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Abstract

The mechanism of wrap, tilt and stretch of vorticity lines around a strong straight vortex
tube with circulation I in a simple shear flow (Il = 5X,X;, S being a shear rate) is investigated
analytically. An asymptotic expression of the vorticity field is obtained at a large Reynolds
number I'/v >> 1, v being the kinematic viscosity of fluid, and during the initial time St < 1
of evolution as well as St < (I'/v)%. The vortex tube, which is inclined from the streamwise
(X1) direction both to the vertical (X} and spanwise (X3) directions, is tilted, stretched and
diffused under the action of the uniform shear and viscosity. The simple shear vorticity is, on
the other hand, wrapped and stretched around the vortex tube by a swirling motion induced
by it to form two spiral vortex layers of high normal vorticity. The magnitude of the normal
vorticity increases up to O ((F/V)%S) at distance r = O ((F/y)i(vt)%) apart from the vortex
tube. The spirals induce axial flows of the same spiral shape with alternate sign in adjacent
spirals which in turn tilt the simple shear vorticity toward the axial direction. As a result, the
vorticity lines wind helically around the vortex tube accompanied with conversion of vorticity of
the simple shear to the axial direction. The axial vorticity increases in time as S%t, the direction
of which is opposite to that of the vortex tube at r = Q ((F/V)%(Vt)%) where the magnitude
is strongest. In the near region r < (F/V)%(Vt)%, on the other hand, a viscous cancellation
takes place in tightly wrapped vorticity of alternate sign, which leads to the disappearance
of the normal vorticity. Only the axial component of the simple shear vorticity is left there
which is stretched by the simple shear flow itself. As a consequence, the vortex tube inclined
toward the direction of the simple shear vorticity (a cyclonic vortex) is intensified, while the
one oriented to the opposite direction {an anti-cyclonic vortex) is weakened. The growth rate
of vorticity due to this effect attains a maximum (or minimum) value of +5%/3% when the

-2 -



ortex tube is oriented to the direction of X; + X, T Xg. The present asymptotic solutions
are expected to be closely related to the flow structures around intense vortex tubes observed
in various kinds of turbulence such as helically winding of vorticity lines around a vortex tube.
the dominance of cyclonic vortex tubes, the appearance of opposite-signed vorticity around
streamwise vortices and a zig-zag arrangement of streamwise vortices in homogeneous 1sotropic

turbulence, homogeneous shear turbulence and near-wall turbulence.



1. Introduction

Tube-like vortical structures of concentrated high vorticity have been commonly observed in
many turbulent flow fields. In homogeneous isotropic turbulence, there exist strong coherent
elongated vortices in a weaker background vorticity, and a relatively large portion of turbu-
lence kinetic energy is dissipated around them (Siggia 1981; Kerr 1985; Hosokawa & Yamamoto
1989; She, Jackson & Orszag 1990; Ruetsch & Maxey 1991; Vincent & Meneguzzi 1991; Douady,
Couder & Brachet 1991; Kida & Ohkitani 1992; Jiménez ef al. 1993; Kida 1993). In homo-
geneous shear turbulence, Kida & Tanaka (1992, 1994) showed the presence of longitudinal
vortex tubes which induce an intense Reynolds shear stress, and clarified their generation and
development processes. In near-wall turbulence, it was found that streamwise vortex tubes
play a central role in the production of turbulence kinetic energy (Robinson, Kline & Spalart
1988; Brooke & Hanratty 1993; Bernard, Thomas & Handler 1993). In near-wall turbulence
streamwise vortices are closely related to the generation of high skin-friction (Choi, Moin & Kim
1993; Kravchenko, Choi & Moin 1993). Another example of tube-like concentrated vortices is
libs observed in a turbulent mixing layer (see Hussain 1986). These observations make us to
believe that tube-like vortices may be one of the key ingredients of coherent structures which
give a significant contribution to the production and dissipation of turbulence kinetic energy.
They are also expected to control heat, mass and momentum transfers. Clarification of the
dynamics of vortex tubes would lead to a new concept useful for understanding and controlling
turbulence phenomena.

In time-evolution of tube-like structures their interactions with a background turbulence

field are considered to play a significant role. It is understood at least conceptually that



a background turbulence stretches and rotates vortex tubes as well as deforms their shape
and that the vortex tubes, on the other hand, wrap and stretch the background vorticity
lines. We must admit, however, that the knowledge of the actual dynamical process in these
interactions is still poor. There have been a lot of efforts devoted to this subject. Moore {1985)
investigated dynamics of a diffusing straight vortex tube perfectly aligned with a simple shear
flow. He derived a large-Reynolds-number asymptotic solution to show that excessive vorticity
wrapping enhances viscous cancellation to expell the shear flow vorticity near the vortex tube.
In their asymptotic analysis of a strong vortex tube subjected to a uniform non-axisymmetric
irrotational strain, Moffatt, Kida & Ohkitani (1994) found that at large Reynolds numbers, a
stretched vortex tube can survive for a long time even when two of the principal rates of strain
are positive. Recently, Jiménez, Moffatt & Vasco (1996) applied Moffatt, Kida & Ohkitani’s
(1994) asymptotic theory to dynamics of a two-dimensional diffusing vortex tube in an imposed
weak strain. They showed a good agreement between the results of their theory and a numerical
stmulation of two-dimensional turbulence.

In this paper, we study vorticity dynamics, especially vortex wrapping, tilting and stretch-
ing, around a strong straight vortex tube in a simple shear flow (U = 5X,X 1, S being a shear
rate). A vortex filament of circulation I is set at an initial instant being inclined from the
streamwise (X;) direction both to the vertical (X;) and spanwise (X3) directions. The vortex
filament is tilted, stretched and diffused under the action of the uniform shear and viscosity. An
asymptotic analysis is performed at a large Reynolds number I'/v 2> 1, v being the kinematic
viscosity of fluid, and at the initial time St <« 1 of evolution. The problem to be considered

here includes the ones treated by Moore {1985) and by Jiménez, Moffatt & Vasco (1996) as

special cases.



In §2, we derive the equations of motion of a vortex tube in a simple shear flow in a
coordinate system rotating with the central axis of the vortex tube under the assumption that
the vorticity and induced velocity of the vortex tube are uniform along its axis. Asymptotic
solutions are presented for I'/v 3> 1 and St < 1 by extending Moore’s (1985) and Moffatt,
Kida & Ohkitani’s (1994) methods in §3 (details of analysis for higher order are described in
Appendices A and B). In §4, we provide a physical interpretation of the asymptotic solutions
to explore structures of the vorticity field. Section 5 is devoted to concluding remarks. The

main symbols to be employed in this paper are listed in Table 1.

2. Formulation

We consider the motion of a straight vortex tube in a simple shear flow with uniform pressure
P (see figure 1). Let the coordinate system OX;X,X; be at rest, the X;-axis being aligned
with the shear flow direction. The uniform shear velocity U is taken to depend only on X 9, 1.e.,
U=5XX 1, Where S (> 0) denotes the shear rate, which is constant in time, and X, is the
unit vector in the X;-direction (¢ = 1,2, 3). In this configuration the uniform shear vorticity is
given by V x U = —SX 3, which is anti-parallel to the Xj3-axis. Hereafter, we call X;, X, and
X3 the streamwise, the vertical and the spanwise coordinates, respectively.

