1SSN 0915-633X

NATIONAL INSTITUTE FOR FUSION SCIENCE -

- F

Separatrix Reconnection and Periodic Orbit
Annihilation in the Harper Map

S. Saitd, Y. Nomura, K. Hirose and Y.H. Ichikawa

(Received - Sep. 17, 1996)

NIFS-454 s Oct. 1996

- RESEARCH REPORT
NIFS Series

This report was prepared as a preprint of work performed as a collaboration
research of the National Institute for Fusion Science (NIFS) of Japan. This document is
| intended for information only and for future publication in a journal after some rearrange-
ments of its contents. _

Inquiries about copyright and reproduction should be addressed to the Research
Information Center, National Institute for Fusion Science, Nagoya 464-01, Japan.

NAGOYA, JAPAN

L
4 ,,\:,"f- ’

Ll

_“



Separatrix Reconnection and Periodic Orbit
Annihilation in the Harper Map

1 Satoshi Saitd, ? Yasuyuki Nomura

3 Keiichi Hirose and 3 Yoshi H. Ichikawa

1 School of Engineerging, Nagova University. Nagoya 464-01
2 Fukui National College of Technology, Sabae 916

3 College of Engineering, Chubu University, kasugai 487

Abstract

Structure of the periodic accelerator orbits of the Harper map is investigated in detail from
the view point of underlying scenario of chaos in the area preserving nontwist map. Since
the twist function of the Harper map admits rigorous treatment for the entire range of phase
variable, the results obtained in the present analysis describes generic novel phenomena,

which are outside of the applicability of the Kolmogorov-Arnol’d-Moser theory.
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§1. Introduction

The recent advancement on studies of stochasticity in Hamiltonian systems with few degrees
of freedom sheds new insight on interrelationship between statistical mechanics and dynam-
ics. At the same time, the long time behaviour of the Hamiltonian systems has been key
issues in high energy particle accelerator devices, magnetic confinement of plasma in fusion
devices and wave heating of plasma. We can extend the list of fields to include astronomy.
chemistry, fluid dynamics and condensed matter physics where the results of modern Hamil-
tonian dynamics have been successfully applied [1, 2]. Studies on the Hamiltonian dynami-
cal system have been based on fundamental notions such as the Kolmogorov-Arnol’d-Moser
(KAM in short} theorem and the Poincaré-Birkhoff theorem, which are proved to be valid if
the unperturbed part of the Hamiltonian Hy satisfies the nondegeneracy condition

0*Hy

2z 70 (1)
where [ stands for action variable. In the discretized mapping description of Hamiltonian
dynamics, the nondegeneracy condition (1) corresponds to the twist condition
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where action-angle variables (1,,8,) are evaluated at discrete time n. The twist condition
implies the monotonic change of the rotation number w = T}Lr& B./n.

Observing that twist condition is a critical assumption in the proofs of the KAM theorem,
del-Castillo Negrete el al.[3] have carried out detailed analysis of the area preserving nontwist
map. They have analyzed novel processes of the separatrix reconnection, periodic orbit
collision and the transition to chaos in the standard nontwist map, which are outside of the
applicability of the KAM theory.

As noticed by [3], however, the standard quadratic-nontwist map
Ynt1 = Y, — bsin(2wz,) (3)
Tay1 = Inp+ a(l - yiﬂ) (4)

is a polynomial local expansion about the point where the twist condition fails. Therefore,

it is questionable whether phenomena associated with this map have generic validity. In
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this regard, we notice that Van der Weele ¢/ al. [1] have constructed a model map for the
standard scenario of the birth and reconnection process of periodic orbits in the nontwist
map.

Aim of the present paper is to undertake detailed analysis of the Harper map, in which
the phase advancement is determined by a sinusoidal twist function. The sinusoidal function
admits alternative occurrence of the maximum and minimum, where the iwist condition is
violated. Thus. we can investigate global behaviour of the area preserving nontwist map.
without any reservation for the polynomial local approximation. Furthermore, it is worth to
notice that in a special choice of the parameters the Harper map is reduced to the M’f map
discussed by Zaslavskii et al. [5] in connection with the stochastic web.

