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The quasi-two-dimensional nonlinear equations for drift and Rossby vortices have some sta-
tionary multipole solutions, and especially the dipole vortex solution 1s called modon. These
solutions are valid only in the lowest order where the fluid velocity has a stream function. In
order to investigate features of the multipole solutions more accurately. the effect of the higher
order terms, for example the polarization drift in a plasma or the Coriolis force in a rotating
planet, needs to be considered. Tt is shown that the higher order analysis through a new tech-
nique based on a transformation of variables is much easier than a straightforward iteration.
The solutions in this analysis are obtained by inverse transformation to the original coordinates,

where the profiles of potentials are distorted by the effects of higher order terms.
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§¢1. Introduction

The Hasegawa-Mima (H-M) equation!) is one of the simplest and successful equations that de-
scribe nonlinear drift vortices in inhomogeneous and magnetized plasmas in quasi-iwo-dimension.
The solution of the H-M equation obtained by Larichev and Reznik has the profile of a localized
dipole vortex, the so-called modox, in the plane perpendicular to the uniform magnetic field Bg.%
Modons propagate stably in the direction of the electron diamagunetic low with the constant phase
velocity.

Recently, the incorporation of the effects of the shear flow or the magnetic shear, which are not
included in the H-M equation, have been discussed.>® This means mathematically to add higher
order quantities into the H-M equation. The polarization drift is also one of higher order effects and
important when we consider the temporal evolution of the nonlinear drift vortex. However, if the
effect of the polarization drift is taken into consideration, it is very difficult to solve the nonlinear
drift equation analytically or even on a computer. The main subject of the present paper is to
show how to avoid the difficulty and to solve the equation in a simpler way.

The Charney equation for a nonlinear Rossby vortex in planetary atmosphere is similar to the
H-M equation in plasma physics and is also obtained in the lowest order nonlinearities.5? Orito,
Sato and Irie”) have derived an equation including higher order terms by using a transformation of
variables in the long wavelength ordering, that is p3V? < 1, where pg is the Rossby radius. In the
present paper we apply the transformation of variables to various cases.

In Sections 2 and 3, we derive the basic equations for the drift vortex and the Rossby vortex,
respectively, and the conservation law of the potential vorticity which is common in both cases.
The transformation of variables is introduced in Sec. 4 and is applied to nonlinear equations, which
we cannot solve analytically, for the drift wave in the short wavelength ordering and the Rossby
wave in the short/long wavelength ordering in Sec. 5. The conclusion and discussions are given in
Sec. 6.

§2. Nonlinear Drift Vortices

We assume that there is an inhomogeneous cold ion plasma in a uniform magnetic field and that
the electric field is described by an electrostatic potential, that is T; = 0, Bg = Bpz, and E = —=V¢.
In this situation, the drift wave propagates toward the y direction with the drift velocity which is
proportional to the unperturbed density gradient in the x direction. For simplicity, we introduce
dimensionless variables by r/p, — v, wit — t, ed/Ty — ¢, where p, = ¢;/w., €, = /Ip/m,
wy = eBy/m, in which m and e are the ion mass and charge and Ty is the electron temperature,

respectively. The equations of motion and continuity for ions are given by

;—ﬂ—i—(v-V)v:—Vg&-;—vxé, (2.1}



%-{—V-(nv):O, (2.2)

where v and n are the velocity and the density of ions, respectively. Making the usual assumptions
that electrons take the Boltzmann distribution and plasmas are quasineutral. we obtain
n = no(z)exp(d), (2.3)

where the equilibrium density ng(z) assumes the form In no(z) = »yz. Substituting eq. (2.2) into

the curl of eq. {2.1), we obtain the following conservation law,

(%-I—v-V)q:O, (2.4)
¢g=In (IJ;Q>, (2.5)

where © means the z component of the vorticity, @ = 2-V X v, and ¢ is called the generalized
vorticity or the potential vorticity.
In the short wavelength region, we introduce the following ordering with the smallness parameter

€,

[V In ng|
[Ving|
In addition, the dimensionless electrostatic potential ¢ is regarded as of order ¢, because the elec-