The vortex tube is inclined both vertically and horizontally from the streamwise direction.
It will be tilted and stretched by the uniform shear. The origin O is located on the central axis
of the vortex tube, so that it is a stagnation point of the flow. We suppose that the vortex tube

is of infinite extent, and its vorticity and induced velocity are uniform along its axis.



2.1. Structural coordinate system

We formulate the problem in a rotating coordinate system Ozjrpz3 as shown in figure 2.
Rotating the stationary coordinate system OX;X,X; by an angle of # around the X -axis, we
set the new X;-direction as the z3-axis. Next, we further rotate OX;X;X; by an angle of «
around the z3-axis (new X;-axis), and then the new X;- and X,-directions are set as the x;- and
x,-coordinates, respectively. Rotation angles, o and 3, are taken so that the resulting r;-axis
may coincide with the central axis of the vortex tube. The vorticity of the vortex tube is taken
to be pointed to the positive z;-direction. Hereafter, we call Oz z,23 the structural coordinate
system, x; the axial coordinate and (r,,z;) the normal plane. Flow symmetry allows us to
take o and # in the range of 0 < o < 7 and ——%vr < g < %’ﬂ' without loss of generality. In
the case of @ = 0, the vortex tube is aligned with the streamwise direction. When a < (or >)
%ﬂ', it is inclined downstream (or upstream). In the cases of 8 = :i:%‘n', the tube axis is located
on the horizontal plane X, = 0. When 3 < (or >) 0, the spanwise vorticity component of the
vortex tube is negative (or positive). Hereafter, a vortex tube for 3 < (or >) 0 is referred to as

a cyclonic (or anti-cyclonic) vortex.

Two vectors, (V1,V5,V3) in OX X, X3 and (vy, vy, v3) in Oxyz2z;, are connected by relation

Vi=M,v, (i=1,2,3), {2.1)
where
COS o —sin ¢ 0
{M,} = sincwcosf cosacosS —sinf (4,7 =1,2,3) (2.2)

sinosind cosasinfl  cosf3

1s a transformation matrix which represents a system rotation. Here and subsequently, the sum-
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mation convention is employed for repeated subscrips. Similarly, the unit vectors representing

the axes in the two coordinate systems are related by
ii = J.M;'jfﬁj (3 = 1,2,3). (23)

As the vortex tube evolves, the structural coordinate system Oxzjx223 rotates around some
axis which passes through the origin O. It follows from the definition of o and 8 that the

angular velocity of a system rotation £2 is given by
2= (4B X, + (do) 3. (2.4)

By making use of (2.2) and (2.3), we can express each component of the angular velocity vector
in Oz T2X3 as

2y = (df)cosa, N =—(df)sine, 23 =d;c. (2.5)

2.2.  Angular velocity of structural coordinate system

The motion of an incompressible viscous fluid of uniform mass density (taken as unity) is

described by the Navier-Stokes equation, or equivalently the vorticity equation, which are

respectively written in the structural coordinate system Oz 2,13 as
Su+[(u—-2x2)-Viu = uwx2-Vp+ovVia, (2.6)
dw+[(u—Nxz) Viw = wx N2+ (w-V)u+ Vi, (2.7)

where u(z1, 22, 23, t) is the velocity field relative to the stationary coordinate system, w = V xu

is the vorticity, p is the pressure and V is the gradient operator in the structural coordinate

tRecall that a time-derivative of a vector field A in a stationary coordinate system is replaced

as A — A —[(2 x z)- V]A + 2 x A in the structural coordinate system.

~-8-—



system. The continuity equation is written as
V-u=0. (2.8)

Now let us decompose the velocity, the vorticity and the pressure fields into contributions

from the simple shear flow and the fluctuation field as
v=U+4+4, w=VxU+w', p=P+p. (2.9)

Then, the time-evolutions of the fluctuation velocity and vorticity are described by

Su' + (v +7) - Vi = o' x N2 (4 -VU-Vp +vVi, (2.10)
' + (v +7) Vw' = ' x 24 (@ VIU+[(w +V xU) Ve +vvi! (2.11)
V-u =0, (2.12)
w' =V xu, (2.13)

where
T=U-Nxz (2.14)

is the simple shear velocity relative to the structral coordinate system. The simple shear velocity

and vorticity are respectively written as
U= SXgX] ES SJMHMQJ:EJ‘EI', (215)
VxU:=-5X;=—5M,3,. (2.16)

Notice that in general the coordinate z; appears explicitly in @, and %s. If we require,
however, that u' and w’ are uniform in the z;-direction, it follows from (2.10) and (2.11) that

Uy and Tj are independent of z;. Then we have

2, =0, 23 =~Ssin’xcoss. (2.17)
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The second and third equations of (2.5) then give
(d:B)sina = 0, {2.18)
d;a = —S sin® a cos §. (2.19)
Equations (2.18) and (2.19) have a trivial solution o = 0 for any arbitrary 5. Except for this
trivial case, {2.18) requires that
4.8 = 0. (2.20)

In the case of @ = 0, the vortex axis (z;-axis) is identical with the X;-axis, and any rotation
around this axis does not change the orientation of it, so that we can take J to be constant in
time ¢. Hence, we can assume that 3 is constant in any case. The first equation of {2.5) then
yields

2 =0. (2.21)
Equations (2.17) and (2.21) tell us that £2 has only the z3-component. By integrating (2.19),
we obtain

cot o = cotag + Stcos 3 (2.22)

with oo denoting the initial value of o at ¢ = 0. It follows from (2.22) that & — 0 as @y — 0.
Thus, the trivial solution (@ = 0) is included in (2.22). These considerations lead us to the
conclusion that a vortex tube rotates on a plane inclined to the spanwise direction at an angle
of # which is invariant in time, and angle o from the streamwise direction approaches zero
according to (2.22) as time progresses. This implies that the central axis of the vortex tube,
the velocity and vorticity of which are uniform along it, must be passively convected by the
uniform shear flow (see figure 3). Note that in the special cases of & = 0 or f = i, the

vortex tube is not inclined vertically and is stationary.

