz) proportional to the magnetic field strength. The signals are subtracted and
analyzed through the procedure based on Fast Fourier Transfer(FFT) to obtain the modulation signal(l; -Ig)
with high S/N ratio. The line profile signal(l; +Ig) is produced by adding output signals.

3.Experimental result

Figure 2(a) shows the time evolution of the plasma current, the line profile(I; +Ir) and the
modulation(l; -Iz) during the current ramp up(CRU). One of the many peaks in the line profile is shown in
Fig.2(b). Figure 2(c) indicates the corresponding modulation. In these figures, the solid line expresses the
results for fitting with one Gaussian and two shifted Gaussians respectively. We can get three experimental
data; the maximum intensity of the line profile:lp, the full width at half-maximum( FWHM ) of the line:AA
and max(I; -Ig) from the two fitting lines and can easily estimate the poloidal magnetic field using the
equation

maX(IL-IR)x

Iy
where C is a constant decided from a calibration of the polarimeter. Figure 3(a) shows the time evolution of

B,=Cx AA )
the poloidal magnetic field measured at a location very close to the plasma boundary. The solid line
expresses the poloidal magnetic field due to the measured total plasma current. Since both are in good

agreement, it can be said that the measuring accuracy of the polarimeter is sufficiently high.



In order to obtain the local poloidal magnetic field, the Abel inversion is applied to the measured profiles
of poloidal magnetic field. Figure 3(b) shows the time evolution of the poloidal magnetic field profiles at the
times indicated by the three arrows in Fig.3(a). We can find clearly the production of a skin current profile.

4 Summary

We have developed the Zeeman polarimeter for measuring the internal poloidal magretic field with a high
time resclution up to 1.5ms. We could successfully obiain the detailed time evolution of the iniernal poloidai
magnetic field profile even during a rapid current ramping in JIPP T-ITU. As a result, we confirmed the

clear production of skin current.
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Figure caption

Fig.l1 Schematic diagram of the Zeeman polarimeter on JIPP T-IIU tokamak. PEM : PhotoElastic
Modulator, BF : Band-pass Filter, PBS : Polarizing Beam Splitter, F-P : Fabry-Perot interferomter,
PMT1,2: PhotoMultiplier Tubes.

Fig.2 Output signal after data analysis and data fitting. (a) Time evolution of a plasma current, Line
Profile(I +Ir) and Modulation(ly -Ir) of the spectral line. (b} The line profile signal and (c) the
circular polarization modulation signal. The solid lines are fitted profiles with Gaussians.

Fig.3 Time evolution of poloidal magnetic field and the inverted poloidal magnetic field profiles in JIPP T-
IIU. (a) Circle is the measured poloidal magnetic field. The solid line is the poloidal magnetic field
from total plasma current. (b)Circles shows the profile before CRU; squares, during CRU; lozenge,
after CRU.
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