Summarizing the fundamental properties of the Harper map in Section 2, we proceed to
analyze processes of the separatrix reconnection and the periodic orbit collision. In Section
3 and 4. changing of the system parameter. we investigate the phenomena taking place for
the odd and the even periodic motions, respectively. For the odd periodic orbits, we observe
that the higher order elliptic and hyperbolic orbits collide and annihilate each other, while
the period-1 fundamental mode never annihilate. For the even periodic orbits, the period-2
step-1 accelerator orbits form the vortex pair, which exhibits robust structure against the
change of the parameter. The period-4 and higher order even periodic orbits, however,
after forming the vortex pair, annihilate eventually. In the last section, we summarize the
results observed in the present analysis and discuss certain aspects of the stochastic web and

anomalous diffusion phenomena.

§2. The Fundamental Properties of The Harper Map

We consider the Harper system, which describes the electron motion in the tight-binding
lattice in the presence of magnetic field [6, 7, 8, 9, 10]. The Hamiltonian of this model has
the form

L A
H(q,p,t):i—zcosgfrp%—ﬁl—cos‘) g Z 6(t —n), (5)

n=—00

where ¢ and p denote the dimensionless generalized position and momentum, respectively.

A and L are the positive stochastic parameters.



The dynamics governed by the Hamiltonian (5) is described in terms of the mapping,

Pns1 = Pnt+ F(Qn)
T: {mod 1) (6)
Gr1 = gn+ G(Pn+1)

with the definition of
A
F(g) = ——sin2mrq (7)
27

L .
Glp) = —gsm%rp. (8)

We call this map the Harper map. Since the Jacobian of (6) is equal to unity, the Harper
map (6) is the area-preserving. Since the functions F(g) and G(p) possess extrema, the
Harper map is a nontwist map.

For small values of parameters A and L, there is a regular separatrix mesh on the phase
plane. In general. when the value of A is different from I, the separatrix mesh is destroyed.
In the case of A > L, there appear the rotational motion in the p direction, while in the
case of A < L, there appear the rotational motion in the ¢ direction. In the special case of
A =1L, the Ha,rper map is reduced to the Mf map which has been investigated thoroughly
by Zaslavskii et al.[5].

The Harper map has 4 fixed points such as (¢, p) = (0,0), (0, 3):(3,0) and (%, 1). The
stability of these fixed points can be analyzed by means of the linear stability theory. Among
the 4 fixed points, (¢,p) = (0,0) and (1/2,1/2) become stable elliptic points under the
condition 0 < AL < 4. The nearby orbits encircle this elliptic point. The other two fixed
points (¢, p) = (0,1/2),(1/2,0) turn to be always unstable. The nearby orbits are hyperbolic.

When the values of parameter A and L are increased, system shows global stochasticity.
Even in this case, there exist the integrable orbits called momentum accelerator mode. In-
vestigation of accelerator modes is necessary to understand the anomalous enhancement of

momentum diffusion [11]. Accelerator mode of period-m step-n exists when the m iterations

of map (6) satisfies

Pitm = pitn (9)

Gitm = G (10)



The Harper map (6) admits the period-1 step-1 (fundamental) accelerator mode (o, po) when

Flgo) = 1 (11}
G(pg) = m {12)

holds for any integer m. Equation (11) tells us that period-1 fundamental accelerator mode
exists for A > 2. Period-2 step-s accelerator mode {go. po) is determined from the squared

Harper map according to the following condition for any integer m.

Flgo)+ Flgo+ G(po + Fl9))) = s (13)

G(po + Flg0)) + G(po + Flgo) + Flgo + Glpo + F(q))}) = m, (14)

which suggests that the period-2 step-1 accelerator mode exists for A < 2. In the course of
this study. we have identified various higher order accelerator modes by decreasing A from
27, as shown in Table 1. The stable domain for A and L need to be analyzed individually
for each mode. The contribution of the period-2 accelerator mode to the enhancement of
momentum diffusion has been identified by Saité ef al. {11]. Structure of the period-2 step-1
island appeared in the vicinity of A = 3.185 has been analyzed by Hirose et al.[12].

