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ABSTRACT

Three dimensional dynamics of solar coronal magnetic loops, which is
caused by the photospheric twisting motion, is investigated in detail by using
magnetohydrodynamic numerical simulations. It is found that as a result of the
rising of the magnetic loops, isolated flux tubes (plasmoids) are generated on
the top of the loops through magnetic reconnection. During the reconnection
process, the magnetic energy of the mode coupled with the potential field is
partially converted into the mode decoupled from it. We also analyze the linear
stability of the coupled mode and reveal that it is destabilized when the loop
height and the magnetic helicity exceed the critical values predicted from the
bifurcation theory (Kusano et al. 1995). Furthermore, we reveal that three
dimensional mode couplings have an effect to concentrate the helicity into an
unstable mode, as well as an effect to reduce the growth rate of the instability.
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1. Infroduction

The coronal magnetic field is believed to play crucial roles in various solar coronal
phenomena (solar flare, prominence formation, coronal heating and so on). During about
a last decade a lot of theorists have attempted to reveal the physical mechanism of these
phenomena. Among them, the magnetohydrodynamic (MHD) energy relaxation model
based on the Woltjer-Taylor minimum energy principle (Woltjer 1958; Taylor 1974) has
been one of the most important theories to understand the physics of coronal plasmas
(Heyvaerts & Priest 1984; Browning, Sakurai, & Priest 1986; Browning & Priest 1986;
Browning 1988; Browning & Hood 1989; Démoulin et al. 1989; Démoulin & Priest 1989,
1992; Priest & Forbes 1990; Amari & Aly 1990, 1992; Démoulin, Raadu, & Malherbe
1992; Démoulin, Cuperman, & Semel 1992). The Woltjer-Taylor minimum energy principle
is based on a hypothesis that, when the electric conductivity is finite but very high, the

magnetic energy
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/ B B4V, (1)
v
must more quickly decay compared with the magnetic helicity
H = f A-BdV, (2)
v
where the integration covers the whole volume V' on interest, and A is the vector potential,
VxA = B. (3)
Consequently, the minimum energy state is given by the linear force free field (LFFF):
VxB = aB, (4)

where « is a constant in space. In our previous paper (Kusano et al. 1994, hereafter
paper 1), we reveal that, if the twisting motion at the photosphere injects the magnetic
energy as well as the magnetic helicity into coronal magnetic loops, which are periodically
aligned, the magnetic loops spontaneously organize a large-scale structure parallel to the
magnetic inversion line. In paper 1, this process is regarded as a quasi-static evolution
following a series of LFFF's, that is a continuous energy relaxation process consistent with
the Woltjer-Taylor minimum energy principle.

Afterward, Kusano, Suzuki, & Nishikawa (1995; hereafter paper 2) found that, the
Woltjer-Taylor minimum energy state in the coronal geometry bifurcates into two different
solutions when the magnetic helicity H or the geometrical factor @ (which is defined as
the ratio of the height to the width of the domain) becomes larger than a certain value.



These solutions correspond to the coupled solution and the mixed solution deseribed in
Jensen & Chu (1984) and Taylor (1986), respectively. The coupled solution consists only
of the components coupled with the potential field and the mixed solution is given by a
mixture of the coupled solution and the components decoupled from the potential field.
We theoretically proposed that solar flares could be understood as the transition from the
former to the latter. Furthermore, Kusano, Suzuki, & Nishikawa (1995) predicted that the
transition must be triggered by the upward stretch of the coronal magnetic loops.

In paper 1, although the spontaneous formation of the coupled state was observed, the
transition into the mixed state was not seen. It might be due to the fact that the vertical
length of the simulation box is too short for the magnetic loops to rise higher than the
criterion for the bifurcation. In paper 2, using a larger simulation domain whose height is
three times extended than that in paper 1, we could observe that the system leaves the
branch of the coupled state and approaches the mixed state.

The objective in this paper is to investigate the three dimensional (3D) effects in that
transition process. Particularly, we focus ourselves on two subjects: the 3D effects in the
linear stability, and the 3D mode couplings in the nonlinar dynamics.

In the next section the simulation model will be briefly explained. Typical simulation
results will be shown in § 3 about the magnetic field structure (§ 3.1), the helicity and
energy dynamics (§ 3.2), and the nonlinear coupling among several Fourier modes (§ 3.3).
The dependence on the electric resistivity as well as on the photospheric speed will be
considered in § 3.4. In § 4, we will discuss the effects of the 3D nonlinear couplings in the
energy relaxation process. Finally, a couple of important results will be summarized in § 5.