_10‘



2.3. Basic equations

Suppose now that the fluctuation fields w', #’ and p' are independent of 2y, i.e., & = 0. We

then obtain closed equations for w} and v from (2.10) and (2.11} as

!
Bty — O, wn) S({t)zs + A(t)x3)0w;
a(;ﬂ2: $3)
= Sy(thu + SE(t)Fsu) + v Vi W,
0(, u)
Byu 8(:::2,:1:13) = S(v(t)za + A(t)z3)02u;
= —Sy(t)u, — S(cosasin B8y + cos f83)) + vV 2 ul,
where 1 (uh = 839, uy = —89¢) is the streamfunction, which is related to w{ via

Vi'ﬁ[/’ - _w;a
and
(t) = BISUl = ¢O$ @ sin v cos 3,
VxU)-z
M) = %l:——sinasinﬁ,
20
€t) = T"' = —2sin’ cwcos § (< 0)

(2.23)

(2.24)

(2.25)

(2.26)
(2.27)

(2.28)

(cf. {2.15)—(2.17)). Here, V2 = 82 + 6 is a two-dimensional Laplacian operator. Note that

¥(t) represents the axial rate of strain of the simple shear flow, A(t) the axial component of

the simple shear vorticity, and £(t) the vorticity corresponding to the angular velocity of the

structural coordinate system, all of which are normalized by the simple shear rate. Note also

that the nonlinear stretching-and-tilting terms w)Jd,u] have disappeared from (2.23) because the

flow field is uniform along the vortex tube. Once (2.23) and (2.24) are solved, we can calculate
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the other two fluctuation vorticity components through
w’z = 63’1‘.&3, DJ; = —82u’1. (2.29)

The second and third terms on the left-hand sides of (2.23) and (2.24) represent the advection
by the fluctuation velocity and the simple shear, respectively. On the right-hand side of {2.23),
the first term represents the vorticity stretching via the simple shear, while the second is
the production of the axial (x;) component of the fluctuation vorticity via the tilting by the
velocity fluctuation of the vorticity associated with the system rotation which has only the
r3-component. This second term is also interpreted as a sum of the three contributions; the
tilting of the zs-component of the fluctuation vorticity through the simple shear, w,d,U; =
S cos® o cos 3 zu), the tilting of the 23-component of the simple shear vorticity via the velocity
fluctuation, —SMs30;u] = —Scos3d;u], and the effect of frame rotation, (w' x £2)-%; =
~SsinacosB8:ul. f B = i%vr, all of these three contributions vanish. If a = 0, the tiltings
of the fluctuation vorticity and the simple shear vorticity cancel out, and the effect of frame
rotation vanishes. Thus, in these two special cases, the production term on the right-hand
side of (2.23) disappears. Except for these cases, the effect of the tilting of the simple shear
vorticity is important in production of the axial vorticity. Note that this term is negative (or
positive) according as wj = d3u] > (or <) 0. On the right-hand side of (2.24), the first two
terms originate from the advection of the simple shear velocity by the velocity fluctuation and

the frame rotation.
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2.4. Transformed equations

For the convenience of analytical treatment, we introduce plane polar coordinates (r,8) with

73 = rcosf and z3 = rsinf, and employ Lundgren’s (1982) transformation of radial coordinate

and time as
R= AW, T= " A(s)ds, (2.30)
where
A(t) = exp (S /0: ¥(s) d.s) (2.31)

represents the stretch factor along the vortex tube. In the present case, it follows from (2.22)

and (2.26) that

SII1 (g
Alf) = 2.32
(t) sin o ( )
fora #0 and 3 # :i:%‘;r, and then we have
sin oy ¢ v cosec ; 41 ( cot & + coseca )] (2.33)
= — lcotx o — cot ag cosec o n . )
2S5 cos 8 0 0 cot ag + cosec ap

If o =0or 8 =d2dinr, then y(t) =0 and A(t) = 1, and thus we have R == r and T = ¢. Since

A(t) > 0 for t > 0, T increases monotonically with time t. For ¢ € 1 it changes as
T=t+ ;Scosagsinagcos 3 {2+ -+, (2.34)
and for ¢ > 1 it behaves asymptotically as
12

1 In
T =t 1Ssin og cos B + cos ag 7 +0 (—t)] . (2.35)

The variations of A and T are plotted against time ¢ for o = iﬂ‘ and for three values of 7 in

figures 4 and 5, respectively.
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Equation (2.24) has a particular solution
uy, = —=Scos fzy -+ Scosasinfry (= —SrReal [ifeo(t)e™], say), (2.36)

which will turn out to play a key role in vorticity dynamics near the vortex core (see §3.4),
where

Foolt) = — cosarsin 8 —icos § = —D()e*®) (2.37)
with

cos 3

D(t) = (cos® asin® 8 + cos® )6’)%, w(t) = arctan ( ) (0 < oft) < m). (2.38)

cos o sin f3

Note that Jzuy, = Scosasing = SM;; and —Oyuy, = Scosfl = SMy;, ie., the vorticily
associated with this particular solution is equal to minus the component normal to the vortex
It

tube of the simple shear vorticity. If we introduce a new dependent variable vy by

I

u; = u'lp + uy (2.39)
and substitute it into (2.24), we can eliminate the inhomogeneous term on the right-hand side
of (2.24). Then, 9;u{ and —8,uf are equal to the z,- and z3-components of the total vorticity,
respectively, i.e., wy = Szu] and wy = —Ful.

Equations (2.23) and {2.24) are now transformed into closed equations for new dependent

variables’
W(R,0,T) = o(r.0,8)/At) = —=V2b, Ru(R,6,T) = A} (r,6,1)  (2.40)
as
1 8(b, ) o 2524 ()A(2)
R 8(1?, 9) -+ (3’1” — VVR)(JJ = SthxJ + SLz’U, + W’ (241)
1 0(¢. Ru) 2 _

tNotice that the axial velocity is expressed by Ru not by u.
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where

1 1
VL =84+ EaR + Eag (2.43)
is the two-dimensional Laplacian operator, and
1
L, = m[‘y(t)(— sin 268 95 + R cos 20 Or) + A(t)(cos 20 8y + Rsin 260 8 — 8y)], (2.44)
_ &) .
Ly, = = [cos g + sinf (ROp + 1)] (2.45)
A(t)

are first-order differential operators. The components of the total vorticity are expressed in

terms of w and w as

wy = SAt) + A()w, (2.46)
Wy = A(t)'%[cos 60 + sinf (R8x + 1)]u, (2.47)
wy = A(t) ?[sinf8 — cosh (ROg + 1)]u. (2.48)

The right-hand sides of {2.41) and (2.42) represent the effects of the simple shear on the
fluctuation fields. The first terms SLjw and SL; Ru represent respectively the deformation of
the spatial distribution of w and u in the normal {zs, 73)-plane by the simple shear. The last
two terms on the right-hand side of (2.41) represent the coupling effect of the axial vorticity
and velocity, that is, the second term on the right-hand side of (2.23), which is composed of
the tilting of the z5-component of the fluctuation vorticity by the simple shear, the tilting of
the z3-component of the simple shear vorticity via the velocity fluctuation, and the effect of
the frame rotation. The last term is the contribution from particular solution (2.36). Note
that if a vortex tube was not inclined vertically (@ = 0 or 8 = :i:%ﬂ'), the second and third
terms would vanish, so that w would be decoupled from u. In these special cases the problem

is much simplified. Pearson & Abernathy (1984) and Moore (1985) studied the time-evolution
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of a diffusing vortex tube perfectly aligned with a simple shear {a = 0), and recently Jiménez,
Moffatt & Vasco (1996) examined the structure of a two-dimensional diffusing vortex tube in

an imposed weak strain (¢ = %ﬂ' and f = i%ar). The present analysis includes both of them.

