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VLASOV-MHD AND PARTICLE-MHD SIMULATIONS
OF THE TOROIDAL ALFVEN EIGENMODE

Abstract

Two simulation codes, Vlasov-MHD code and particle-MHD code, are
developed to elucidate nonlinear behavior of hybrid kinetic-MHD modes and
energetic particles. Simulations of the toroidal Alfvén eigenmode (TAE mode)
destabilized by energetic alpha particles are carried out. Vlasov-MHD simulation
revealed that particle-trapping by a finite-amplitude wave causes the saturation.
After saturation, amplitude oscillation takes place with a frequency corresponding
to the bounce frequency of the alpha particles trapped by the TAE mode. Particle-
MHD simulations are performed with more relevant condition to fusion plasmas,
and saturation caused by particle-trapping is confirmed.

1. Introduction

In fusicn reactors, successful confinement of alpha particles is required for
self-sustained operation. The alpha particles born from D-T reactions are supposed
to destabilize the macroscopic modes such as the toroidal Alfvén eigenmode (TAE
mode) [1] and the fishbone mode. Nonlinear behaviors of such hybrid kinetic-MHD
modes and alpha particles are one of the major physics uncertainties for fusion
reactors. We have developed two simulation codes, Viasov-MHD code [2] and
particle-MHD code, to analyze hybrid kinetic-MHD modes. In both simulation
codes the background plasma is described by an MHD fluid model, and the fully
nonlinear MHD equations are solved by a finite difference method. In the Vlasov-
MHD code the kinetic evolution of alpha particles is followed by the drift kinetic
equation which is solved by a finite difference method, while the particle
simulation method is used for the alpha particle component in the particle-MHD
code. Alpha particle current except for ExB current is extracted from the total
current in the MHD momentum equation to take into account the effects of alpha
particles on the background plasma in a self-consistent way. Nonlinear kinetic
effects such as the particle trapping by a finite-amplitude wave which suppresses
the Landau damping can be followed by these codes. The Vlasov-MHD code has
an advantage that it is free from numerical noises of particle discreteness, though it
demands larger computer power than the particle-MHD code. On the other hand,
the &f method [3-5] has been developed to reduce the numerical noises in particle
simulations. We employ it in the particle-MHD code.

In the remainder of this paper, the plasma model is described in section 2.
Vlasov-MHD  simulations are carried out with a simplified alpha particle
distribution and results are presented in section 3. Results of particle-MHD
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simulations with more realistic alpha particle distribution are given in section 4, and
summary is given in section 5.

2. Plasma model

In the model employed here, the background plasma is described by the
ideal MHD equations and the electric field is given by the MHD description. This is
a reasonable approximation under the condition that the alpha density is much less
than the background plasma density. The MHD equations are given by,

9 _

9= VPV (1)
p%;’— + pvVv =-Vp+ %VXBXB » @)
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where g is the vacuum magnetic permeability and v is the adiabatic constant, and

all other quantities are conventional.
The drift kinetic description is used for the alpha particles. The guiding-
center velocity vy is,

Vp =Vt Vgivg, ©)
vy = %(B + p,BVxb), -
Vg = -%(Exb) , ®
vg = ﬁ(—ﬂVBxb) , o
Py = % ] (10)
€ =$mpf + 4B, an
v S = viq EuVB), "



%#B = ;z(V?}-VB+%—?)+ q.Vg'E,

where { is the magnetic moment which is the adiabatic invariant.

To complete the equation system in a self-contained way, we take account
of the effects of the alpha particles on the bulk plasma in the MHD momentum
equation,

PO + pvVV = (@ - QE +( 1V><B ~j)xB-Vp,

(13)

(14)

= f vpfd®v + VxM, 1)

M = —| pbfd%,
[ sfas o

where Q and @, are the total charge density and alpha particle charge density, and
Jo 1s the alpha particle current density. The total charge density Q is negligible in

the MHD context where the quasi-neutrality is satisfied. Equation (14) is rewritten
into the following form paying attention to that -Q_E cancels out with the Lorentz

force of ExB currrent of alpha particles,

p%Y + pvVv = —Vp +(EV<B - j, B, -

- f (vivg)fdi + VxM

=Jus + i(P(,W‘V><b—PmV1nB xb) + Vx(_l_)g;.b) ) )
(18
This model is the same as that of Park et al. [6] and the conservation of total energy
is proved in Ref. 2.