2. Simulation model

The simulation model is almost the same as in paper 1, except that the height of
the simulation box is extended three times. The simulation box is given by a rectangular
domain, inside of which corresponds to the coronal region (Fig.1{a)). Magnetic bipolar
regions are periodically located on the photospheric boundary (z = 0}, and in these regions
we assume a twisting motion. For further details of the bottom boundary condition, see
Eqs.(10) and (11) in paper 1. The upper boundary is assumed as a perfectly conducting
wall and the periodic conditions are employed for the lateral boundaries. The ratio among
each size of the boxisgiven by L, : L, : L, =1:1: 6.



The governing equations are given by

v

o = —pV-VV+IxB-V-II, (5)
OB

= - - 6
e Vx E, (6)
E = -VxB+nJ, (7
J = VxB, (8)
I = y[g(V—V)I—VV —H(VV)]. (9)

In these equations above, we adopt a zero 3 approximation in which the plasma density
p and the pressure p are constant in space and time. This approximation is not so
unreasonable for the coronal model, since the plasma 3 in coronae is usually much smaller
than unity (for example, if B = 100G, n = 10°cm~2, and 7 = 10°K, then 8 = 3 x 107%).
The equations (5) through (9) have a nondimensional form, in which the density, the
magnetic field, the velocity, the length, and the time are normalized by the coronal density
po, the half value of the maximum strength in the photospheric magnetic field By, the
characteristic Alfvén speed Vy = (B2/popo)?, the scale of the domain L,, and the Alfvén
transit time 74 = L./V,, respectively. The viscosity v is fixed to 1.0 x 1072 in the
normalized unit (poL.V4). We carry out several runs with various values of the resistivity n
and the photospheric rotating period 7,. Table 1 summarizes the parameters for each run,
in which case F2 will be reported in detail in the following section. Initially, the magnetic
field is given by a potential field (V x B = 0) and the plasma is at rest (V = 0). The finite
difference method with the second order accuracy and the Runge-Kutta-Gill method are
used to solve the basic equations.

To examine the numerical resolution in space, we carried out the simulation F1', in
which the grid number for each dimension is 40 % enhanced compared with F1. The
difference of the resultant magnetic energy between F1 and F1' is up to about 7 %. Since
case F'1 has the sharpest current sheet on the reconnection point in all runs, the finite
difference error in the other cases might be smaller than it.

3. Simulation results
3.1. Structure of magnetic field

Figures 2(a)-(p) display the evolution of iso-surfaces for the vector potential A, in
case F2. After the upward extension (Figs.2(a) and (b)), the arcade is subject to magnetic
reconnection, which ejects a plasmoid upward (Figs.2(b) and (c)). The color on the plane



r = 0 reflects the length of the magnetic field lines across it. Particularly, the field lines
across the red area are detached from the photosphere, hence this area implies the cross
section of plasmoid. Figure 2(b) shows that the detached region already appears in the top
of the arcade at ¢ = 5074, and it is enlarged from ¢ = 5074 to 6074 (Fig.2(b) through (d))
as reconnection progresses.

We can observe that two reconnection sites exist, one being on the mid plane y = L, /2
and the other being on the lateral plane y = 0 {or L,). Reconnections take place alternately
on these planes. From ¢ = 7274 to 10474 (Fig.2(f) through (i)}, it proceeds on the lateral
plane and a new plasmoid is generated. From ¢ = 10674 to 1347, (Fig.2(j) through (m)),
the reconnection site is switched again onto the mid plane and it moves back to the lateral
plane at ¢ = 13674 (Fig.2{n)). As a result of these processes, the iso-surface for A, forms a
horizontal structure above the arcades.

Figure 3 shows the time evolution for the amount of the flux crossing the plane z = 0
which is detached from the bottom boundary z = 0, where the positive and the negative
fluxes are separately plotted. In case F2, the positive flux comes up from 507, to 6074, and
then the negative flux begins to increase from 7274 to 8674. After that, the positive flux
steps up from 10674 to 11674, and the negative flux increases again from 1367,. We can see
that the increment of the positive and the negative flux corresponds to reconnections on
the mid and the lateral plane, respectively.

These results clearly indicate that magnetic reconnection successively proceeds and
generates isolated plasmoids dynamically. It is much consistent with the theoretical
prediction that the plasmoid is generated on the top of the original loops as a result of the
rising of the magnetic loops (see Fig.5 in paper 2).