3. Asymptotic analysis at Re > 1 and ST < 1

In this section, we consider an early stage of time-evolution of a strong straight vortex tube.
A straight vortex filament with circulation I is put in a simple shear flow at an initial instant

T = 0. That is, the fluctuation vorticity is concentrated on a straight line R =0, i.e.

wlr=o = %}f), (3.1)

and the fluctuation axial velocity along the filament is null, v} = 0, so that, from (2.36)—(2.40),
u]T:O = S Real [ifge_ia], (32)

where
fo=—cosagsinf —icos S = —Dgel®® (3.3)
with

cos 3

Dy = (cos® agsin® § + cos? ﬁ)%, g = arctan (—
cos oy sin 3

) O<po<n).  (34)

Note that ¢y represents an initial angle from the x;-axis to a projection of the X;-axis on the

normal (2, z3)-plane (see (2.2) and (2.3)).7 In the case of g < 3w, (g is greater than, equal

to or less than %ﬂ' according as the vortex tube is cyclonic, neutral or anti-cyclonic.

*When oy = %‘TT and 3 = :i:-%:rr, the X;-axis is normal to the (24, z3)-plane, so that the z;-axis
(central axis of the vortex tube) is anti-parallel or parallel to the simple shear vorticity. In this

case, fo = 0 (u}, = 0), and thus f(n) = 0 (see §3.4). This implies that u] = 0.
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Here, we define Reynolds number by

Re = —, (3.5)

and denote the reciprocal of it as

_ — 3.6
¢ 27w Re I ( )

In the following, an asymptotic analysis will be performed at a large Reynolds number

(Re>> 1, e € 1) and at an early time of evolution (ST < 1).

3.1. Non-dimensionalization

We use shear rate S and kinematic viscosity v in order to non-dimensionalize the variables in
(2.41) and (2.42). A characteristic time-scale is then taken to be 1/S, and a length-scale is
(v/ S')%. Therefore, the axial velocity Ru is scaled by (uS’)%, and u itself is scaled by S. The
vorticity w and the streamfunction 9 are scaled respectively by €7'S (= I'S/v) and by e~'v
{= I') so that the dimensionless vortex strength and streamfunction may be independent of I"
at T' = 0. The scaling units employed here are tabulated in Table 2.

By rewriting (2.41) and (2.42) with the dimensionless variables using the same notation for

them as the originals, we obtain

1 9(¢,w) 2 2 2v(£)A(t)
TRA(R) OV = ehwelut EenT 3D
18(, R
_E—-—-—__ész, ;;) +e(8r — VE)Ru = eL;Ru, (3.8)

where L1, Ls, ¥(t), A(t), £(t) and A(t) are given by the same expressions as before.t

'Dimensionless variables are used only in Section 3 but for §3.1.

.



3.2.  FEarly-time approzimation

Consider the early period of time-evolution of a strong vortex tube which starts with a straight
filament. We anticipate that viscous diffusion (i.e., the left-hand sides of (3.7) and (3.8)) has
primary effects on dynamics of the vortex tube and that the simple shear (i.e., the right-hand

sides of (3.7) and (3.8)) plays secondary roles. We then seek solutions to (3.7) and (3.8) in the

form as
w o= w® 1 ® @y (3.9)
b o= O 4 M 4@y (3.10)
w = @1y ® oy (3.11)
where
W = Vi) (5=0,1,2,--4). (3.12)

It is assumed that w® and ¥(® represent a diffusing strong vortex tube, and that Ru(®
represents the deformation of the velocity field from the simple shear flow by the vortex tube.
Then, w® and ¥ (j = 1,2,---) describe successively the higher-order interactions between
the vortex tube and the simple shear. We shall take account of the effects of the simple shear
one by one via w') and ) {j = 1,2,---). Substituting (3.9)—(3.11) into (3.7} and (3.8), we

have, at the leading order,

] 3(¢(0)’ w(ﬂ))

-G o= VR =0 (313)
1 8(©. Ry®
- 2 g eor — VR — 0 (314)

The next higher-order equations for vorticity are written as

1 3(1;)(0)#(1)) (™M, W)
" R| 8(R,0) 3(R,0)

+6(8p — V)V = eL1w® 4 2 Lu® + 62%’ (3.15)
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and so on. These equations are supplemented by the initial and boundary conditions as

5(R)

Wy = — 5 W poe = 0, (3.16)
w(1)|T=o = w(2)|T=0 =---=0, w(1)1R=oo = w(2)|R=cx> =--=0, (3-17)
Ortr oo = Op V| pase = Orty | peoo = --- =0, (3.18)
ur_y = 49| = Real [ifoe], (3.19)
1O pso = u@|pg = --- = 6, (3.20)

w®{po = T Real [dr (A(t)? foolt)) br=oie ],

(3.21)

u®|pooe = 37% Real [d} (A(1)? fuolt)) Ir=ie™]
and so on, where the conditions for u{”|g—o, (j = 0, 1,2, - -) have been obtained by an expansion
of (scaled) particular solution (2.36), —A(f)u},/R. In addition, w® (j = 1,2,---), ¥ and
Rul®) (k=0,1,2,---) are assumed to be regular at R = 0. The initial condition, on the other
hand, has been derived from (3.1) and (3.2). It has been also assumed that the fluctuation
parts of the velocity and the axial vorticity may decay at infinity. An additive constant in
the streamfunction will be taken to be zero since it does not affect the flow. Solutions are

determined successively starting from leading-order equation (3.13), which will be made in the

following three subsections.

3.3.  Azial vorticity

We first consider the leading-order solutions. Under initial and boundary conditions (3.16), the

solution of (3.13) is uniquely determined as

1 2
(0) = ——¢p 7
w T (3.22)
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where

R
= 3.23
M=ot (3.23)
is a similarity variable. Substitution of (3.22) into (3.12) for j = 0 leads to
PO = - /" 1= 4, (3.24)
2m Jo s

which is regular at 7 = 0 and satisfies (3.18).
It follows that for & < ix (¥(t) > 0) the leading-order axial vorticity A(t)w® represents
a diffusing and stretching vortex tube under the action of viscosity and the axial stress of
1

the simple shear. For @ > 37 (7(t) < 0), on the other hand, it represents a diffusing and

compressing vortex tube.

3.4. Azial velocity and normal voriicity

Next we consider the axial velocity deformed by the vortex tube. We seek a solution to (3.14)

written in a separation-of-variable form in similarity variable n and angular coordinate £ as
u® = Real [if(n)e™). (3.25)

By substituting {3.25) into (3.14), we obtain

2

" 3\, ., 1—e?
1 n
Hereafter in this section, the prime is used to denote differentiation with respect to . Boundary
conditions to be imposed are that Rf(n) is regular at n = 0 and that f(co) = fo (= —Dge'¥®)
(see (3.19)). The asymptotic expansion of the solution to (3.26) for large and small values of 5

can be easily calculated. For n >» Re?, we have

i ike Re® (iRe+ 8)Re® _
f(??) = —Dye'? [1 + 4_1]2 - 32774 - ( 384’1’]3 + - :l + O(e 112)’ (327)
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while, for n <« Re‘lf, we have

iRe . iRe  Re?\ ,
=g |1 — — — 2
f(n) Co[ s’7+(24 192)n+ : (3.28)
where ¢q is a constant, which will be determined by the asymptotic condition f(co) = — Dyge'#o

(see below).