Since the Harper map is a typical nontwist map. we proceed to analyze the process of

the separatrix reconnection and periodic orbit annihilation in detail.

§3. Reconnection and Annihilation of Odd Periodic

Orbit

In this section, we discuss the separatrix reconnection and annihilation of several odd periodic
accelerator modes taking place in the region of A > L.

First, we investigate the period-1 step-1 accelerator mode appeared at A = 6.37. The
phase plane at L = 0.004 is shown in Fig. 1. We confirm the period-1 islands appeared as
a pair. The motion around the right island is counter direction with respect to the motion
around the left island. The position of the left elliptic point s (qi,p1) = (5= sin‘l(%),ﬂ)

and that of the right elliptic points is {go,p2) = (5 — ¢1,=3). The right separatrix has



hyperbolic point at (¢, p) = (¢2,0) and the left separatrix passes through hyperbolic points
at (q,p) = (q1.+3). Between these separatrices, there are band of curves separating the
right and the left islands. We also plot the symmetry lines summarized in Appendix 1. They
intersect at the period-1 elliptic and hyperbolic points.

Increasing the parameter L to L = 0.009, we observe in Fig. 2 the separatrix reconnection
takes place in the vicinity of this value of L. In order to determine the critical value of
L at which separatrix reconnection of the period-1 step-1 mode occurs, we introduce the
averaged Hamiltonian [14]. Since the motion on the separatrix is considered to be slow, we
can approximate pniy —pn and ¢ni1— ¢, to be dp and dg, respectively. Therefore, the Harper

map (6) can be reduced to a following differential equation.

@_ﬁAsin?n‘q—?mﬂ' (15)

dg L sin 27p
where m is set to be | for the step-1 accelerator orbit. Integrating {15), we obtain the

averaged Hamiltonian H(q, p)
F{g,p) = — cos2xp + - cos 2mq + (16
= D T -
q,p 173 Cos2mp 172 008 2Ta + g )

The separatrix reconnection occurs when the averaged Hamiltonian of the right and the left

separatrices

- 1 L A .

Hiegi{, iE) = iz + 1z CO8 27q1 + g1, (17}
o L A 1

Hyight(@,0) = 15— Feos2rat+5-q (18)

have the same value. Thus, we obtain the critical value L,
L.=—VA? k47r2+7r2—27rsin”1(2%). (19)

In Fig. 3, we show the phase portrait of averaged Hamiltonian (16) at A = 6.37 and
L. = 0.009561. Comparing Fig. 2 and Fig. 3, we can confirm that our estimation of L. s
appropriate.

After the reconnection, the relative positions of the right and the left island are topolog-
ically iterchanged to the left and the right. This is illustrated in Fig. 4 at L = 0.02. We

observe that the separatrices form two dimerized chains named after Van der Weele [4].
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As L is increased. the system becomes stochastic. At L = 0.3, shown in Fig. 5. we
observe the dominant two stochastic lavers. Between them. we see the evidence of separatrix
reconnection of the period-11 islands, which form two dimerized chains. Del-Castillo-Negrete
et al. called this self similarity structure the nested topology, which is shown in Fig. 10 in
[3]. Since the positions of the period-1 points are independent of the parameter L. symmetry
lines continue to have intersections at the same position as L is varied. Therefore, this implies
that the annihilation of period-1 accelerator mode never take place.

Next. we investigate the period-3 step-1 accelerator mode, which appears at A = 2.3.
We show the phase plane at L = 0.9 in Fig. 6. Period-3 islands appear as pairs in staggered
manner. As L is increased. focusing our attention to the pair of elliptic and hyperbolic point
with p = 0, we observe that neighboring two intersections approach ard becomes one point
at which symmetry lines tangent each other. Here the period-3 island annihilates, as shown
in Fig. 7. This process is nothing but a tangent bifurcation. The critical value of L at which
tangent bifurcation occurs can be determined by the tangent condition of vy and ~s.