3.2. Helicity and erergy evolution

As shown in paper 2, the relevant parameters for the bifurcation of the minimum
energy state are the helicity # and the geometrical factor a. Here, let us directly examine
the evolution of them.

Figure 4 shows the trajectory on the parameter space consisting of the magnetic
helicity and the height of the magnetic loops. The magnetic helicity is calculated from
the equation (2) where the whole simulation box is taken as the integral domain V. The
height of the magnetic loops is evaluated from the npward propagation of the photospheric
information, which is carried by the MHD waves and also the plasma motion. In our
simulation we observe that the magnetosonic shock wave is formed and it moves upward.



Thus, we recognize the altitude of the shock front as the loop height. The trajectory of
case F2 reaches to the bifurcation curve at ¢ = 1674, and enters into the region where the
lowest energy state is given by the mixed solution. Here, it should be pointed out that there
is some delay between the time for the bifurcation (¢t = 1674) and the time for the first
reconnection (¢t = 30 ~ 707,4) as discussed in Kusano, Suzuki et al. (1996).

Figure 5 shows the relationship between the energy and the helicity. Case F2 evolves
following the branch of the coupled solution until ¢ = 507,. This process is much similar to
the results reported in paper 1. After that, however, while the helicity continues to increase,
the increase of the energy is saturated. The trajectory enters into the lower energy region
than the coupled solution.

3.3. Fourier mode evelution

Let us investigate the dynamics of the magnetic energy for each Fourier mode. The
magnetic energy can be expanded as follows:

1 -
E=Y tnn=3 5(LLy) [ lbma()ds, (10)

where b, o(2) = (L. L,)"! [¥ [[/* Bexp[2xi(mz/L, + ny/L,)|dzdy with integers m and n.
Figure 6 shows the time history of ¢, , for most dominant three modes: (m,n) = (0,0),(0,1)
and (1,0), in those only the (0,1) mode is coupled with the potential field, and the (0, 0)
and the (1,0) modes are decoupled from it. We can see that the amplitude of the (0,0)
mode grows up comparable to the (0,1) mode by ¢ = 14074. On the other hand, the
evoliution of the (1,0) mode is oscillatory and the amplitude is at most about 1% of the
(0,0) mode. This result implies that the final state is the mixed state which consists mainly
of the (0,1) and the (0,0) modes.

In order to study in detail the growth of the (0, 0) mode, we calculate the rate at which
the magnetic energy is transferred from each mode into the (0,0) mode. The evolution of
0,0 can be described as

. de . . )
&0 = 0,0 — E(?,O —+ Sg’g —+ Sb'ig s (11)

d

where égczg, éé,o, and é‘go imply the contributions from the mode coupling, from the energy
injection at the boundary, and from the diffusion, respectively:

0= 2 o n00= 2 Re [Bnp X b FogdV (12)
mR mn



éé,o = Z E-{n,n-»{).o = Z Re j(BO,O ) i’m,n)g—m,-n -d8 . (13)

ér?,o = —Re/n[}u_olde . (14)

Figure 7 shows the history of €, ,_,, for (m.n) = (0,0), (0,1), and (1,0), in which the
positive (negative) value means that the energy of the (m,n) mode flows into (out of) the
(0,0) mode. The largest contribution in the mode couplings comes from the (0,1) mode.
The negative contribution of the (0,0) mode stands for the process that the magnetic
energy of the (0,0) mode flows into the kinetic energy of the same mode. Furthermore,
the smallness of the (1,0) mode indicates that the (0,0} mode hardly couples with the
(1,0) mode. The diffusion always gives a negative contribution to the growth of the (0,0)
mode. These results suggest that the (0,1) mode must be unstable against the {(0,0) mode
perturbation.

Here, we calculate the linear growth rate of the (0,1) mode +* based on the mode
selecting procedure (Kusano & Nishikawa 1996a), and show the result in Fig.8, where the
error bar represents the convergence error in an iterative procedure. We can see that after
t = 1474 the growth rate is positive. Note that this time almost coincides with the time
when the trajectory in Fig.4 crosses the bifurcation curve. It implies that the (0,1) mode is
immediately destabilized when the arcade configuration satisfies the bifurcation condition.

