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abstract
Li pellet injection has provided a complex plasma with a large fraction of Li ions, which
is characterized by intense emissions from Lil and III. The spatial profiles of the fully ionized

Li3* ions are measured by charge exchange recombination spectroscopy with a resolution of

I3 mm, and the local decay time of the injected Li ion has been estimated. The spectral profile

Li2+

of the charge exchange recombination line of from n=5 to n=4 shows a complicated

structure, which depends on i3+ density. The effects on other intrinsic impurities and recycled

Lj are also discussed.
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1. Introduction

Li peliet injection has been recently in producing high performance plasmas [1,2,3].
The ablation mechanism of Li pellet is also of interest because of high sublimation energy
compared to hydrogen and deuterium pellets {4,5]. The development of Li pellet injectors and
study of the interaction between injected Li and plasma are thus urgent issues for fusion
oriented experiments. In Heliotron E [6], a Li-pellet injector has been developed in order to
obtain good performance plasmas, to study the ablation mechanisms and to establish a new
diagnostic method for the measurement of the magnetic field direction. Injected Li is also used
as a tracer for investigating particle transport and for analyzing spectral profiies of Liions. It is
important to study the behavior of the injected Li ions for understanding above subjects.
In this paper, the behavior of the injected Li ions in neutral beam heated plasmas is presented.

3+

In paticular fully ionized Li~ ™ ions are measured by a charge exchange recombination

spectroscopy, and the local decay time of Li>* is estimated. Effects of Li on intrinsic impurities

are also described.

2. Li pellet injector and diagnostics
The Li pellet injector consists of a magazine for pellets, gun barrel, guide tubes and

differential pumping system with a buffer tank of 0.1 m> [7]. 30 pre-shaped Li pellets 1mm in

diameter and length are filled into the holes in the rotatable disk of the magazine. A single pellet
has 3.6x101 Li atoms. The gun barrel is 1 m long and 1 mm in diameter The four guide

tubes are 0.14 m, 1.5 m, 0.4 m, and 2.7 m long, respectively. The diameters of these guide
tubes are 2.27 mm, 4 mm, 7.53 mm and 10.7 mm, respectively. High pressure He is used as a
propellant gas. The injection speed is 400~500 m/s, which is measured between the gun barrel
and the first guide tube. The pellet trajectory distributes within a cone of 1 degrees full angle.

Pellets are injected horizontally and cross the plasma column nearly perpendicularly. The minor
radius of the plasma column is 0.3 m, and the ablation time is 1.3 ms. A high speed camera is

used to record images of the ablation cloud at every 50 ps. Two optical filters for Li I (6706 A)

and Li I (5485 A) are provided to estimate the ablation rates. A multi-channel vacuum
ultraviolet spectrometer, which is available from 45A to 4004, is used to measure Li I11 (135
A) emission. The neutral Lil (6706 A) emitted near the wall is measured by a visible
spectrometer, which is separated by 132 degrees in the toroidal direction from the port of the

pellet injector. A 1.26 m visible spectrometer with a 2-dimensional detector
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(Hamamatsu,C3554X) [ 8] is employed to analyze the spectral profiles of the L2 line

populated by charge exchange recombination from Li>* jon. The time resolution is 20 ms. The

sight-lines of 40 fiber optics cross the plasma column from 1.98 m to 2.42 m on a major radius
and the spatial resolution is 13 mm. The profiles of the electron density and temperature are
measured by a Thomson scattering system [9], and ion temperature profile is estimated by the

above charge exchange recombination spectroscopy.

3. Behavior of Li ions

A Li pellet is iniected into a plasma, which is initiated by a 106GHz gyrotron and
further heated by neutral beams of 3.5MW power The acceleration voltage of the neutral
beams is 23 kV. The magnetic field strength is 1.9 T. The vacuum chamber wall has been

"boronized" by using an ECH discharge with By jH; 4 and He {10]. Figure 1 shows the time

evolutions of the average electron density with and without Li pellet. The incremental electron
density by pellet injection is also shown. The plasma is produced at 275 ms and the neutral

beam heating starts at 300 ms and terminates at 444 ms. After the Li pellet is injected at 327

ms, the average electron density increases by 4x1013cm™3. Figure 2 (a) and (b) show the

profiles of the electron temperature and density immediately before and after the Li pellet
injection. The central electron temperature drops from 0.75 keVto 0.45 keV, and the central
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electron density increases from 4.5x 1013 cm™3 t0 1.4x101% cm™3 . The electron energy has

almost doubled after the Li pellet injection. The ablation rate of 3.5x 10%2 atoms/s is cstimated

at the plasma center. In this case, the increase of the electron density is smaller than that

provided by fully ablated Li pelict. The injected Li pellet does not completely ablate and about

60% of the pellet is deposited in the plasma. The density ratio of the Li’*ions to protons is
estimated to be 0.6, but this ratio decreases rapidly as shown later.

