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Abstract

The Josephson map describes nonlinear dynamics of systems characterized by
standard map with the uniform external bias superposed. The intricate structures
of the phase space portrait of the Josephson map are examined on the basis of
the tangent map associated with the Josephson map. Numerical observation of
the stochastic diffusion in the Josephson map is examined in comparison with the
renormalized diffusion coefficient calculated by the method of characteristic function.
The global stochasticity of the Josephson map occurs at the values of far smaller
stochastic parameter than the case of the standard map.
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1 Introduction

Dynamics of fluxons in long Josephson junctions has attracted deep interests in-
spired with the physical principle and possible applications[i][2]. Referring to the
real systems, we observe that effect of spatial inhomogeneities is one of the central
issues of properties of long Josephson junctions. One of the present authors (A.T.F)
has worked intensively on formation of stable bound states of fluxons in the inhomo-
geneous long Josephson junctions[3]~[6]. The predicted hound fluxons have heen
observed experimentally [7].

One of the present authors (A.T.F) in collaboration with Gal'pern|8] examined
bound states, bifurcation and static chaos in Josephson lattice in detail. The static
magnetic flux distribution ¢{r) in a homogeneous lattice may be described by the
equation

({z
WO(I) =3 pd(x —r,)sinolx) + 5. (1)

Then, the flux distribution at the n — th interval r,, < r < 1,y is expressed as
. 1
On() = a, + b,(r —1,) + 5’}(.}“ — )% (2)

Assuming the lattice to be periodic (x,41 — r, = A), we can determine the coeffi-

cients a, and b, by solving the equation

an, = a1+ Bn—l + *2*:1’1

b, = b,_1+psina,+ % (3)

with the abbreviations b, = b,A, g = pA and 5 = 7A% Setting a, = 27X,

b, + %’? = 27 Py41, we can reduce Eq.(3) to the following set of recurrence equations

AXn-f—I = ‘er + Pn-l—l
K .
Py = P - é—sm(QRXn) +T (4)
7
where A" = —ji and I' = %/2x. In the original problem of the Josephson lattice,

Eq.(4) poses the boundary value problem for the total length of lattice size L. While
we may impose the periodic boundary condition with modules 1 on Eq.(4). We
may call Eq.{(4) with the boundary condition of modules 1 the Josephson map. The
Josephson map Eq.(4) attracts our special interests, since the bias T gives rise to the

symmetry hreaking for the standard map. Within the context of nonlinear dynamics,



the Josephson map stands for phyvsical phenomena for the systems deseribed by the
standard map wirh nniform external field super imposed.

In the second section, we present general feature of the stochasticity of the Joseph-
son map. We will analvze the observed phase space characteristics in terms of the
hasic properties of the Josephson map m the third section. In the fourth section,
we discuss preliminary analyvsis of the stochastic properties of the Josephson map

by investigating the diffusion process.

2 Phase-space Portrait of the Josephson map

In order to grasp the effect of symmetry hreaking for the standard map and to un-
derstand the characteristic features of the Joseplison map, we show the phase-space
portrait of the Josephson map for the various values of the stochastic parameter K
and the bias parameter I' in Fig.1.a) to 1.c). We notice that the Josephson map is
invariant under the transformationof \ - -\, P - -P . I' - -TTand[' - 1-T
with modules 1. So, it is enough to exaniine the range of 0 < I' < +0.5 for various
values of the stochasticity parameter A. Throughout the present paper, the phase-
space portraits of the mapping extend over the range of —0.5 < P < 40.5 1n the
ordinate and —0.5 < X < +0.5 in the abscissa.

Let us begin with the value of ¥ = 1.3 as shown in Fig.1l.a). For ' = 0, the

Poincaré-Birkhoff period-q bifurcation condition for the standard map

K{p/q) = 2{1 — cos(27p/q)} (3)

confirms that the period-6 islands, but not the period-3 islands, born at the stable
fixed point. (X = 0,P = 0)[9]. Increasing the hias parameter I' through 0.05 to
0.10, we see the central island shifts to the positive X-direction with compression
in its size. At I' = 0.10, we observe the interchange of stable points and unstable
points of the period-6 islands. At T = 0.13, there appear ten white empty islands
in the chaotic sea. At I’ = 0.25, the central island is washed out, while there appear
three coherent structures. Increasing I' to 0.40. we observe very dominant coherent
structure, presumably the period-2 islands.