A — A . v ~ Q s 2.6
TR (26)
trostatic potential is much less than the electron kinetic energy. The velocity » in eq. (2.4) is

defined as the sum of the Fx B drift vg and the polarization drift v, by iteration of eq. (2.1) up

to third order in ¢, where

vg =2 X V¢ (2.7)
and 5
v, = — (E g v) vo. (2.8)
In the lowest order © = vz, we obtain the H-M equation,

dq
— d,qt =10 2.9
5 T4 =0, (2.9)
q= V¢ -0 -z, (2.10)

where the bracket in the second term on the left hand side is the Poisson bracket with respect to
z and y, and the expression of ¢ is valid to the first order in eq. (2.5). It is known that the I-M
equation (2.9) has some multipole solutions, especially the modon.

When we take the convection term » - Vg up to the second order in ¢, we obtain

dg V¢ 2
A Y N = Vi
51 5 q b {,q}

+Ho+ (Vo) /2,q} =0. (2.11)
It is difficult to solve analytically such equation including the effect of the polarization drift which
has higher derivatives and nonlinear terms. It is shown how we solve this problem in Sections 4

and 3.



$3. Nonlinear Rossby Vortices

We consider the quasi-two-dimensional barotfropic fluid on a rotating planet. We adopt local
orthogonal coordinates on a certain latitude 8y of the northern hemisphere with the z-axis toward
north, the y-axis west and z-axis local zenith. The fluid on the planet receives the gravity —gV H
and the Coriolis force f(z)v X %, where the depth of fluid is H(z,y) = Ho(l + h{z,y)) and the
Coriolis parameter f{z) = fo+ fiz+ f23%/2, in the so-called §-plane approximation. We introduce
dimensionless variables by r/p0 — 7, fot — { and f(z)/fo — f(z) = 1 + Bz + Bo2?/2, where
po = VgHo! fo, B1/po = f1] fo = pcotfy and Ba/po = fof fo = —p® with = po/R, and R, is the
planet radius. The basic equations of motion and continuity in the dimensionless form are given
by

oo

5+ @ Vo =-Vh+ flz)o x (3.1)
g_? +V-[(1+h)e] =0, (3-2)

where v is the fluid velocity in the two-dimensional z-y plane. From egs. (3.1) and (3.2), we derive

the conservation law of the potential vorticity ¢, which is similar to eq. (2.4) with eq. {2.5),

(%-;—fv-V)q:O, (3.3)

where the vorticity is2=2-V x ».

We define the short wavelength ordering in terms of a smallness parameter € by

ew-éng-Verthi:;zi;. (3.5)
The velocity obtained by iteration of eq. (3.1) is 7
v =v;+vg+ v, (3.6)
where
v = % X Vh, (3.7)
vg=—(hez X Vh (3.8)
and
o5 = — (% Fop v) Vh. (3.9)

Here v, is of the order of ¢, while both 5 and v}, are of the order of €2. In the lowest order » = vy,

we obtain a following equation from eq. {3.3),

o
?9% + {hi' Q} = 07 (3°10)
q=V?*h—h+ e, (3.11)



These equations are the same form as the H-M equation {2.9) with eq. (2.10) if ¢ and —iy are
exchanged for h and 3, respectively.

Since the lowest velocity v; is independent of the latitude g, we should take account of the effect
of the higher velocity vs including the Coriolis parameter 3; which is proportional to cotfy. The
other higher order velocity »y is similar to the polarization drift in plasmas and important in the
temporal evolution. Substituting » = v; +v5 + v, into eq. (3.3), we obtain a generalized nonlinear
equation. However, it is difficult to solve it in the same reason as in case of eq. (2.11).

In the long wavelength ordering, we redefine the smallness parameter ¢ as

%wv-VwQ ~  €?

h~ iV fI/|IVInkh| ~ e

b

(3.12)

32 wg ~ €%/ and vy ~ ¢"/2. When the terms of the order

In this ordering, V? ~ € so that v; ~ ¢
of €> are negligible, a equation obtained straightforward from egs. {3.3) is not the same form of eq.