Equation (3.26) is identical with the one obtained by Moore (1985) who analyzed the dy-
namics of a diffusing vortex tube perfectly aligned with a simple shear flow, which corresponds
to the present case of @ = 0. He has presented the asymptotic solution to (3.26) for Re > 1
using the WKB (Wentzel-Kramers-Brillouin) method. Here, following his method, we derive
an asymptotic solution to our problem for Re > 1 (¢ « 1).

In order to apply the WKB method, it is convenient to eliminate the first-order-derivative

terms in (3.26). To do so we introduce a new dependent variable g{(n) by

Fn) = n2e " g(n). (3.29)

Substitution of (3.29) into (3.26) leads to

. 2 _
g'+ |iReH(n) —n* — 4 — e |9= 0, (3.30)
where
1—e ™

In the following we consider three regions of values of 1 separately, that is, 5 = O(Re‘%), 0(1)

and O(Re%).

First, suppose that n = O(Re‘%) and put n = Re~:(. Then (3.30) is written as

3
g+ |i— -~ +0(Re N g =0, (3.32
4¢?
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which is valid for ¢ < Re? (i.e. for n < 1). This equation has a solution
= ex(E N (eT™C) 4+ O(Re™Y), (3.33)

which is regular at { = 0. Here, ¢; is a constant and J; is the Bessel function of the first kind.

For ¢ < 1 solution (3.33) is expanded as

1 1,8 iz 1 4
g=3zc1eim(> (1—gC —@C +"')= (3.34)

and for { > 1 it is written , in the leading order, as

[e%”i exp(e_%fﬁC) +esm eXP(e%ﬁC)] : (3.35)

By requring that (3.34) may coincide with (3.28), we obtain, using definition (3.29) of g, that

TN

co = Lcyei™ Rek. (3.36)

L=

Next, in the region of n = O(1), equation (3.30) is written as
g"+ Re [iH (n) + O(Re™")| g = 0, (3.37)
which is valid for < Re?. We then apply the WKB approximation to obtain
g= H(n)‘% [c2 exp (Re%n(n)) + ¢z exp (—Re%n(n))] + O(Re™), (3.38)
where ¢; and c3 are new constants, and
— L n 1
n(n)=e71 / H(s)? ds. (3.39)
0
The asymptotic forms of (3.38) for small and large values of 7 are respectively written as

g~ ¢, exple"i™Re?n) + czexp(ei™Rein) for < 1 (3.40)
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~

-
(=N

L

g=n [cz exp (e”%’”Re%(lnn + ,u)) + caexp (e%’“Re%(lnn + u))] for n > 1, (3.41)

where

n= f ds+/ [ 3)2 ——] ds. (3.42}

Matching conditions of (3.40) with (3.35) give

e1 = cp27)Temsm, (3.43)
C1 —Im

c3 = e 8", 3.44

: (271')% ( )

In the third region of = O(Re%), we put = Reix to obtain
g" + Re {% ~ x> —4Re"% + O(Re_l)} g=20, (3.45)
X

which is valid for Re~7 < X € Red (ie. for Re™t € n < Re%). We again apply the WKB

approximation to (3.45) and find?

g = e AR 1) e (X + (6 - 0)F) exp (Refo(x))

-1

+c; (X2 + (x* - i)%) exp (—Re%o-(x))] + O(Re™1), (3.46)

where

o{x) = %ei' [e‘i’”(x‘l —i)* — arctan (e_%"'i(x4 - i)%) + %‘:T] . (3.47)

'There are typographic errors in the WKB solution given by Moore (1985) in his eq. (3.12).

The two linearly independent solutions constructed by the WKB method should be

i

iy — 2 NN +1 e
it — 1) g(X2+(X4_1);) pthteto
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For small values of x, the function o can be expressed asymptotically as
o=e 1" Iny+p+ O(x?), (3.48)

where
p=1leiin24+273 [§w+1+i(iw—1)]. (3.49)

For large x, on the other hand, ¢ has the expansion

ey o1 3.50
T T e T (3:50)
Hence, (3.46) is written as
gmx? [c4e_%”i exp(e‘%”iRe% Inx + Re%p)
feger™ exp(e%"iRe% Iny — Re%p)] for x < 1, (3.51)
and
g = 2c4e'i”ixg exp (%Re%f) for x > 1. (3.52)
By matching (3.51) with (3.41), we find
¢; = cse s Re”%k(Re), (3.53)
s = c;,e“%"iRe%fs(Re), (3.54)
where
1, 3 L g
k{Re) = exp (Rez(ed’" In Ret +et™p + p)) . (3.55)

Finally, we extend the third region to infinity so that boundary condition f(oo) = fo (=
—Dye'#0) can be applied to determine constant cs. We compare (3.52) with the boundary

condition using definition (3.29) of g to obtain

cs = —L1 Dgelleo+im Red. (3.56)
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Constants, c3, ¢y, cg, ¢z and cs are determined in turn through (3.53), (3.43), (3.36), (3.44)

and (3.54). The results are that

o = -—%(%W)%Dgei(W‘%”)Rem(Re), (3.57)
&1 = —(Lr)iDoelPo~im Relx(Re), (3.58)
¢z = —3Dye®o=3m) Reik(Re), (3.59)
cz = —%Dgei(°°°_1‘sa“”)Re%fc(Re), (3.60)
cs = %Dgei(“"’“%“)Re%n(Re)?. (3.61)

When o = %ﬂ' and 7 = :f:%w. then Dy = 0 and uy, = 0 (see a footnote below (3.4)) and
therefore all of the above constants vanish. Hence, in this case it is concluded that f(m) =0,
and thus uf = 0 and 4} = 0. In this special situation the central axis of the vortex tube is
parallel or anti-parallel to the simple shear vorticity. Except for this trivial case, (3.55) implies
that |«] is exponentially small as Re — oo, and so are leol, les], lea, Jes] and Jes).

Now we come back to consider the behaviour of f(n). Since ¢, ¢, and ¢; are exponentially
small constants, solutions (3.33) and (3.38) become very small as Re — oco. Hence, in the
region of 7 < 1, |f[ is very small for Re 3> 1. Next, in the region of n = Refy {(x = 01)),

the dominant contributor to solution (3.46) is the first term since 5 is an exponentially small

constant. Then, (3.29), (3.46) and (3.56) give
f=—=3Doe®x 7 (x* = 1)75 (x* + (x* = 1)3) exp (Re} (o — ). (3.62)

Since the real part of the argument, o — % x%, in the exponential function is shown numerically
to be negative (see figure 6), |f| is also very small for Re > 1 in the region of n = O(Re%)

(x = O(1)). These considerations lead us to the conclusion that |f| (and so Ru and u")
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decreases to zero exponentially as Re — oo up to the region of n = O(Re%). This implies that
wy Rup, at n g Re# (see (2.39)). In other words, that is, the fluctuation axial velocity is well
described in terms of particular solution (2.36). To examine the functional form of f {n) in the
region of n > Rei (x > 1) we expand (3.62) in a series of inverse powers of X, by making use

of (3.50), to obtain, in terms of original variable 7, that

: iRe  Re®
f(?’}) ~ —Dﬂelﬁaﬁ exp (W - 481]6) s (363)
and that
.. iRe iRe  Re?
f!(n) ~ Doeﬂaoz_?fexp (4—?}2 - 481]6) . (364)

In figure 7 we plot f(17)/(—Doe'¥°) expressed by asymptotic solution (3.63) (dashed curve) at
Re = 1000 together with a numerical solution (solid curve) of (3.26) solved by a shooting
method, where thick and thin curves denote the real and imaginary parts, resprectively. The
agreement between the two solutions is excellent except for relatively small values of 7. The
region of disagreement should be shrinked as Re increases. In order to see the Reynolds number
dependence we plot f(n) for two different Reynolds numbers in two different scales in figures 8.
It oscillates more and more frequently with increasing Reynolds number. The solution itself
scales as Re? at large n, while the envelope goes with Res.