In Fig.1.h). we illustrate the similar fate of the phase-space portrait for the

stochasticity parameter A = 2.1. for which we have the period-4 Poincaré-Birkhoff



islands at the center.{Eq.(5) gives A/(1/4) = 2.0.) Increasing the bias parameter
I through 0.15 to 0.20, we notice that the period-4 Poincaré-Birkhoff island at the
center turns into the period-5 island, while four white island structure appears in the
chaotic sea. Further increase of the bias parameter I' leads to the period-2 structure
as anticipated in Fig.1.2).

Fig.1.c) stands for the case of the stochastic parameter & = 3.3. The standard
map with I' = 0 accompanies two sets of the period-3 Poincaré-Birkhoff island, which
appears like the period-6 island at the fringe of the islands. Because of the symmetry
breaking with I' = 0.05, one of the period-3 island survives with the interchange of
the stability along the P = 0 axis. Now, increasing the bias parameter I' through
0.10 to 0.3, we observe the typical period-3 squeezing process. At I' = 0.40, we see
the period-4 Poincaré-Birkhoff island at the center with some coherent structures in
the chaotic sea. At I' = 0.45, these coherent structure manifest themselves as if they
are period-3 island. Lastly, at the value of I' = 0.50, we observe the stable island
structure at the position (X &~ —0.25,P = 0) together with the original central
island shifted to the position (X =~ +0.25, P = 0), which is originated from the
recovery of symmetry at I’ = 0.5.

We conclude the present section emphasizing that dynamical behavior predicted
by the Josephson map exhibits a very intricate structure with sensitive dependence

on the bias parameter I'.

3 General Properties of the Josephson Map

Here, we will analyze the observed rich variation of the dynamics associated with
the Josephson map.
Firstly, we notice the stationary points of the Josephson map (X, P,) are deter-

mined from Eq.(4) as

. I . 2«
X, = 5 sin {—\;(I"—l)}
P, = m (6)

where [ and m are integers. The values of [ = 0 and m = 0 give the coordinate of



the fixed point as

N 1 . /2%
N, = ﬁsml(h,)

Py =0 (7)
which confirms the observed shift of the central island upon the increase in the bias
parameter I in Figs.l.a), b) and ¢). For the nonvanishing integer I, Eq.(6) gives
the accelerator mode with the step size . Tt is worth to notice that Eq.(4) does not
admut the fixed points for both I’ and K small and for I’ > K /27.

Now, the linear stability of these stationary points is determined from the tangent

map of Eq.(4),

AXoy AT X 1 — Reos(27X,) 1 AX,

AP P, —Kcos(2nX,) 1 AP,

lit

(8)
The stability of the stationary point (X, P} is given in terms of the residue f as
1 1
D<R= (5 - gtr(AT)) <1 (9)

which gives

0 < Keos(2nX,) < 4. (10)

Substituting Eq.(6) into Eq.(10), we obtain the stability condition as

T 1l< e < {5+ (=) (11)

19§

In Fig.2), we illustrate the stability region defined by Eq.(11) for the values of I = 0
and [ = 1. Thus, we can determine the positions of two islands observed for the
vajuesof A = 3.3 and I’ = 0.51n Fig.1.c). With! = 0, Eq.(7) determines the position
of the fixed point Xy = 0.2007, while for the value of I = 1, Eq.(6) determines the
position of the step-1 accelerator mode as X, = —~0.2007. It is interesting to note
that neither the fixed point nor the step-1 accelerator mode exist in the triangle
region a b d, thus the region appears to be completely chaotic, while the increase in
the stochastic parameter K over the line d b allows the onset of the step-1 accelerator
mode.

Secondly, we can determine the critical value of K{(p/q) for the Poincaré-Birkhoff

period-q bifurcation around the fixed point Eq.(7) from the tangent map Eq.(8) as

K(p/q) = 27{T? + = *(1 — cos(27p/a))’}?, (12)

<



or conversely, expressing ['(p/q) in terms of A’

C(p/q) = {(K/27)" — v 7(L — cos(2ap/q))*}}. (13)

We remark that the values of I'(p/q) given by Eq.(13) determine the upper limit of
the existence of the period-g Poincare-Birkhoft island for any given value of K.