(3.10). However, Using vg - Vg = {h, —~8%2%/2}, we obtain eq. (3.10} for the potential vorticity

qg=V*h—h+ piz - Hzh
+h% + (B — BH)2? /2. (3.13)

In the stationary condition 8/8t = —ud/0z, assuming both A and V?h — 0 as y — oo at fixed z,
we derive

V2h 4+ Ah? 4 yzh — k%A =0, (3.14}

where A = 1 — (82 — B2)/2u%, v = (B2 — B%)/u— f and k? = 1 — B1/u. It is known that this
equation has some approximate monopole solutions near the origin. Such monopole solutions are,
however, valid only for 7 ~ € and not localized, because h oscillates in the region z < —&>/~ and this

oscillation bring out the energy forming the vortex, which has been pointed out by Nycander.” % 10,

§4. Transformation of Variables

Tt is easy to derive the stationary dipole solution (5.5) because of a feature of the Poisson bracket
in the H-M equation (2.9). The Poisson bracket means the convective derivative vg - Vg ,where the
E x B drift velocity v is described by the stream function, so that we can regard the ion fluid as
incompressible. When we take account of the second order terms v, the fluid is now compressible,
and then we cannot derive equations similar to the H-M equation. This situation is same in the
case of discussion about the Rossby vortices in the short/long wavelength ordering. In this section,
we introduce a set of variables transforming the compressible fluid velocity to an incompressible
fluid velocity.

We start with an equation conserving a suitable quaniity ¢ in quasi-two-dimension, which is



identical to eq. (2.4) or eq. (3.3}, as follows:

(%+’U—V)q=0, (4.1)

where v = vy + v with V-2, = 0, V-2 # 0 and || 3> jvz|. The divergence free velocity is

described by a stream function, that is v; = 2 X V. Now we introduce the transformation of

variables
X==z + E:
T=t, (4.2)
U =ty + tha,

where X is the two dimensional new coordinate vector (X,Y’) with the correction & = (£,n)
depending on @ and ¢, and ¥ a pew stream function with 2 a correction to #;. In this new

coordinates, we assume that eq. (4.1} is rewritten as

a
(E + JV"I’ . V') q = 0, (4.3)
or 5
q '
—= ¥ =0 .
5. T1%d} (4.4)
where

is used instead of the operator zx and the derivatives in V' and the Poisson bracket with the prime
are with respect to (X,Y'). If £ and ¥ exist, we can solve eq. (4.3} in the same way as the H-M
equation.

The differentials 8; and ¥V’ in the new coordinates (X, 7} can be written by using  and ¢, 1. e.
8, =0 — (8:£)-V and V' = (I — A)V, where I is a 2 X 2 unit matrix and

A= | %& P
8,6 By

Therefore, we derive a conserved equation from equation (4.3) as follows:

5,
(E + v V) qg=0, (4.5)
with
o = —% —(V-E)2 X Vi

When it is compared with eq. (4.1}, we obtain

vg—_w—%—(V'g)iXV?ﬁl-}-E){V?ﬁg. (47)



If we find out & and ¢ satisfving eq. (4.7}, the solution of eq. {4.3) is transformed into ¥y by

means of the inverse transformation of eqs.(4.2), that is
vi(z, 1) = Uz + &, 8) - ¥al=, ). (4.8)

§5. Applications to Drift and Rossby Vortices

We apply the transformation of variables to the drift and the Rossby vortices in following three

examples.

5.1 FErample 1: Drift Vortices in the Short Wavelength Ordering
For the drift wave in the short wavelength ordering, the second order term of the velodty, the

polarization drift velocity (2.8), is written
a 1
vp= =5 Vo= Vigz x Vo+ 52X V(Vo). (5.1)
Comparing it with eq. (4.7), we define the transformation of variables as follows:

§£=Vo,

5.2
\If:d)-i--;-(qu)?. (5-2)

Therefore, eq. (2.4) is really transformed to eq. {4.3) in the new coordinates (X, 7). From egs.

