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Abstract

Since the multi-periodic accelerator modes manifest their contribution even in the
region of small stochastic parameters, analysis of such regular motion appears to
be critical to explore the stochastic properties of the Hamiltonian system. Here,
structure of period-2 step-1 accelerator mode is analyzed for the systems described
by the Harper map and by the standard map. The stability criterions have been
analyzed in detail in comparison with numerical analyses. The period-3 squeezing

around the period-2 step-1 islands is identified in the standard map.
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1 INTRODUCTION

Many important problems in plasma physics are well described by Hamiltonians
of few degrees of freedom. The powerful approaches are the method of nonlinear
dynamical maps, applied to the wandering of the magnetic field lines in plasma con-
finement devices [1], the confinement of energetic o -particles in tokamak plasma [2]
the radial transport of ions in tandem-mirror devices [3], and the stochastic heating
of the plasma by external radio-frequency waves [4]. The standard map plays the
canonical role in studies of these various problems.

Stochastic aspect of the few degrees of Hamiltonian system attracts extensive
interest to explore interplay between the regular and the chaotic motion. Critical
issues are the effect of stickiness of the islands in the nonlinear dynamical map [3].
Ichikawa et al [6], have carried out extensive numerical studies of stochastic diffusion
in the standard map, observing that various multi-periodic accelerator modes even
in the region of small stochastic parameter give rise to anomalous enhancement of
diffusion. Recent study of the Harper map [7] has shown very clear enhancement of
the stochastic diffusion, as the result of the period-2 step-1 accelerator mode.

In the present study, we have carried out analysis of structure of the period-
2 step-1 accelerator islands of the Harper map [7] in the second section, and of
the standard map [6] referring to the list of period-p step-l accelerator modes of
the standard map in the third section. The last section is devoted to concluding

remarks.

2 THE HARPER MAP

Saité et al {7]. have studied the anomalous diffusion associated with the Harper map,

L .
Ga+1 = Gn — %SIH(QWPnH)
A4 .
Pryi = Put o= sin(27q,) (mod 1) {1)

when n stands for the discrete time step. L and A are positive stochastic parameters.

Thetr numerical observation indicates clear evidence of the enhanced contribution
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of the period-2 step-1 accelerator mode at 4 a~ 32, and of the period-2 step-3

accelerator mode at 4 = 9.4,

The second iteration of the Harper map Eq.1, gives nse to

L

Gni2 = Qo — z—sin(27p, + Asin(27g,))

T

AT

L
5= sinf{27p, + Asin(27q,)

+Asin{27q, — Lsin(27g, + Asin(27g,))}], (2)

A
P2 = Pn+~+~<31n(7 Gn )

_Il

A
+5- sin{27q, — Lsin(27p, + Asin(27q,))}. (3)

AT

The coordinates {gg, pg) of the period-2 step-1 accelerator mode are determined

from the condition

e

w

A
SlIl(Zn go) + 2—5111( 7qo — Lsin(27py + Asin(27¢q)}) = 1. (4)

According to the observation of Saité et al [7], however, we see that py = 0 and

hence we may determire the coordinate gy from the condition

which is consistent with Eq.(4)

mode, we have the condition

(3)

[N R

— sin(27gy) =

3 -

with pp = 0. For the period-2 step-3 accelerator

sin(27qp) = (6)

T 2

‘«Yla—

It is straightforward to calculate the tangent map of the squared Harper map. which

In turn gives rise to the trace of the tangent map as

Tr(6H?) = 2 ALlcos(27q,) + cos{2xq, — Lsin(27p, + Asin 27, )}



[cos(27p, + Asin 2nq,) + cos{2ap, + Asin27q,

+Asin{2rq, — Lsin(2ap, + Asin27¢,)}}]

+(ALY cos{2mp, + Asin27q, + Asin{27q, — Lsin(2xp, + Asin27g,)}}

cos{27g, — Lsin(2xp, + Asin27q,)} cos{27p, + Asin 27g,} cos(2ng, ).
{27q P g P

Referring to Eqgs (5) and (6), we have the coordinate of the period-2 step-s acceler-

ator modes as
Go = .iSiﬂ_l (E) , py = (. (8)
where s equals to 1 or 3. Now, the Green’s residue R is determined as
R= i(:&L}Q cos?(2mgy), (9)

which gives rise to stability condition

< R<1. (10)

Thus, we can determine the stable region as

s AN\E
o< A< ((SW)2+E) (11)
with s = 1 and s = 3 for the period-2 step-1 and the period-2 step-3 accelerator

mode, Tespectively. For the special case of L=A, Eq.11 is reduced to

sT< AL ((ST‘)? + 4+ SR . (12)