We carried out the analysis for all of the odd periodic islands listed in the Table 1. We
confirm that the process of the reconnection and annihilation are the same as the period-
3 case. Thus, we conjecture that annihilation of periodic points occurs for all of the odd

periodic points other than period-1 fundamental accelerator mode.

84. Reconnection and Annihilation of Even Periodic

Orbit

In this section, we analyze the separatrix reconnection and annihilation of even periodic
accelerator modes. For even periodic case, the aligned counter rotating islands merge and
the vortex pairs are formed.

We first investigate the period-2 step-1 accelerator mode appeared at A = 3.185. Figure
8 illustrates the phase plane at L = 0.3. Symmetry lines determines the position of elliptic
and hyperbolic points. The position of the left elliptic points are (¢1,p1) = (5= sin_l(%),O)

and (g1, :i:%) and that of the right elliptic points are (g2,p2) = (3 — ¢1,0) and (3 — g, :i:%)



Since the position of the elliptic points are indeperdent of the parameter L, these points do
not annihilate upon the change of L. The left and the right separatrices pass through the
hyperbolic points which are given as the left and right intersections of symmetry lines v_;
and ;. In contrast to the odd periodic case, neighboring intersections are the same type
each other.

As L is Increased, the neighboring hyperbolic points approach, while the elliptic points
do not move. The reconnection occurs when the right and left separatrices coincide together.
After the reconnection, the pair of the period-2 islands form the vortex pair. This is illus-
trated in Fig. 9 at L = 0.4. Symmetry lines v_; and =, which intersect at the hyperbolic
points before the reconnection, do not intersect at hyperbolic points after the reconnection.
We notice. however, that the positions of all of the period-2 points can be determined from
the existing conditions (13) and {14) for the period-2 accelerator mode. After the reduc-
tion discussed in Appendix II, the position of hyperbolic points after the reconnection is

determined by the conditions of (13} and (14)

Flg) = (20)

2¢—G(p) =

B[ = D | i

(21)

Howard et al. [15] call this condition the resonance lines. First, we can determine the critical
value L. at which the separatrix reconnection occurs basing on the equations {20) and (21).

Since they tangent each other at p = %, we obtain L. as

L. = ﬁmzmr%%) (22)

= 0.33057--- for A =3.185. (23)

The positions of hyperbolic points after the reconnection are

(o) = (91550~ (23— ) (24)
11, 2,1
= (a5 —g-siw {7(7 —a)})- (25)

This 1s illustrated in Fig. 9. Although ¢} is independent of L, p; depends on it. py, tends
to 0, as L — co. It means that the hyperbolic points after the reconnection approach to the

elliptic points but do not annihilate.



Next. we investigate the period-4 accelerator mode appeared at A = 1.8. Figure 10
illustrates the phase plane at L = 1.1. We can see four vortex pairs and symmetry lines
intersect at the elliptic point of the vortex islands. In Fig. 11 at L = 1.2, we observe that
these intersections disappear and the elliptic point annihilates.

For other even periodic cases listed in Table 1, the process of the reconnection and the
anmihilation are the same as the period-4. Thus, we may conclude that annihilation of elliptic

points occurs for all of the even periodic points other than period-2.

§4. Concluding Discussions

We have examined process of the separatrix reconnection and the periodic orbits collisions,
focusing our attention to the accelerator modes in the Harper map, which contains two
nonlinear parameters A and L. In the studies of the stochastic diffusion in the momentum
space. the constant A deterimines the depth of nonlinear modulation in the momentum space,
while the constant I characterizes a size of twist in the phase. We may call the constant A.
stochastic parameter and the constant L. the twist parameter, respectively.

We remind that a special case of A = L stands for the symmetric nonlinear map to
describe the stochastic web. Referring to this special choice of parameters, Shinbrot et
al.[13] have discussed control of transport in a chaotic lattice.