{5.2), we obtain the electrostatic potential
s(z,1) = Uz + V,1) — —;—(V\If(a:,t))z. (5.3)
The potential vorticity ¢ in eq. (4.3) is given by
g(X,7) =V — ¥ — X, (5.4)

A set of egs. (4.3) and (5.4) agree with the H-M equation (2.9) with (2.10} and has some stationary
multipole localized solutions. Hereafter, we obtain the profile of ¢ if the solution ¥ is a dipole
solution, the modon?. When the wave frame travels westward along y-axis with constant speed u,

we obtain

¥(R,0) = [AJi(kR) + aR]cos# (R < rg) (5.5)
T BKi(pR)cos 8 (R > 7o) '

where 7 is the separatrix radius, B = (X2 + (Y — ur)))¥/2, 4 = —(u 4+ vo)ro/k2J1(krp), B =
urg/K1(pro), @ = u + (u + o) /&%, p* =14 vo/u, and k is related to p by the continuity relation
of the derivative % /OR at R = rg as follows:
Joikro) _ _kHRa(pro)
Ji(krg) — pKi(pro)

When we assume vy = —0.1, ¥ = 0.2 and rg = 1, the modon in the new coordinates (X, 7} is shown

(5.6)

in Fig. 1. Using eq. (5.3), the modon in Fig. 1 is transformed to the profile of ¢ shown in Fig. 2.
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Fig. 1. A plot of ¥ for the modon, where 1y = —0.1, u = 0.2 and rg = 1 in the dimensionless coordinates system.

The interval of contour lines is 0.02 ranging from —0.16 to 0.16. The structure of dipole vortex is antisyrametric
with respect to X and the vortex on the left hand side has a negative peak. Propagaiing velocity u is positive in

the y direction and the negative equilibrium density gradient vp.

Comparing the new profile with the original modon shown in Fig. 1, we find out that the
distortion of the modified modon in Fig. 2 is caused by the effect of the polarization drift, because
the transformation of contour lines is perpendicular to the F x B drift which is along the lines in

Fig. 1, and proportional to the gradient of ¢ approximately.

5.2 FEzample 2: Rossby Vortices in the Long Wavelength Ordering

The transformation of variables in the long wavelength ordering for nonlinear Rossby vortices
has been discussed by Orito, Sato and Irie.”). In this section we will treat the transformation of
variables up to the second order. The lowest and the second order terms of the velocity in this

ordering are v; and vs in eq. (3.6), respectively. It is clear that the transformation of variables is

given by
= 22z,
£ = pa?/ (5.7)
¥ =5
If the potential ¥ is known, The vertical fluid displacement is written as
h= Uz + bz’ [28,1). (5.8)
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Fig 2 An electrostatic potential ¢ of eq. (5.3) for the dipole vortex solution W. The mmterval of contours and

parameters are the same as them in Fig. 1. The interval of contour hines is 0.04 ranging from —0.2 to 0.2.

Since the Coriolis parameter 3; is always positive, the profile of h is necessarily distorted toward
south comparing with the one of .

The potential vorticity up to the second order in ¢ is written as

¢(X,7)=V?¥ - ¥ + 3, X + ¥

By — 32
- AHXV+ ‘——2—~§-1-le. (5.9)
In the stationary condition /07 = —ud/3X, we derive a equation similar to eq. (3.14),
V2 4+ A L X T - 570 =0, (5.10)

where parameters A, v and & have the same definitions as in eq. (3.14).
Although monopole solutions of eq. (5.10} are not valid for all space as we discussed in Sec. 3,
we apply the transformation of variables (5.7} to the monopole solution in order to investigate its

effect. For example, Orito, Sato and Irie derived a monopole solution in the region r ~ ¢,

0.52 P lfb -
lI!(f?.) = T[SEC}IL(’)P‘GRH . ({)11)

where R = |X|, a = 1 + /3/2 and b = /378.7% Substituting eq. (5.11) into eq. (5.8), we find
out that the profile of A is distorted toward south as shown in Fig. 3. Since the profile of the



3.0

-

1

1.5

e b
o
-l

-1.5

.

