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Abstract

It is shown by three-dimensional magnetohydrodynamic simulations that the
toroidal current J, can be induced by a process of relaxation without helicity invari-
ance under no external magnetic helicity injection. It is shown that the magnetic
helicity is induced during relaxation and it is passively determined as a result of the
time evolution of the dynamical system. Numerical results suggest that the basic pro-
cess for the toroidal current drive during relaxation is the nonlinear energy transfer
from the toroidal magnetic energy to the poloidal one under the intervention of the
kinetic energy. It is demonstrated that the self-organization to the lower eigenmode

with a larger scale structure occures during relaxation.
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After the conjecture of the magnetic helicity invariant was successfully introduced
by J. B. Taylor in his well-known relaxation theory for the interpretation of the self-
organized reversed field pinch (RFP) configuration [1, 2], the magnetic helicity” has
been used for ”the current drive experiment by helicity injection”. Although the
magnetic helicity is only a measure for linkage and knotting of the flux tubes in order
to describe the topology of the magnetic fields in plasmas {3, 4], it has been treated
as if it were a sort of real physical quantity. When we assume the Ohm’s law of 1 ]
= E + v x B, the transport equation (the conservation law) of the magnetic helicity
[1, 2, 4] is given by

%:_anj.BdV—f(ExA—E-qﬁB)dS. (1)

Here, the surface integral term of §(E x A + ¢B} - dS is used for the experiments of
the current drive by helicity injection, and it becomes zero when the boundary surface
is the ideally conducting wall. The term of [ 7 j- BdV has been explained as a loss
term of helicity due to the resistivity # [1, 2]. However, this is not correct, because
it becomes an induction term as well as the loss term, depending on the relative
direction between j and B. On the other hand, the self-organization theory based on
autocorrelations [5, 6] suggests a possibility of current drive in self-organizing plasmas
independent of the magnetic helicity invariant. In order to clarify that the magnetic
helicity is induced by the term of [n j- BdV and it is passively determined as a
result of the time evolution of dynamical systems, we carried out three-dimensional
{3-D} simulations for "the current drive without magnetic helicity injection” by using
a magnetohydrodynamic (MHD) code under the boudary condition of the ideally
conducting wall. The simulation model used here is a compressible, zero-f (Vp = 0),

disspative MHD plasmas without viscousity described by the following equations [7]
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5 = —V-(puu) + jxB. (3)
oB
5 = vV xxB)— Vx{nj), (4)
. 1
J=—VxB. (5)
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The explicit and second order Richtmyer method is nused for the difference scheme in
our 3-D MHD simulation code. Simulation domain is a rectangular column which is
implemented on a {41 x 41 x 82) point grid and is periodic along z axis ( the toroidal
direction } with a periodic length L and enclosed by perfectly conducting wall at z
= y = £a. Normalization method of variables and boundary conditions are all the
same as those in [8]. We used here a fixed nonuniform resistivity profile given by 7
=1, { 1.0 + 19.5] (z/a)® + (y/a)? ]}, where . is the value of n at the center of z
= y = 0. Numerical results for the magnetic Reynolds number of R, = pigava/n. =
10° are shown here, where v, is the initial value of the mean Alfvén velocity, and the
time ¢ is measured by the Alfvén time ¢, defined by t4 = afva.

As an initial condition, we adopt a simple distribution of toroidal magnetic fields
given by B, = Bycosm(y +a)/2a + B,o with values of By = 4000 and B, = 4.0. The
first component of the toroidal fields B, corresponds to the toroidal field produced
by an initial external current j,. This initial distribution of magnetic fields has no
magnetic helicity because of no linkage of the flux tubes. Initial plasma density is
assumed to be spatially uniform, and initial velosity is given by u, = 0.06 cosw(z +
a)/2a. Perturbation fields of high mode components and force-free fields with small
amplitudes ( less than 1/200 of the initial torcidal fields ) are superposed on the
initial distribution of magnetic fields.