This is in agreement with the conclusion of Kusano & Nishikawa (1996a), who reveal
that the coupled solution is unstable if the mixed solution for the same helicity can exist.
Actually, the instability observed here is the symmetric mode instability (SMI) found
in Kusano & Nishikawa (1996a), and it may be the same instability as observed in two
dimensional simulations {Mikic et al. 1988; Biskamp & Welter 1989, Kusano, Suzuki et al.
1996). On the other hand, we did not observe the so-called undulating mode instability
(TMI) (Kusano & Nishikawa 1996a), although the undulating modes m # 0 are included in
our model. It might be due to the fact that the length of the simulation box L, is shorter
than the criterion for the UMI. The UMI must be marginally stable in our model.

3.4. Parameter dependence

In the most other runs, we can observe the results similar to observed in F2: the
generation of the detached flux through the reconnection process {see Fig.3), the satisfaction
of the bifurcation condition for the helicity and the loop height (see Fig.4), and the
appearance of the lower energy state than the coupled solution branch (see Fig.5). Only



m case F3, however, magnetic reconnection does not take place, so that the detached flux
remains almost zero. In that case, the trajectory in Fig.5(b) stays above the branch of the
coupled solution. The speciality of F3 might be due to the large resistivity.

If we compare the results among the simulations which have the same resistivity
(between F1 and S1 or between F2 and S2), we can see that both the magnetic helicity
and the loop height are more quickly enlarged for shorter 7. As a result of it, the larger
magnetic energy is stored until the onset of reconnection. On the other hand, when the
photospheric speed is fixed, the larger energy could be accumulated in more conductive
case. It is due to the fact that the decay of the total helicity is slower for the smaller
resistivity.

Note that the helicity evolution is governed by the following equation,

dH

dt
where the first term is given by the surface integral on the photospheric boundary. Although
the helicity injection denoted by the first term of the right-hand side does not depend on
the resistivity, the resistive dissipation (the second term) is obviously proportional to the
resistivity. Then, the remaining helicity and the energy must depend on the resistivity as
discussed in the previous paragraph. However, when the magnetic Reynolds number is so
large as in the real corona, it is likely that the second term of (15) becomes negligibly small.
In that case, the dependence of the instability on the resistivity must be more important
(Kusano, Suzuki et al. 1996). Since the growth rate of the instability decreases with
resistivity (Kusano & Nishikawa 1996b), even if the helicity dissipation is negligibly small,
the tendency that the larger energy can be accumulated before the reconnection process as
the resistivity decreases may survive.

=[(ExA—¢B)-dS—fnJ'BdV= (15)

4. Discussion
4.1. Stability

Kusano & Nishikawa (1996a) show that the coupled solution is unstable against n = 0
modes if the bifurcation condition is satisfied. In some case (F3), however, we cannot
observe the reconnection process though it satisfies the bifurcation condition. This fact
suggests that the instability in the 3D system might be more complicated than the result of
Kusano & Nishikawa (1996a), in which particular modes are extracted for the analysis.

Now, we analyze the stability in the 3D system using three different methods: The
first method is the calculation of the nonlinear growth rate I" for the (m,n) = (0,0) mode,



which 1s obtained directly from the nonlinear simulation data, I' = dInsgo/dt. The second
method is the calculation of the most unstable linear growth rate - in the 3D system. It is
obtained by solving the 3D eigenvalue problem,

pon _ JoXBl-}-JIXBg"—'V'H]_ (16)
7 B1 N VX(VIXBQ‘—T].II) ’
JQIVXBU, JI:VXBl, (17)
2
I, = V[g(V'Vl)I —VV, - (VVy)], (18)

where By is the magnetic field given by the simulation result. Equations (16) to (18)
are numerically solved with the conventional power method. The third method is the
calculation of the linear growth rate v* for the {0, 0) mode in terms of the mode extracting
method used in Kusano & Nishikawa (1996a). The result is presented in Fig.8, where the
history of U and ~*, as well as the value of v at ¢ = 5074, are plotted. Initially the nonlinear
growth rate I' has a large value because the very small amplitude of the (0, 0) mode can be
driven by the photospheric motion. After that, I' quickly decreases and becomes smaller
than v*, which comes up after £ = 1474. The nonlinear growth rate is smaller than one half
of v*. On the other hand, the 3D linear growth rate v has a value close to I". It implies
that, although the coupling between the (0,1) and (0,0) modes is still important for the
instability even m the 3D system, other mode couplings included in the 3D system have a
partially stabilizing effect.