The present work has attempted to examine structure of the various order of the accel-
erator modes of the Harper map from the view point of generic properties of the nontwist
map. Since the period-1 step-1 (fundamental) accelerator mode do not depend on the twist
parameter L, the mode persists after the separatrix reconnection. As for the period-2 step-1
accelerator mode, the elliptic points are independent of the twist parameter L, while the
hyperbolic points approach each other in the g-direction and then scattered towards the
p-direction. Upon the increase of the twist parameter, the system exhibits feature of chaos
with the robust structure of pairs of the elliptic period-2 step-1 accelerator mode. This is
the process of the formation of vortex in the nonlinear map.

With regards the higher order odd periodic accelerator modes, we have observed that the

clliptic point and the hyperbolic point collide each other and annihilate. This is nothing but



the inverse process of the tangent bifurcation. On the contrary, for the even periodic accel-
erator modes, pairs of the elliptic points form the vortex pair in the phase plane. Eventually
the vortex pair annthilates for all of the even periodic orbits other than period-2.

We anticipate that these detailed mechanisms of the separatrix reconnection, the vortex
pair formation and the annihilation of the periodic orbits are responsible to determine the
so called stickiness around the islands in the Hamiltonian system. In order to provide
quantitative information on the notion of the stickiness, we need investigate interrelationship

between mechanism of these elementary processes and probabilistic estimate of the stickiness.
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§Appendix I: Involutions and Symmetry Lines

In order to analyze the structure of the periodic points, it is useful to consider the symmetry
of the system [16, 17, 18].

For the Harper map, both of the transformation function G(p} is antisymmetric with
respect to momentum inversion, G{—p) = —G(p). Let us investigate the accelerator modes
appeared for A > L. In this case, the Harper map (6) may be expressed as the product of

two involutions

T =11, (26)
with I? = I2 =1 as follows.
L P T 7F (27)
¢ = z—Glp)
= p+F{g-G
Lol P+ F{g—G(p)) 28)

¢ = q¢—G(p) -Glp—Flq¢—G(p)))
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When 1 is factorized. involution I, is defined for all integers j by
I, =11 (30)
with /7 = 1. A symmetry line v, for any integer j is formed by the set of fixed points of [,
v, {R|I, - R =R} (31)

Then the important properties are derived f{rom the definition of symmetry lines. The
intersection of the symmetry lines v, and v, is a periodic point of period |7 — 2. Symmetry

line v, is transiormed to yan4, by T™.
Finty — Tnﬁf}' (32)
The following recurrence rejations hold.

%R} = 3-(T7'R) (33)
n(R) = naTR) (34)

Examples of symmetry lines are following.

Yo 1 Zp=m (32)
no: 2p=Flg—G(p)y=m (36)
1 2p—2F(¢-Glp))=m (37)
vt 2p—2F(¢—G(p)) = Flg—Glp) = Glp— Flg—G(p)))) =m (38)
yi o 2p—2F(g—G(p)) —2F{¢—G(p) - Glp— Flg—G(p)))) =m (39)
-1t 2p+F(g)=m (40)
Y2 ¢ 2p+2F(g)=m (41)
vos 1 2p+2F{g—G(p)) + Flg+ Glp+ Flq))) =m (42)
Yoa o 2p+2F(g-G(p))+2F(q+ Glp+ Flg))) =m (43)

s Appendix II: Period-2 Accelerator Modes

We can determine all the position of period-2 accelerator mode by the existing conditions

{13} and (14) . Let us consider this condition more carefully. Since the functions F(g) and

11



G(p) are sinusoidal, substituting (13) into (14), we obtain

Glp+ F(g)) + G(p) =m. (44)
Substituting (44) back into (13), we obtain

Flg)+ Flg—G(p)) = s. (45)

Focusing our attention to the period-2 step-1 accelerator mode, s = 1 and m = 0. Using the

sinusoidal relation, (44) is written as
sinw(2p 4+ £{q))cosnF(g) = 0. (46)
There are two cases which satisfy (46).