We next consider the vorticity component normal to the vortex tube. By using (2.47), (2.48)
and (3.25), the normal components of the total vorticity w = V x U + w' can be expressed in

terms of f(n) as

Wy = A(t)‘%Real [f +inf — %nf’e‘m] , (3.65)

Wy = A(t)‘%lmag [f +inf 4+ %nf'e“m] i (3.66)
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If we use asymptotic forms (3.63) aud (3.64), then (3.65) and (3.66) become

R 2
wy = —A(t)_%DU [cos (g% + tpg) + fe cos (—e— + @p — 9) sin 9} exp (— Re ) , (3.67)

n ot 472 4875
_1 . { Re Re Re Re?
wy = —A(t)"1 D, {sm (@ + ng) - a2 cos (W + o — 6) cos 9] exp (—481]5) . {3.68)

In figure 9 shown are the spatial distribution of normal vorticity (w3 + wg)% and the projected
vorticity lines on the normal (z,2;)-plane, which were obtained from (3.67) and (3.68), at.
Re = 1000. Figures (a), (b) and (c) represent the cyclonic (g = arctan /2, g = —37), neutral
(ag = %TF, B = 0), and anti-cyclonic (a = arctan V2, 3 = iw) cases, in which the vortex tube
1s oriented to the direction of fl + fg — 55;;, X, + fg, and XI + Xz + X;;, respectively.
Here, the relative magnitude of the normal vorticity is repsesented by colour: the red is the
highest (7S) and the blue is the lowest (i.e. zero). It can be seen that the vortex tube Wraps
and stretches vorticity lines around it to form two spiral vortex layers of high normal vorticity
oriented alternately to opposite directions. One of the most mteresting features of the spirals is
that the zy-component of normal vorticity takes positive values in the outermost spiral layers
of strong vorticity. It changes the sign every time it makes a half turn along the spirals. An
important consequence of this change of sign will be discussed in §4.3.

In the near region (n < Relli), however, the excessive wrapping narrows the spacing of the
spiral layers and enhances the viscous diffusion to cancel out their opposite-signed vorticities,
which leads to disappearance of the normal vorticity around the vortex tube and to selective
stretch-and-intensification of a cyclonic vortex tube (see §4.2).

The circumferential vorticity component wg, which dominates the radial component (see

vorticity lines in figure 9), is expressed as

wy = —wysinf + wy cos § = — A(t) "7 Real i(nf)e 1, (3.69)
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which takes local maximum and minimum,

Wemazx 1 gmaz
= A1) |(nf)] at = arg|(nf)] F 37 (3.70)

Womin emin

This implies that two spiral vortex layers of high normal vorticities of opposite signs of wy are

arranged alternately. Tt follows from (3.63) and (3.64) that

: iRe iRe  Re?
! —Dgdivo 1 ¢ 3.71
e E)en(-8) e
and then the magnitude and phase of which are, respectively, written as
1
Re ant\? Re?
(0f) ~ Do (1 +2) eon (i) (3.72)
27’
argl(nf)] = — + arctan | — - + g + 37 (3.73)

In figure 10 we plot {nf)’ Re™3 /(—Dge*¥°) at Re == 1000, where solid and dashed curves repre-
sent the real and imaginary parts respectively, and thin solid lines +|(nf)'{. We can see that
magnitude |(nf)'| has a single maximum of 0.903D,Re at 7 = 275 Res (Moore 1985). It is
exponentially small at 7 < Res, while it approaches a constant Dy = (cos? ag sin® 3 + cos? ,6)5,
which is the magnitude of the normal component of the simple shear vorticity, as 7 increases.
The phase, arg[(nf)'], is infinity at n = 0 and decreases up to 1 = (%Re)% at which it takes a
minimum value of % + %w + o, and thereafter it increases monotonically to approach = 4 g at
n — oo. Therefore, the spiral form of the layer actually terminates around n = (%Re)% since
beyond this point both 8,4, and Oin change only by %TT - % ~ 0.29 in the opposite direction.

The distance between adjacent layers of the two spirals is estimated as follows. Let 7,
and n_ be successive locations for a fixed value of 8 of Wamar and Wymin, Tespectively, and let

An = n_ — 4 be their spacing. Then, it follows from (3.70) and (3.73) that

Re Re (ny +1-) i o [ 2
T — Re~ ! Ap = 45 ~ 4arct 4 ar —_— 3.74
o e ¥ Re )’ (3.74)
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and therefore we have
7
An=0|—= T
K (Re) (3.75)
as long as < (%Re)%. The spacing between adjacent spiral layers is O(1) at 7 = O(Re3 ).t It

is greater than O(1) at O(Re?) < 7 (< (%Re)%‘). For Re3 > 1 (3> Ret), the spacing become

very small as Re — co.

3.5.  Higher-order axial vorticity

In this subsection we consider solutions to higher-order equation (3.15) for the axial vorticity. In
order to get an explicit analytical solution, we restrict ourselves at early-time evolution (T < 1).
Since time 7" does not explicitly appear in the leading-order streamfunction (3.24), the first-

order streamfunction and the corresponding axial vorticity may be expanded respectively as

w(l)(R’ 6,7) = Tt/J(l’l)(n, 8) + T21/«’(1’2)(77a A)+---, (3.76)
(R 6. T) = W@, 8) + T (n,6) + -, (3.77)
where
Wl = _Iv2pa)  (j=1,3,-..) (3.78)
with
2 2 1 1 2 ~
V. =98+ 58,7 + Faa. (3.79)

For small values of T', the time-dependent factors, /A, A/A and £/ A} in linear operators L; and

L (see (2.44) and (2.45)) are expanded in power series of T, using o = crg— T sin® cg cos S+ - -,

'In dimensional variables, the location of the maximum normal vorticity is O (Re% (I/T)%)

and the spacing of the spirals is O ((VT)%) (see §4.4 and figure 19).
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as

- 2 .
cos o sin® o sin

T - ; ﬁ=’Yo+’Y1T+"'a (3.80)

A sin ag

. 2 .