Here, we get m < A < 3.203 for s =1, and 37 < A < 9.427 for 5 = 3, respectively.
Let us illustrate firstly period doubling bifurcation of the stable period-2 step-1

accelerator modes for a value of L = 3.3 in Fig.l.a) and Fig.1.b). According to

(7)



Eq.(11), we get the critical value of 4 = 3.1995. Fig.1.a) shows the island structures
at pg = 0. gy = 0.2803 which undergoes the period doubling bifurcation for 4 = 3.2
and L = 3.3 as shown in Fig.1.b)

For the special case of A=L | according to Eq.{12), the stable island at A = L =
3.203 shown in Fig.2.a) undergoes the period doubling bifurcation at the value of
A =L =3.204 as shown in Fig.2.b)

It is interesting to note that in these figures the other island at py = 0. g0 = 0.2197
are strongly elongated into the direction of momentum p.

Ve conclude the present section by noting that for the case of small limit of the
stochastic parameter L, there appears the invariant surface ¢ = const, while the
period-2 step-1 accelerator mode persist to exist. Fig.3.a) and Fig.3.b) illustrate
the phase portrait of the Harper map for the values of A = 3.18, L = 1.0 and
of A = 3.18, L = 0.1, respectively. In Fig.3.h), we observe the period-3 step-1
accelerator mode as well besides the pair of the period-2 step-1 accelerator mode.
Their transition between the regular and the siochastic motion in the p-direction

for the given value of A, will be discussed in our future study.

3 THE STANDARD MAP

‘Turning to our interest to the standard map,

T+l = Gn+ Pat1
Prt1 = Pn+ Asin{27g,) (mod 1}. (13}

Ichikawa et al [6], have observed of period-4 step-2 accelerator mode in the region of
0.6420 < A < 0.6540. Anticipating that this might be a period-2 step-1 mode, we
have carried out careful numerical observation. The phase space diagram Fig.4 of
the standard map at 4 = 0.6423 indicates coherent structures at (po &~ 0.2, g9 = 0.3)
and (py = —0.2.qo =~ 0.1), confirming the previous observation that these modes are
pronounced at pg = 0.2. We have succeeded to extract the orbit, showing the period-
2 step-1 acceleration as illustrated in Fig.5.a}, while Fig.3.b) shows that the orbit
started at py = —0.203, g9 = 0.106 detraps from the period-2 step-1 orbit after the

28 time steps., and then subjects to stochastic wandering.



Now, we will analyze structures of the period-2 step-1 accelerator islands. Since

the second iterated standard map is written as

Gusz = Qo+ pn + Asin(27g,) + Pni2
Pniz = pPn+ Asin(2rq,) + Asin{27{q, + p. + Asin(27g.))} (14)

we can write the expression for coordinate (pg, go) for the period-2 step-1 accelerator

mode as

2po + Asin(2xq) =0, (15)
Asin(2rgy) 4+ Asin{2x(go + po + Asin(27ge})} = 1. (16)
Eq.(15) gives
A, -
=3 sin(2wqp). (17)

Eliminating g from Eq.(16) in terms of Eq.(17), we obtain
F(po) = G(A, po) (18)
with the abbreviations of
F(p) = 1+ 2p+ 2pcos(2np) (19)

and
G{A,p) = —y/ A% — 4p?sin(2xp). (20)

Eq.(18) determines the momentum pg(A) for a given value of A, which in turn

determines the coordinate ¢y as
1 2
w=5-sin (-2L). (21)

Solving numerically Fq.(18) in the region of 0.641 < A < 0.650, we obtain the fol-

lowing set of solutions as listed in Table 1.



p q
0641  py = —0.1504 ¢ = 0.1016
pr = —0.1999 ¢ = 0.1066
0.642 p; = —-0.1876 q; = 0.0995
pr=—0.2029 4, = 0.1089
0.6425 p; = —0.1856 ¢ = 0.0982
p2 = —0.2050 ¢ = 0.1100
0.644 p;p=-0.1840 ¢ = 0.0968
p2 = —0.2068 ¢ =0.1111
0.646 p; = -—0.1814 ¢ = 0.0095
p2 = —02098 ¢ = 0.1127
0.6465 p; = —0.1808 gq; = 0.0946
po = —0.2105 ¢ =0.1132
0.630 p; =-01771 ¢ = 0.0914
p2=—02146 ¢ = 0.1149

Now. we proceed to analyze the stability of these two sets of the period-2 step-
1 accelerator mode. The residue of the tangent map of the Eq.{14), is calculated

straightforwardly as

R=1~{l+wAcos(2mg,)}{1 + A cos(2n(q, + p, + Asin(27g,))}}. (22)
The stability condition is expressed as
0 < {1+ mAcos(2xg)}{1 + 74 cos27(gs — po)} < 1. (23)

Substituting the above values of (¢, p1) and (gu, pa) for the given value of A into
Eq.(23), we find that the set of (¢s,pa) is stable np to A = 0.651 which turns into

unstable at 4 = 0.6513 with (g, p») = (0.11536, 0.21591).