2p+F(g) = n (47)
Flg) = : (48)

First, we solve {45) and (47) and then solve (45) and (48) later. Substituting (47} into (44).
we obtain

2p—Flg—G(p))=n'. (49)

Thus the solutions of (45) and (47) are the intersections of (47) and (49).
Next, we solve (45) and (48). In the case of n = 1,

Flg)= 3 (30)
Then from (45) we obtain
Flg—G(p) = 3. 1)
From (50) and (51), we obtain
sin7G/(p) cos 7(2q — G{(p)} = 0. (52)

Thus, the solutions are the intersections of the following lines.

(53)

N ] 3

(54)



and

Flqg) =

2q - G(p) =

Lo e | =

Equations {47} and {49) are nothing but the symmetry lines ~_; and ~;. respectively. Inter-
sections of (33) and {54) are elliptic points. We can determine the hyperbolic points after

the reconnection by (20) and {21).
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§Figure Captions

Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1. Phase plane of the period-1 step-1 accelerator mode at A = 6.37 and L = 0.00!
with the symmetry lines 4,(7 = ~2,—1.0.1.2).
2. Phase plane of the period-1 step-1 accelerator mode at A = 6.37 and L = (.009.

Separatrix reconnection occurs in the vicinity of these parameter values.
3. Phase plane of averaged Hamiltonian (16) at A = 6.37 and L = L. = 0.009561.
1. Phase plane of the period-1 step-1 accelerator mode at A = 6.37 and L = 0.02.

5. Phase plane of the period-1 step-1 accelerator mode at A = 6.37 and L = 0.3. Be-
{ween the two stochastic layers, two dimerized chains of the period-11 islands indicate

the evidence of the separatrix reconnection.

6. Phase plane of the period-3 step-1 accelerator mode at 4 = 2.3 and L = 0.9.
Period-3 islands appear as pairs in staggered manner. The position of the hyperbolic

points are identified with the intersection of the symmetry lines.

7. Phase plane of the period-3 step-1 accelerator mode at A = 2.3 and L = 1.3. After

symmetry lines tangent each other, the period-3 orbits annihilate.

8. Phase plane of the period-2 step-1 accelerator mode at A = 3.185 and L = 0.3 with
the svmmetry lines «,(j = —2,—1.0.1,2). The counter rotating islands appear in the

aligned manner.

9. Phase plane of the period-2 step-1 accelerator mode at A = 3.185 and L = 0.4. The
hyperbolic points approach in the ¢ direction and scattered toward the p direction.
Period-2 islands form the vortex pairs. Symmetry lines of v, and vy_; never intersect at
the hyperbolic points after the reconnection. Intersections of lines of Eq. (20} and (21)
determine the hyperbolic points after the reconnection. The line (21) passes through

just between the vortex islands.



Fig. 10. Phase plane of the period-4 step-1 accelerator mode at A = 1.8 and L = 1.1
with the symmetry lines v,(7 = —4,-3,-2,—1,0,1,2,3,4). There appear the 4 vortex
pairs. Since this is after the reconnection, there is no intersection of symmetry lines.

at the hyperbolic points.

Fig. 11. Phase plane of the period 4 step-1 accelerator mode at 4 = 1.8 and L = 1.2.
After the symmetry lines of v_; and «; tangent each other, the period-4 elliptic points

annihilate.

¢Table Caption

Table 1. The list of the accelerator modes of the Harper map.
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A L Period | Step
6.37 10.1 1 1
3.185 [ 0.4 2 1
2.3 0.9 3 1
1.8 1.15 4 1
1.5 1.0 5 1
1.305 | 0.98 6 1
1.3 1.105 20 3
1.3 1.075 13 2
1.2 1.05 15 2
1.17 10.93 7 1
1.1 1.015 9 1
1.1 0.954 8 1
1.07 1.02114 10 1
1.06 | 0.988 19 2
1.0 0.9575 11 1
0.904 | 0.889 14 1
0.9 0.86 12 1
0.85 | 0.8439 17 1
0.84 | 0.8305 16 1
0.8 0.79464 18 1
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