Referring to Fig.1.h), for the value of K = 2.1, we estimate the value of T for the

period-4 and period-5 island as
I'(1/4) = 0.1010 (14)
I'(1/5) = 0.2516 (15)
‘These numerical values are consistent with the observation in Fig.1.b). Turning

to Fig.l.c), for the value of K = 3.3, we obtain the following values of " for the

period-3, period-4 and period-5 islands,

I(1/3) = 02187, (16)
T(1/4) = 04177, (17)
[(1/5) = 0.4769. (18)

The last three figures of Fig.l.c) are consistent with the results of Eqs(17) and
(18), while Eq.(16) is compatible with the observation of the period-3 squeezing at
[ =0.20 in Fig.1.c). '

Lastly, in order to analyze the period-3 squeezing in the Josephson map, following
the analysis of the period-3 squeezing in the standard map|9], we derive the nonlinear
quadratic map around the fixed point (X, Pf) defined by Eq.(7). Introducing the
local variables (£,, 7,) by the definition of

Xn = Xfp+&,
F, = Pr+m,, (19)

we obtain the nonlinear quadratic map

b1 = &t Tap
Toe1 = T+ b, + BE (20)
where
a = Kecos(2rX;) = (KQ — 472,

8 = —2rKsin(27X;) = —4x°[. (21)

G



One of the coordinate of the period-3 orbits (£, 7o) is determined o he
w10 o

s 1
it rﬁ{(\“?i\/(l')'—g}

joun N SN/
—

R}

]
—

where Eéﬂ is the stable, while £, ' is the unstable period-3 orbit. Thus. the onset
of the period-3 islands is determined from the condition a? > 8 as

2

K> K. = (84 4z’ TH2, (23)

or
.= (2x) A% - 812 > T. (24)
For the value of A" = 3.3, Eq.(24) gives rise to the upper imit of the existence of the
period-3 island as I', = 0.2705, which is consistent with the observation in Fig.1.c).

The squeezing takes place as 5(()_) — 0, which gives a = 3, namely

K, = (94 427TH1/2, (25)

or
T, =(27) (K2 - 9)1/2 (26)
We notice that Eqs.(23) and (26) agree exactly with the Poincaré-Birkhoff period-3
bifurcation condition calculated by Eqs.(12) and (13). The value of T'; for K = 3.3
is 0.2187, as given by Eq.[16). We emphasize that the results of Eqs.(23) ~ (26)
are obtained from the nonlinear quadratic map, while Eas.(12) and (13) are derived

from the linearized tangent map.

4 Stochastic Diffusion in the Josephson Map

For given nonlinear dynamical systems, it is particularly interesting to examine their
global statistical properties by investigating the stochastic diffusion processes. For
the standard map[10], the numerical observation of the mean squared average spread

of the orbits has been compared with the renormalized diffusion coefficient
D 1-2J}(K)— J3(R)+2J3K)
Do (1 4+ Jo{K})?

with the abbreviation of Dy = (K/4m)?. The function J,{r) is the n-th Bessel

(27)

function. The existence of various accelerator modes is responsible for the anomalous

enthancement of the stochastic diffusion processes.



Since the bias I’ breaks the intrinsic symmetry of the standard map, it is extremely
interesting subject to examine the stochastic diffusion associated with the Josephson

map. The diffusion of the Josephson map is defined as

1 .
D= Jm (P - RF)
1 &
- }@;ﬁjg((;\})j—r)(aa—r)) (28)

where the probabilistic variables AP, 1s defined as
AP, = -Asin{27X,) + 1. (29)

The bracket { ) stands for the ensemble average over the initial distribution of the

orbits. The correlation C(k) is defined as

C(k) = {({(APy, —TYAPp . —T))

=  AXsin(27 Xy, ) sin{27.X7,14)). (30)

With the help of the correlation C'(k), we can express the diffusion coefficient Eq.{28)

as

] 1 T-1 k i o
D=1lim = > {1-=}C(k)~=C0)+ Y C(k). (31)

T—o 2 1T T 2 1

Defining the k-th order characteristic function yi by,
k
Xk (e, M.~ - -, ny,np) = {exp 271 Z(anToH)) (32)
1=0

we can express the correlation C(k) as

| _ . _ )
Clk)y = - 8ﬁ2h~’Re [{exp 2mi( Xq, + X1,10)) — {exp 27i(Xgy — Xpp02))]
1o
= gl ReNe(-1.0,++,0.1) — v (1,0, -0, 1)]. (33)

Collecting all of the principal terms, after the lengthy caleulation, we obtain the

renormalized diffusion coefficient

D 1

Dy = om0 B+ 25K} x

JHK .
i(R) 2Sin3(27r1“)

X {1 = 20Ky cos(2T) + LK)} — 43— peorss

(34)

which is reduced to the diffusion coefficient of the standard map Eq.{27) for the

Imit of I' — 0.