4.2. Comparison with 2D system

To clearly understand the characteristics of the 3D system, let us compare the current
simulation results with two dimensional {2D) dynamics. We carried out the 2D simulation,
in which a translational symmetry 8/0zx = 0 is imposed (see Fig.1(b)) as in Mikic et al.
(1988) and Biskamp & Welter (1989). The initial magnetic field is given by the m = 0 modes
those are extracted from the initial field of the 3D simulation. The photospheric velocity
pattern is also given by the m = 0 mode components extracted from the photospheric
pattern in the 3D simulation, where the speed is adjusted so that the helicity injection
rate into the (m,n) = (0,1) mode is equivalent to that in the 3D simulation. Other all
parameters are comparable to case F2.

The magnetic helicity can be represented in terms of the Fourier modes:

H=3 bmn=3(L.L,) / Gmn(2) - B n(2)dz - (19)



Similarly to the energy equation (11), the helicity evolution for the (m,n) = (0,1) mode
is affected by the mode coupling, by the injection from the boundary, and also by the
diffusion, respectively:

oy = d’;‘;ﬂ = RS, +BE, +HP, (20)
where
B§y = Y HS 0y = Y Re [ 2mn X bmin) - bo1dV (21)
o et
55,1 =3 ilfn,n—»ﬂ,l == f{(&ﬂ,—l B )0 min — Go1bo1} - dS (22)
and
hP, = —Re f 2701 - BordV . (23)

Figure 9 shows the evolution of 4§, and A§; in the 3D and 2D simulations. Notice that,
although the same helicity is injected into the both simulations, the 3D simulation can
generate much larger helicity for (m,n) = (0,1) by the mode coupling effect than the 2D
case. Therefore, we conclude that through the 3D mode couplings the helicity is concentrated
into the arcade component {m,n) = (0,1). Here, to detect the modes responsible to this
process, we separately plot the effects of the m # 0 modes (2,0 fzg’n_,a’l) and the m = 0
modes (3.0 i"g,n—»(],l) in Fig.9. We can see that the m # 0 modes always give a positive
contribution. It means that the mode coupling with the m # 0 modes acts to generate
the (0,1) mode helicity. Figure 10(a) shows the integration of the helicity which has been
injected into each mode until ¢ = 147,, [3*™ izfn’ndt. On the other hand, Fig.10(b) is
the helicity spectrum of the minimum energy state, which has the same helicity as the
simulation result at ¢ = 1474. Those diagrams show that the spectrum of the injected
helicity has a broader profile for m modes compared with the minimum energy state.
Therefore, we can understand that the helicity concentration to the (0,1) mode is necessary
for the magnetic field to approach to the minimum enrgy state. This fact is consistent
with our previous result that, through an MHD relaxation to the minimum energy state, a
large scale magnetic field parallel to the magnetic inversion line is generated spontaneously
(paper 1). It must be an inverse cascade process from m # 0 to m = 0 mode.

Not only for the helicity but also for the energy, the concentration into the (0,1) mode
is observed. Figure 11 shows the evolution of ég:l and ég’h where

§ =360 o = Re / B X bom1n + Jo_1dV (24)
m,n

m,n



4 =S = Re /(Eo,wl Bmn)bmin - dS . (25)

Although the injection from the boundary is not so largely different between the 3D and
2D simulations, the mode coupling in the 3D simulation 1s much larger than the 2D result.
Likely for the helicity evolution, the contribution from the m # 0 modes (3., ég,nﬁo!l)
predominates. ¥From these analyses, we can understand that, in the 3D system, an inverse
cascade takes place, in which the high m mode components are transfered into the (0,1)
mode. Since this process enhances the helicity as well as the energy for the {0, 1) mode, it
stimulates the instability. Furthermore, if the (0, 1) mode becomes unstable, the instability
converts a part of the (0,1) mode energy into the (0,0) mode through the reconnection
process shown in the previous section.

5. Summary

We investigated the 3D dynamics of the solar coronal magnetic loops by using MHD
simulations. We can see that if the magnetic energy and the magnetic helicity are injected
by the photospheric motion into the coronal magnetic loops, which are periodically aligned
on the photosphere, the magnetic loops are expanded upward and the plasmoid is generated
on the top of the original loops. Recently, the soft X-ray telescope (SXT) on board Yohkoh
observes various solar phenomena, which strongly suggest magnetic reconnection {(Hudson
1994). For instance, the plasmoid ejection is observed in some flare events (Ohyama et al.
1996). The simulation results are consistent with those observations.