Figure 1 shows the temporal evolutions of the normalized parallel component

Jy (solid line) and perpendicular component .J; (dashed line) of the electric current
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obtained from the simulation. Here, the normalized components Jjj and J, are defined
respectively by Jy = <| jy | /| i > and Jo = <] j. | / | ][>, where jj =
3-B)B/(B-B), j, =J—Jjj,and < F > denotes the volume average. The
initial current density are almost perpendicular to the magnetic field. The parallel
component Jy increases rapidly and reaches the high amplitude comparable to the
perpendicular component J, .

In the present simulation, the initial magnetic helicity is almost zero and there is
no helicity injection through the ideally conducting boundary wall. Therefore, using
the induced parallel component j, and integrating Eq.(1) over time, we can evaluate
the magnetic helicity. Figure 2 shows the temporal evolution of the magnetic helicity
obtained from the simulation. The magnetic helicity is shown to be induced and
increase rapidly during relaxation.

Figure 3 shows the temporal evolutions of the toroidal (dashed line) and the
poloidal {solid line} magnetic energies. We see that some part of the foroidal magnetic
energy is transfered to the poloidal magnetic energy during relaxation.

Since the change rate of magnetic helicity normalized by the initial helicity be-
comes quite large compared with that of magnetic energy, Taylor’s conjecture on
the magnetic helicity invariant during relaxation [1, 2] is not realized in the present
simulation of relaxation.

Figure 4 shows the temporal evolutions of the averaged toroidal currents, where
[J.dV/V and [J,dS/S denote the averaged value over the volume and that over
a X-y cross section, respectively. We see from Fig. 3 that although there is no
magnetic helicity injection, the toroidal current J, is acturally induced by the process
of relaxation without helicity invariance.

Figure 5 shows the temporal evolution of the total magnetic energy W,, and the

total kinetic energy Wy, both of which are normalized by the initial magnetic energy



Wio- The phase of increase of kinetic energy coincides with the phase of the higher
decrease of the magnetic energy. When the kinetic energy decreases, the decay rate
of magnetic energy becomes lower. This result indicates that the kinetic energy and
the magnetic energy interchanges with each other during relaxation. Comparison of
Figs. 3 and 5 suggests that the toroidal magnetic energy is nonlinearly transfered to
the poloidal magnetic energy under the intervention of the kinetic energy.

Figure 6 shows the profile of the poloidal magnetic field (B,, B,) at { = 10 t4. We
see that the self-organization [5, 6, 9, 10] to the lower eigenmode with a larger scale
structure occurs during the present relaxation.

In conclusion, we have demonstrated by 3-D MHD simulations that the toroidal
current J; can be induced by a process of relaxation without helicity invariance under
no external magnetic helicity injection. We have shown that the magnetic helicity
is induced during relaxation by the term of [ 7 j- BdV for the case with no initial
magnetic helicity and it is passively determined as a result of the time evolution of
the dynamical system. Comparison of Figs.3 and 5 suggests that the basic process
for the toroidal current drive during relaxation is the nonlinear energy transfer from
the toroidal magnetic energy to the poloidal one under the intervention of the kinetic
energy. It has been demonstrated that the self-organization to the lower eigenmode

with a larger scale structure occures during relaxation.

The authors wish to acknowledge valuable discussion and comments on this work
by Professors T. Sato and T. Hayashi at the National Institute for Fusion Science.
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Figure captions
Fig.1. Temporal evolutions of the normalized parallel component J {(solid line)

and perpendicular component J, (dashed line) of the electric current.
Fig.2. Temporal evolution of the magnetic helicity.

Fig.3. Temporal evolutions of the toroidal (dashed line) and the poloidal (solid

line) magnetic energies.

Fig.4. Temporal evolutions of the averaged toroidal currents, where [ J,dV/V
and [ J,dS/S denote the averaged value over the volume and that over a x-y cross

section, respectively.

Fig.5. Temporal evolution of the total magnetic energy W, and the total kinetic

energy Wi, both of which are normalized by the initial magnetic energy W,,c.

Fig.6. The profile of the poloidal magnetic field (B,,B,) on a x-y cross section

at £ = 10 t,.
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