LA LT W FU (3.81)

A Sin g

. B
2sm: & cos .
is = ——,5—ﬁ=fo+f1T+"'= (3.82)
Az sin? g
where

Yo = Y|r=o = cosapsinagcos 8, 1 = sin® ap(l —3 cos” ag) cos? 3, (3.83)
Ao = Alg=g = —sinagsin, Ay = 2cos agsin® o cos B sin 3, (3.84)
£o = E|lr—o = —2sin’agcos B, & = —9cosay sin® aq cos? 3. (3.85)

Substituting (3.76), (3.77) and (3.80)—(3.82) into (3.15), and equating T~ '-order terms, we

obtain

1 8(¢(0)’w(150)) 8(¢(1=1)7w(010))

] = gm0, — G Vit = Ly, (3.86)

“an | 9(n,H) 9(n,0)
where
Lo = 5[vo(—sin 26 85 + 1 cos 28 8,) 4 Ao(cos 20 Jy + nsin 26 8, — )] (3.87)
and
w(ﬂ,ﬂ)(n) = Tw(o)(n) — %e—nz_ (3.88)
7

At TP-order of (3.15), we have

1 (8O, wD) gD, 00
4n a(n,8) 8(n,6)

+ €(1 — ind, )t — ed V2,

s €L11w(0’0} + 62L20u(0) + 622’}'0A0, (389)
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where

Ly = %[71(— sin 20 8p + 1 cos 26 9,)) + A;{cos 20 85 + 1 sin 20 Oy — )], (3.90)

Ly = &olcos8y +sinf (39, + 1)]. (3.91)

The right-hand sides of (3.86) and (3.89) represent the effects of the simple shear on the
fluctuation vorticity. Asymptotic solutions to (3.86) and (3.89) at large Reynolds numbers
(Re > 1, € < 1) are derived in Appendices A and B. Here, we summarize the results,

First, an asymptotic solution to (3.86) is written as

Wt = —%Vf}z/;(l,l) = €BoMy(n) sin(26 — ¢y), (3.92)
where
"/,
Mo(n) = -5 (n* = f1(m)) (3.93)
and
2 24\ i ’\U
Bo= {1+ X)%, ¢ = arctan ~ (3.94)
0

(see Appendix A). Real function f1(n) is determined by differential equation (A.9). Asn — 0,

My(n) approaches zero as
My(n) = (a — D)7, (3.95)
where a is a constant (see (A.13)). For large values of 7, on the other hand, My{n) behaves as
Mo{n) = —n'e™™, (3.96)

and so [Mp(n)| decreases rapidly as 7 — co. As shown in figure 11, My(n) is negative and has
a single peak at # = O(1).

Next, an asymptotic solution to (3.89) is written as

W = €My (n) + € Real [ My(n)e?), (3.97)
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where

8&o cos B’
Mi(n) = 2v0h0 + e
832 [ . [ Re Re Re Re?
"'&DUEE {sm (Eﬁ + (,00) — g}; cos (Ei + goo)] exp (— T (3.98)
and
ie™*%1 By My(n) for n = O(1),
Ma(n) = 1 (3.99)
. -
—_ 190
t 1£0D0e Re
X 1+iRe ex iRe  Re’ —ex ii?f-— Re* forn>1
o ) TP\ T asyf Plog? ~ 1298 !
with
2 2y A1
Bl = (’71 -+ /\1)2, (151 = arctan ;‘ (3100)
1

(see Appendix B). Note that for n = O(1), M,(n) is expressed in terms of My(n). Forp K Res,

Mi(n) behaves as

8¢ cos A’

My == 2vA ,
1 YoAo + Re

(3.101)

while M,(n) is exponentially small. For > Re%, on the other hand, both of them approach

zero algebraically as

£oRe? cos ag sin 3

M = 3.102
1 961’]4 ) ( )
ifaRelD iwp
M, n —afeDe® (3.103)
8n?

In figures 12 and 13, we show asymptotic solutions (3.98) and (3.99) at Re = 1000 respec-
tively for the cyclonic {(op = arctan V2, 8 = —1ir), neutral {e = ix, 8 =0), and anti-cyclonic
{ag = arctan V2, 8= iﬂ') cases. Function M;(n), which represents the g-averaged structure of
the higher-order axial vorticity, takes a significant negative peak at a relatively large value of



7. As n decreases, it oscillates and then approaches a constant 299X, which is positive, zero
or negative according to a cyclonic, neutral or anti-cyclonic case. Phases in the oscillation of
My(n) and Mj(n) depend on the values of wy. Peak positions of Mi(n) and M>(n) in a cyclonic
case (g > %ﬂ') are located farther away from the vortex tube as compared with those in a
neutral case (¢, = %7.') while those in an anti-cyclonic case (o < %W) are located nearer.

At this level of approximation, (3.77), (3.92) and (3.97) provide w® up to the order of T

Remembering (2.40) and using an expansion for dimensionless form of (2.32)

AB) =1+ %T +---, (3.104)
we have the higher-order axial vorticity
A()w) = I L (410 ¢ wNT + 0(T?). (3.105)
For n < Ret, it follows from (3.92) and (3.97) that

Aty = eMo(n) [ By sin(26 — ¢o) + Tdy (B(t) sin(26 — (1)) lr=0] + €T2%X,  (3.106)

where we have used relation

By sin(26 — 1) = dr [B(¢) sin(26 — &(1))] |r=0 — 70 Bo sin(26 ~ ¢,) (3.107)

with

L
2

B(t) = ('}f(t)2 + )\(t)2) = |sin a](cos® @ cos® § + sin® 3)2 (3.108)

and

(t) = arctan (%) — arctan (ﬁzi_ﬁ) (=7 < (t) < ), (3.109)

which represents an angle from the z,-axis to a projection of the X,-axis on the normal (xq,z3)-
plane (see (2.2) and (2.3)). Solution (3.106) represents the leading and first orders of a Taylor
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expansion of
At = eMy(n) B(t) sin(26 — ¢(1)) + e(A(H)do — A(2))- (3.110)

In the near region of n < Re®, we can drop the second term on the right-hand side of {3.15),
which is exponentially small as Re — co (see §3.4). Then, by expanding w® in a power series
of €, we may obtain (3.110) without the assumption that 7' < 1.

The first term on the right-hand side of (3.110) represents a quadrupole-type distribution,
which means a deformation of the vortex core into an elliptical shape by the effect of the simple
shear (Moffatt, Kida & Ohkitani 1994). The major and minor axes of the resulting elliptical
core are aligned at an angle of § = 1&(f) + {7 £ Lx, respectively. If the normal velocity
components, (W, ¥3), of the simple shear flow relative to the structural coordinate system are
decomposed into symmetric and anti-symmetric tensors, we find that the symmetric one, which
represents straining flow, has a principal direction with a positive rate of strain at an angle of
6 = 34(t) + ;7 (the values of rates of strain which are normalized by the uniform shear rate
S are 1(—7(t) = B(t))). Therefore, the major and minor axes of the ellipse are inclined from
the direction of strain by :l:i—’ir, respectively {Moffatt, Kida & Ohkitani 1994). This quadrupole
distribution of vorticity, which does not include the stretch factor A(%), is not affected by the
axial component of the simple shear stress. In the case of & = 0, which was considered by
Moore (1985), the vortex tube is aligned with the simple shear flow and therefore the vortex
core is not deformed (B(t) = 0).