In Fig.3) we show the diffusion coeflicient Eq.{31) as the function of the stochastic
parameter A for several values of the bias T'. We observe that the bias I' gives rise
to nontrivial modification of the diffusion coefficient of the standard map Eq.(27).
Thus, it hecomes extremely interesting to compare the theoretical prediction with
the numerical observation. Figs.d.a} and 4.h) illustrate the results of numerical ob-
servation for the values of I' = 0.25 and T = 0.50. respectively. Here. we confirm that
the accelerator modes give rise to the anomalous enhancement over the theoretical
prediction of Eq.(34).

AMuch more detailed ohservation for the smaller values of the stochastic parameter
0 <« K < 3 for the same bias parameters are shown in Figs.5.a) and 5.b). For
the standard map with I' = 0, Greene[11] has identified the onset of the glohal
stochasticity at the critical value of A, = 0.9716--- . The present observations,
however. suggest that the symmetry breaking by the bias I' reduces the critical
value of the global stochasticity by considerable amount. Basing on the results of
Figs.5.a) and 5.b), we assign A, = 0.2 for the value of I' = 0.25, and A, = 0.5 for
the value of I' = 0.50, respectively.

In order to get more explicit evidence, we explore the phase space structure of
the Josephson map for the value of I' = 0.25. In Fig.6), we show three portraits
for the stochastic parameter K = 0.10, 0.20 and 0.30, respectively. For the value
of A~ = 0.10, the phase space is separated into four regions, while for the value of
K = 0.20 the whole phase space is connected, confirming the global stochasticity.
We anticipate that the critical value is in the range of the 0.1 < K. < 0.2. We
also notice that for the larger stochastic parameter A" = 0.3, the period-4 and other
coherent structure persist in the chaotic sea. We carry out the similar observation
for the bias T = 0.15, for the stochastic parameter 0.1 < K < 1.0. In Fig.7), we
observe that the system is dominated by stochastic behavior even at the lowest value
of K = 0.1. It is interesting to note that the increase in the stochastic parameter K
enforces the occurrence of the periodic motion n the system.

To conclude the present section, we present here our preliminary results on the
numerical ohservation of the diffusion coefficient at the smaller value of T in Fig.8).
For the value of T’ = 1/8 = 0.125, we notice that the global diffusion sets in around

K. 2~ 0.1, while for the much smaller values of T = 1/10 = 0.025, even at the small



vahte of I =2 0.1, we observe considerable amount of the stochastic diffusion.

5 Concluding Remarks

In the present studies, we have shown that the external uniform bias imposed on
the system described by the standard map gives rise to rich manifestation of the
nonlinear behavior. with the sensitive dependence on the control parameters.

Our particular interests are focussed on the global stochastic behavior of the
Josephson map. As discussed in the section 4, we observed a rather spectacular
dependence of the diffusion coefficient on the small value of the bias T. Though
our numerical observation is preliminary, it challenges us to undertake theoretical

analysis on the effect of symmetry breaking in the nonlinear dynamical systems.
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Captions of Figures

Fig.1

Phase space portrait of the Josephson map for the stochastic parameters ; a) K =
1.3,b) K =2.1 and ¢) K = 3.3. The number attached to each frame stands for the
value the bias I'. ,

Fig.2

The curve a b ¢ represents the upper limit of the stochastic parameter K for the
fixed point with [ = 0, while the curve f ¢ stands for the upper limit of the stochastic
parameter A for the step-1 accelerator mode.

Fig.3

The renormalized diffusion coefficient Eq.(34) for the value of T = 0,0.1,0.25,0.35
and 0.5.

Fig.4

Numerical observation of the stochastic diffusion ; a} for T' = 0.25 and b) for T' = 0.5.
Observed diffusion deviates from the theoretical prediction in the hatched region
where the accelerator modes exist.

Fig.5

Numerical observation of the stochastic diffusion in the region of the small stochastic
parameter K < 3.0; a) for I' = 0.25, b) for I = 0.50

Fig.6

Phase space portrait of the Josephson map for the value of I' = 0.25; a) for the
stochastic parameter K = 0.10, b) for K = 0.20 and c) for K = 0.30, respectively.
Fig.7

Phase space portrait of the Josephson map for the value of I' = 0.15 ; a) for K = 0.10
b) for K = 0.20, ¢) for K = 0.30 d) for K = 0.80 and e) for K = 1.00.

Fig.8

Numerical observation of the stochastic diffusion for the values of I' = 1/8 = 0.125,
['=3/40 =0.075 and ' = 1/40 = 0.025.
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