2. Ylasov-MHD simulation

From Egs. (6)-(13) we can obtain the drift kinetic equation which describes
the time evolution of the alpha distribution function in the phase space (x, vy, AN

Eaff (X,008) = ——V (Bvpf) — dv”f ) — hlB . 19)

The Vlasov-MHD simulations have been carried out to elucidate the basic
physics of the TAE mode saturation [2]. Due to the restriction of the present
computer power, the magnetic moments of the alpha particles are set to be zero,
namely, the phase space is reduced to 4-dimension (x, v;) and the drift kinetic

equation is given by,
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Fig. 1. Time evolutions of a) the TAE mode energy, and b) the
ratio of the power transfer rate <-j,-E> to the TAE mode
energy, which is divided by a factor of 2 to relate directly to
the growth rate. The decrease of this ratio leads to the
saturation of the TAE instability.

d
%f (xv) = =V(vpf) _6%,, %f ). 0

The aspect ratio of the system is 3 and the poloidal cross section is
rectangular. The cylindrical coordinate system (R, ¢, z) is used. An axisymmetric
equilibrium solution is obtained by an iterative method both for the MHD force
balance and the distribution function of the alpha particles. The volume-averaged
beta value of alpha particles <f,> is 0.44%. We focus on the n=2 TAE mode and
its nonlinear evolution including generation of n=0 modes. The most unstable n=2
TAE mode is excited, and the growth rate is agreeable with that of the linear theory
[71.

In order to identify the saturation mechanism we analyze the time evolution
of the power transfer rate from alpha particles to the MHD component, namely,
<-j,E> (< > means volume integration). We show the temporal evolution of the
TAE mode energy in Fig. 1a and the ratio of the power transfer rate to the TAE
mode energy (divided by a factor of 2 to relate directly to the growth rate) in Fig.
1b. Att=470 w -1 the ratio begins to decrease, thus leading to saturation of the
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Fig. 2. The alpha particle distribution functions f(R) at v, =-
1.05v, and z=0 which are averaged in ¢-direction and
normalized by f{v, =0, +=0) at the magnetic axis.

mstability. It is evident that the decrease of the power transfer rate is the cause of

the saturation. After saturation an amplitude oscillation occurs, of which frequency
is 3 times larger than the linear growth rate. The frequency of the amplitude
oscillation is consistent with the theory of the bounce frequency of particles trapped
by the TAE mode [8].

Fig. 2 shows distributions of alpha particles at v, = -1.05 v, and z =0
(midplane) as a function of R which are averaged in ¢-direction at r=0 and
t=1294w,-1 , respectively. The spatial gradient of the distribution function is
reduced to half near R=2.8a and 3.3a. The m=0, n=0 quasi-linear mode of the
alpha particle distribution is generated through the nonlinear coupling between the
n=2 TAE mode and the n=2 mode of alpha particle distribution. This quasi-linear
mode spatially flattens the distribution function, removing the free energy source of
the instability. Thus, we conclude that the saturation is caused by the particle

trapping by the wave.
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Fig. 3. Time evolution of volume average ampliude of n=2
TAE mode for <§,>=0.22%, 0.26%, and 0.33%.

4. Particle-MHD simulation

Saturation by ExB trapping was theoretically predicted in Ref. 9 and
recently confirmed by computer simulations [2, 10, 11]. Nevertheless, no
simulation took account both of realistic distribution of alpha particles and MHD
nonlinearity. Realistic alpha particle distribution is indispensable to investigate
alpha particle loss induced by TAE mode. In this section, we present the results of
particle-MHD simulations which are carried out with more relevant condition to
ignited plasmas. The initial alpha particle distribution is the slowing-down
distribution which is isotropic in the velocity space with the maximum energy of
3.5 MeV. The magnetic field strength at the magnetic axis is 5T, the number
density of the background plasma is 10% m-3, the minor radius is 0.9m, and the
aspect ratio is 3.

For the alpha particle component, 8f method is employed, which reduces
the numerical noise in particle simulations. Using this method, j,' in equation (18)
is evaluated through,
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Fig. 4. Saturation level versus lincar growth rate. Saturation
level is in proportion to the square of linear growth rate.

Poyt =Pupo +Z wm iS(x-X)),
' (21)

Py =Paio +BY, wpS(x-X)),

' (22)

where w is the weight and S(x-X3) is the shape function of each particle. The time

evolution of w is described by [5],

dy — (1) 8

where f; is the initial distribution. The initial distribution is taken to be a function of

magnetic surface and energy.

For investigation of samration of a single mode with the slowing-down
distribution, we focus on the n=2 mode as well as in the Vlasov-MHD simulation.
Time evolution of the volume average amplitude of the TAE mode for three
different initial <B,> is shown in Fig. 3. Saturation level is plotted against linear
growth rate for three cases in Fig. 4. Saturation level is in proportion to the square
of the linear growth rate. This relation supports the conclusion of Vlasov-MHD
simulation that particle-trapping causes saturation. The ratio of lost particles to total
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alpha particles is typically 10-3.
5. Summary

Vlasov-MHD and Particle-MHD simulations of the toroidal Alfvén
eigenmode are carried out. These simulations demonstrate that saturation of a
single mode is caused by ExB trapping. For multiple modes, it is theoretically
predicted that overlapping of modes will lead to enhanced saturation level and
stochastic diffusion of alpha particles [9, 12]. Simulations with multiple modes are
under way and will be presented elsewhere [13].
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