The onset condition of the period-2 step-1 accelerator mode is given as

d d
@F(p) —

= dpG(ﬁl,p)

(24)
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together with Eq.(18). By eliminating the parameter A from Eq.{18) and Eq.{24),

the momentum value p, at which the period-2 step-1 accelerator mode appears is

given as the solution of

2p(1 2
1 + {1- frl + p(- + cos( Trp))}cos(?wp)
sin(27p)

= 2{r—

sin(27p)  psin(2xp)
sin(27p).
1+ 2p(1 + cos(Zap) L3P

Numerical solution of Eq.(25) gives the value of

p. = —0.19512.

In terms of Eq.(18). the parameter A, is expressed as the function of p.,

A2 = 4p? + {1+ 2p.(1 + cos(27p.} }*

T,
sin” 27 p,

which gives rise to

A, = 0.64037.

Substituting Egs.(26) and (28) into Eq.(21), we obtain the coordinate g, as

q. = 0.1043.

(25)

(26)

(29)

Thus, we can conclude that the period-2 step-1 accelerator mode of the standard

map is stable in the region of

0.64037 < A < 0.65130.

(30)

In the region of Eq.(30), the structure of the period-2 step-1 accelerator island un-

dergoes very intricated changes as illustrated in Fig.6.a) and Fig.6.b). Increasing the

stochastic parameter A from 4 = 0.6462 to A = 0.6467, we observe that the period-

3 squeezing takes place around the period-2 step-1 islands as ilastrated Fig.7.a),

Fig.7.b) and Fig.7.c}.



4 CONCLUDING REMARK

Here. we have presented detailed analysis of structure of the period-2 step-1 accel-
erator mode i the area preserving maps such as the Harper map and the standard
map. The analysis for the Harper map is rather simple owing to the fact that the
momentum pg 1s 0. As for the standard map. the present analysis is the first attempt
to analyze structure of the multi-periodic accelerator modes which contribute to the
anomalous diffusion in the region of 4 < 1. We may undertake the examination of
the period-3 step-1 and period-3 step-2 accelerator modes, listed in Table 1 of the
reference 6.

Since the integrable accelerator orbits are densely distributed in the domain of
small stochastic parameter, we anticipate that analysis of the multi periodic accel-
erator modes explores fundamental structure of the stochastic layer between the
ntegrable regular motion and the nonintegrable chaotic motion. Such analysis will
provides us a tool to quantify the stickiness of the stochastic layer and the long time
behavior of the system. At least, we can assure that the stoachastic layver of the reg-
ular motion and chaotic motion has far more complicated structure than the simple
picture portrayed by Meiss et al [3], for the transport phenomena in Hamiltonian

systems.
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Captions of Figures and Table

Fig.1
a) Structure of the period-2 step-1 island at ¢o = 0.2803, pop = 0 for A = 3.1995
and L = 3.3, b} the period doubling bifurcation of the period-2 step-1 island at the
value of A =32 and L =3.3.

Fig.2
a) Structure of the period-2 step-1 island for A = L = 3.203,b) the period doubling
bifurcation at the value of A = [ = 3.204.

Fig.3
Phase space portrait of the Harper map, a) for values of A = 3.185 and [ = 1.0,
and b) for values of A =3.185 and £ = 0.1.

Fig.4
Phase space portrait of the standard map for A = 0.6425. The orbits are started
at the initial points distributed uniformly in the region of 0.105 < ¢ <« 0.110 at
pe = —0.184.

Fig.5
The temporal evolution of the orbits, a) staried at go = 0.106, p; = —0.200 and b)
started at gg = 0.106, py = —0.205 for A = 0.6425.

Fig.6
Island structure of the period-2 step-1 accelerator mode a) for A = 0.6425, and b)
for A = 0.6460.

Fig.7
Period-3 squeezing arround the period-2 step-1 accelerator mode in the process of

increasing A, a) A= 0.6462, b) A = 0.64635 and ¢) A = 0.6467.
Table 1

Position of the period-2 step-1 accelerator modes. The sets of (p;, ¢:) are unstable

for the stochastic parameter A > 0. The sets of (p;, ¢3) are stable for the range of
0.64037 < A < 0.65130.
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