Fig. 3. A depth of fluid 4 of eq. (5.13), where §1 = 0.1, 8 = ~0.0016, v = 0.2 and rg = 1. The interval of contour
lines is 0.1 ranging from 0.2 to 1.0. The origin is located in latitude 8 N., whichk tanfo = 0.16. The z-axis is

toward notrth and y-axis west.

monopole solution (5.11) is circular, the distortions of contour lines owe to only the effect of vg
and this result agrees with our prediction. This distortion depends on the Coriolis parameter 5,

which is proportional to cotfy, so that the magnitude of distortion varies with the latitude &.

5.3 Frxample 3: Rosshy Vortices in the Short Wavelength Ordering
In the short wavelength ordering, the second order terms of the velocity are vg (3.8) and vy, (3.9).

As this is a hybrid case of examples 1 and 2, we obtain the transformation of variables, as follows:

€= Vh+ 82222,

o= hat %(Vh)g_ (5.12)
The vertical fluid displacement % is written as
hiz,t) = ¥l + VE¥(z) + Si2?/2,1)
+ %[Vllr(x)ﬁ (5.13)
The potential vorticity in the lowest order is given by
(X, 1) = V¥ - T + 5 X. (5.14)

10
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Notice that eqs. (5.4) and {5.i4) are of the same form. When the solution ¥ is the modon as eq.

(5.5), the fluid displacement k has the profile shown in Fig. 4. The Coriolis parameter ; in Fig. 4

3.0
4 15
. 1y,
; 4 .15
H 1 } _30
30 -15 0 15 3.0
X

Fig. 4. A depth of fluid % of eq. (5.13), where parameters are same as them in Fig. 3 and correspond to in Fig. 1

for the drift wave. The interval of contour lines is 0.04 ranging from —0.2 to 0.2,

corresponding to the negative equilibrium density gradient —up is chosen to be the same value as
—1p in Figs. 1 and 2. If the second order velocity was vy, (3.9), then Fig. 4 would be identical to
Fig. 2. However, the correct second order velocity is vs + vy, the distortion in Fig. 4 is enhanced

as in Fig. 2 because of the effect of vg.

§6. Discussion and Conclusion

In Sec. 4, it has been shown how to obtain a transformation of variables in general from the
conservaiion law of the potential vorticity. In the application to any problems, we need two condi-
tions in order that the convective derivative » - Vg can be transformed to the Poisson bracket form
{¥,q} asineq. (4.4). At first the velocity in the lowest ordering has to be described by a stream
function, that is v; = 2 X V1. The second condition is that the second order terms of the velocity
need to satisfy eq. (4.7). In practical problems it is difficult to satisfy these conditions, but we have
shown that they are successfully satisfied in three examples in Sec. 3. Especially, the drift wave
case is a typical example by the following reason. Choosing #; = £2/2, the second condition (4.7)

can be written vy = —d£/dt. The second order velocity vy for drift vortices, i.e. a polarization

11



drift velocity, is the negative time derivative of gradient ¢, v, = —dV¢. Therefore, the polarization
drift velocity satisfies eq. (4.7} automatically. On the other hand, the Rossby vortices case in the
long wavelength ordering is a different situation, because the new coordinate vector X is defined
by V& = Bz,

In these examples 5.1-5.3, we illustrated distorted dipole or monopole vortices. The transfor-
mation of variables obtained in various case in Sec. 5 may be applied to not only modons and a
monopole vortex but also other solutions in the new coordinates (X, 7). Any solutions obtained in
this procedure have profiles distorted by the effect of higher order terms which are v, in plasmas
or vg and vy, in geostrophic #ows.

Here we mention briefly about the drift vortex in the long wavelength ordering which have not
been discussed. The transformation of variables is identical to the case of the short wave length
ordering. However, it is negligible because the effect of the polarization drift depends on the third
order terms and there is no second order terms of velocity in this ordering.

In conclusion, we have shown a technique to get rid of complicated nonlinear terms and higher
derivatives in the nonlinear equations for the drift and Rossby vortices. It makes the nonlinear
analysis extremely transparent as compared with the straightforward calculation. Since all of
solutions in three examples are stationary solutions, these profiles must propagate stably as modons

do. An examination of this result by numerical simulation is a future subject.
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