The simulation results are consistent also with the theoretical prediction that the
plasmoid should be generated as a result of the transition between the coupled solution
and the mixed solution of the Woltjer-Taylor minimum energy state (Kusano et al. 1995).
However, when the loop height exceeds the bifurcation criteria, the magnetic configuration
does not immediately transit to the mixed solution but follows the coupled solution for
a while. In this period the instability grows and the magnetic energy is accumulated
in the coronal magnetic field. Furthermore, we revealed that the 3D couplings work to
partially stabilize the instability. We also found that the 3D mode couplings play a role to
concentrate the helicity as well as the energy into the arcade component through an inverse
cascade process.

We thank Prof. T.Sato, Dr. H.Takamaru, Dr. A.Kageyama, Dr. T.H.Watanabe, from
National Institute for Fusion Science for useful discussions. This research is supported by a
Grant-in-Aid from the Ministry of Education, Science, and Culture in Japan.



Table 1. Parameters adopted in six simulation runs: The resistivity 5, the period of the
photospheric rotation T, and the number of grid elements (n,,n,,n.).

case F1 F1 F2 ¥3 Si S2
7 05x1073  05x1073 1.0x107% 20x107° 05x107% 10x1073
T, /74 15 15 15 15 30 30

(ns,my,mz)  (56,56,336) (80,80,480) (56,56,336) (56,56,336) (56,56,336) (28,28,168)
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Fig. 1.— The schematic diagram of the simulation box, in which the bottom boundary
(plane z = 0) corresponds to the photosphere. (a) The simulation box in the 3D model and
the magnetic loops in it. The magnetic bipolar region lies on the bottom, and it is twisted
clockwise. (b) The simulation region in the 2D model, in which the translational symmetry
is assumed for the z direction. The shearing motion is imposed on the bottom.

Fig. 2.— The black curve surface represents iso-value surfaces for the vector potential A, in
the three dimensional space, and the red area on the plane x = 0 implies where the field lines
are detached from the photosphere. The color on the bottom plane reflects the strength of
the magnetic field B, there, showing the positive (blue) and negative (red) polarity regions.
It can be seen that the flux tube (plasmoid) is formed on the top of the original loops. Here,
notice that the iso-contours of A, is not exactly same as the structure of the magnetic field
lines in 3D cases.

Fig. 3.— The time evolution for the amount of the fiux crossing the plane x = 0 which is
detached from the plane z = 0.

Fig. 4— The relationship between the magnetic helicity and the height of the magnetic
loops. The small solid circles show the simulation results and the solid line is the bifurcation
curve which is theoretically derived. The time when the bifurcation condition is satisfied is
indicated.

Fig. 5.— The time evolution of the magnetic energy as well as the magnetic helicity. The
small solid circles show the simulation results, where the time when the reconnection starts
is indicated. The curve E, and the line E,, represent the energy for the coupled and the
mixed solutions, respectively. The small square region bounded by the dotted line in (a) is

magnified in (b).

Fig. 6.— The time evolution of the magnetic energy for the (0,0),(0,1) and (1,0) modes,
£0,0, £0,1, €1,0- The dashed line represents the total energy E.

Fig. 7.— The time history of the magnetic energy transport rate from three modes,
(m,n) = (0,1),(1,0),(0,0), into the (0,0) mode (£§; .50, €70 00> €5 0—0,) as Well as the
energy diffusion rate ég‘,’o are plotted. The dashed line represents £ .

Fig. 8.— The time history of the growth rate. The dashed line represents the linear growth
rate v* calculated by the mode selecting method. The solid line represents the nonlinear
growth rate I' for £99. The open circle represents the linear growth rate v calculated in the
three dimensional system.

Fig. 9.— The changing rates of the magnetic helicity for the (0, 1) mode are plotted both for



the 3D and 2D simulations, where the mode coupling (ﬁgl‘q’p and f-tf{:l?D ) and the injection
from the boundary (hf /” and h{ #7) are separately plotted.

Fig. 10.— (a) The power spectrum of the injected helicity until ¢ = 1474 and (b) that of
the minimum energy state which has the same helicity as the simulation at ¢ = 1474 are
displayed for (—5,—5) < (m,n) < (5,5).

Fig. 11.— The time history of the magnetic energy transport rate into the (0,1) mode is
plotted both for the 3D and 2D simulations.
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