Figure 3 shows spectra in the wavelength region from 170 A to 400 A before (320 ms)
and after (330 ms) the Li pellet injection. The integration time is 10 ms. The base line is shifted
in the upper spectrum. The prominent line is Li II1 (135 A), which appears at 270 Ain the
second order. The emission of Li I1 (199.3 A) is not observed. Other prominent lines originate
from intrinsic impurities such as carbon, oxygen, titanium, chromium and iron. Figure 4 shows
the time evolution of the Li ITI, O V(192.9 A) and Fe XV (284.1 A) emissions are also shown

as typical examples of light and heavy impurities. Immediately after Li pellet injection emission
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of Li I1I peaks and decreases with a decay time of about 60 ms. Similarly a sharp peak appears
in Fe XV emission, which increases again from 360 ms to the end of the neutral beam pulse
due to continuous influx of iron. Pellet injection causes emission from the high ionization
states of metallic impurities to increase significantly, but appears to have a much smaller effect
on oxygen and carbon emission. This suggests that the pellet penetrates into the plasma core
and iron emission may be enhanced by either an increase in central electron density or by

recombination of higher ionization states caused by a drop of the electron temperature.

The fully ionized Li>* ion has been studied using charge exchange recombination

spectroscopy. The transition from n=>5 to n=4 is selected, the only one available to our

diagnostic system. The wavelength from 2G to 2F is 4499 A [11]. Figure 5 shows the

intensity profiles of 4499 A from 370 ms to 450 ms. The horizontal axis is the major radius and
the magnetic axis is located at 2.2 m. The Li pellet is injected at 378 ms. The decay time of

Li>* is estimated at various locations by exponential fitting from 390 ms to 430 ms. At R=2.2
m, on the magnetic axis, the decay time is 90 ms, and 160 ms is obtained at R=2.1 m and 60
ms at R=2.3 m. There appears an asymmetry between inboard and outboard of the plasma
column. This asymmetry is attributed to the slow increase of the penetrated neutral beam
density in the inboard due to the decrease in the electron density as described later. The Li IIT

(135 13;), observed by the VUV spectrometer, shows a decrease with a decay time of 60 ms. In

this shot the average electron density increased from 2.5x1013 cm 3 t0 9x1013 cm™ by the

pellet, and then decreased to 7x 1013 em™3 witha decay time of 160 ms.

Figure 6 shows the spectral profiles of around 4499 A at sucessive times after the pellet.
There appear to be several line components, which are in the wavelength region corresponding
1o transitions from the n=3 sublevels; ZP, 2D, 2F and 2G. Arrows in the figure indicate the

calculated average wavelengths from designated upper levels. The shorter wavelength
components are dominant in the early phase after the Li injection. As Li density decreases, the
dominant component shifts to the longer wavelength. This corresponds to the transition from
low orbital angular momentum to high orbital angular momentum transitions. The depopulation

among the levels due to collision in high density regime is considered as a candidate for the

explanation, but there is no similar phenomenon in carbon. In the Lt jon case, the density is

so large it is possible that this depopulation is due to collisions among Li ions.



4. Behavior of the neutral Li line

Neutral Li emission at 6706 A is used to study the behavior of recycled Li after the Li
pellet injection. A spectrometer with a focal length of 1.26 m and a 1024 channel diode array
detector is used. The time resolution is 10 ms. Figure 7 shows the shot-to-shot variations of Li
I intensity. Lishots are denoted by closed circles and open squares correspond to shots without
a pellet. The neutral beam power is 3.2~3.4 MW. For the shots with pellet the intensities are
estimated at the time before the Li pellet is injected . The Li I emission is again visible from
shots foilowing peliet injection shots indicating Li recyciing. Injection of Li pellets in
successive shots can cause a cumulative increase in Li [ emission and a gradual fall in Li I
emission can be seen one to two shots after Li pellet injection has ceased. When corrected for
differences i electron density, the shot-to-shot decay of Li I density appears to be exponential.
Oxygen is an interesting impurity in pellet injected shots. The intensity typically decreases in
successive shots, but no reduction in the relative impurity level normalized by the electron

density is observed.

5. Conclusion
In Heliotron E, a Li pellet injector with good reproducibility and reliability has been

developed and successfully injected into neutral beam heated plasmas. The spatial profiles of

the Li TTI emission from Li> t are measured with a resolution of 13 mm, and local decay time is

estimated. This diagnostic method can be used to estimate the local values. Moreover the

3

emission intensity is determined only by the product of neutral bearm and Li® * densities so

complicated analysis on excitation and ionization is not necessary. The fine structure from
sublevels of the charge exchange recombination line from n=5 to n=4 is analyzed. The

collision among L1 ions is considered to be the most probable candidate for the depopulation.
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Figure captions
Fig.1
The time evolutions of the average electron densities. The solid line is for the shot with Li pellet
injection at 336 ms and the dotted line corresponds to the shot without pellet injection. The
incremental density by pellet injection is also plotted.
Fig.2
The electron temperature (a) and density (b) profiles immediately before(closed) and
after{open) the pellet injection.
Fig.3
The spectra in the vacuum ultraviolet region before and after the pellet injection. Li ITI{135 /OX)
appears at 270 A in second order.
Fig.4
The time evolutions of the intensities of LiIII, O V and Fe XV.

Fig.5
Spatial profiles of Li%* emissions measured by charge exchange recombination spectroscopy.

Li pellet is injected at 376 ms.

Fig.6

Spectral profiles of charge exchange recombination line from n=5 to n=4 transition. Arrows
indicate the calculated average wavelengths from designated upper levels.

Fig.7

Li I intensity in successive shots with and without Li pellets. Closed circles are with Li pellet

injection and open squares are without.
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