The second term on the right-hand side of (3.110) represents the stretching of the axial

vorticity component of the simple shear by the axial stress (see §4.2).
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4. Physical interpretation

A physical interpretation of the asymptotic solutions derived in §3 will be given in this
section to understand the structure of vorticity field and the physical process. We restore here

dimensional variables, following Table 2. as
T=1"/S, R=(w/S)*R*, = ISt = (vS)iub. (4.1)

A similarity variable 7 is then n = R*/(27*3) = R/ (2(vT)7). Recall that the asterisks, which

are attached to dimensionless variables, have been dropped in §3.

4.1.  Structure of vorticity field

We first express vorticity field in physical space (R,4,7T) and discuss its structure. The axial
component of vorticity fluctuation in the near region of R < Re# (vT)7 is written, using (3.22)

and (3.110), as

Wl ~ f; i}(;) exp (‘Z%) + SM, (2(; )%) B(t)sin(20 — ¢(£)) + S(A(t)Ao — A(¥)).  (4.2)

This equation tells us that the vortex tube is diffused, stretched and deformed by effects of
viscosity and the simple shear. In a stationary coordinate system the vortex tube also rotates
toward the streamwise (X;) direction with an angular velocity given by (2.19). The normal
components of fluctuation vorticity, w} = Gauy, and wj = —82u'1p, on the other hand, cancel
out with those of the simple shear vorticity so that the normal component of the total vorticity
disappears and vorticity vectors are aligned with the axial direction. This alignment of a vortex
tube and vorticity vectors has been observed in homogeneous isotropic turbulence as well as
in homogeneously sheared turbulence and near-wall turbulence (see She, Jackson & Orszag
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(1990); Kida & Tanaka 1994; Bernard, Thomas & Handler 1993). Disappearance of the normal
vorticity leads to stretching of the axial component of the simple shear vorticity, which is
represented by S(A{t)hg — A(t)) (see §4.2 for the mechanism). Note that this effect disappears
when the vortex tube is not inclined vertically (@ = 0 or § = £iw), or when it is not inclined
to the spanwise {X3;) direction (@ =0 or § = 0).

In the far region of R 3> Res(vT)%, the axial vorticity of the vortex tube itself is exponen-

tially small, and therefore it follows from (3.105), (3.97)—(3.99) that

47 R?
W m 25MTyde + 576 il cos
T 47 R? rT
2 el _ _ .
+5%0Dyg [QT cOS (27rR2 + o 9) cos T sin (271'}22 + (po)
+2:rrR2 S_n( rT N 29) o 8rv ( rT )3
T M\orgE T P\737 \or e
27w R? IT 32rv f I'TN°
— 2 1 — — —
™o Do sin (arR? + 29) =P [ T (2«}22) } ' (43)

The normal components of the vorticity fluctuation, on the other hand, are expressed, using

(3.67) and (3.68), as

wy 22 S cosagsin B

rr rr [ IT _ sxv [ I'T \*
—5Do [COS (W " ‘p") T (erz T 9) o 9] =P [_Tﬁ: (zmﬁ) ] (44)

and

wy = Scosf3

rr
27 R?

—8Dy [sin( + cpg) - Ecos ( T + g — 9) cos 9] exp [—Smj ( I'T )3] . (4.5)

T R? 27 R2 3" \27R?

The spatial distributions on the normal plane of fluctuation axial vorticity (4.3) are drawn
in figure 14 for (a) cyclonic (o = arctan /2, 8 = —1x), (b) neutral (o = ir, B =0) and (c)
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anti-cyclonic (ap = arctan V2, 8= %w) cases at Re = 1000 together with projected vorticity
lines. Vorticity of the vortex tube itself is not shown in these figures. Along vorticity lines
at the outermost double spirals of high normal vorticity there are {two crescent-shaped regions
of strong negative axial vorticity, which is opposite to the vorticity of the vortex tube (cf.
figure 9). Also commonly observed is relatively weak positive vorticity inside of the crescent-
shaped regions of negative vorticity. Further inside, i.e. in a circular domain in the vicinity of
a cyclonic {or anti-cyclonic) vortex tube the axial vorticity takes positive (or negative) values.
Appearance of negative vorticity in far region as well as different signs of vorticity in the central
region between cyclonic and anti-cyclonic vortex tubes were also observed in the f-averaged

structure (see figure 12).

4.2.  Ezpulsion of normal vorticity and stretch of axial vorticity

Here, we discuss briefly a close relation between expulsion of normal vorticity around a vor-
tex tube and stretch-and-intensification of axial vorticity. In a stationary frame the vorticity

equation 1s written as

Dw 2
EE B+ (u-V)]w = (w- Viu+ V. (4.6)

Only the tilting-and-stretching term, the first term on the right-hand side of this equation,
is responsible to the vorticity intensification. For a simple shear flow (U = S$SX, X, and
VxU-=-5X 3), it vanishes identically, which means no vortex stretching. As was shown in
§3.4, in the near field (r < (I/ I/)%(Vt)%) of a straight vortex tube the normal component of the
simple shear vorticity is expelled by viscous cancellation of tightly wrapped vorticity lines of
opposite directions and only the axial component (V x U}-#; = —S(X 3 - F1) survives there.
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The axial component of the tilting-and-stretching term is then estimated as
(VxU)-3,8U, = =53 (X;-3)(X;-5.)(X1 - 51), (4.7)

which is proportional to the product of the three direction cosines of the axial vector #,. It

takes a maximum (or minimum) value (+£52/3%) for
= —(X;+ X, T X;). (4.8)

The upper {or lower) sign represents a cycloriic (or anti-cyclonic) vortex tube whose spanwise
component of vorticity has the same (or opposite) sign as the simple shear vorticity. As a
consequernce, a cyclonic vortex tube is intensified while an anti-cyclonic one is weakened (see
the near regions of cyclonic and anti-cyclonic vortex tubes in figure 14). In near-wall turbu-
lence, streamwise vortex tubes often take a cyclonic inclination with respect to the mean shear
vorticity (see Miyake & Tsujimoto 1996}, which may be connected with the above mechanism

of selective intensification of a cyclonic vortex.

4.3. Wrap and tilt of vorticity lines and generation of azial vorticity

We discuss here the generation process of the axial vorticity through wrapping and tilting of
vorticity lines in the far region of R > Rei(vT)7. Recall that the dominant contributor to the
production of the axial vorticity is the tilting of the r3-component of the simple shear vorticity
by the velocity fluctuation {which is the second term in the right-hand side of (2.23)). Vorticity
lines are wrapped around a vortex tube by a swirling motion to form spiral layers of high normal
vorticity, which in turn induce axial shear flows which tilt the simple shear vorticity toward
the axial direction. If the velocity gradient d;u| (= wj}) in the spirals is positive {or negative),
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the r;-component of the simple shear vorticity, the sign of which is negative, is tilted to the
positive (or negative) axial direction to generate the negative (or positive) axial vorticity (see
figure 15). As was mentioned in relation with figure 9, w} is positive in the outermost spirals of
intense normal vorticity, which leads to the generation of the crescent-shaped regions of strong
negative axial vorticity in figure 14.

The spatial distributions of the axial and normal components of fluctuation vorticity ) and
—wy (n.b. the minus sign) are compared in figures 16 for the neutral case (ap = 37, 8 = 0).
Here, two regions of (a, b) R = O (Re%(VT)%) and {¢c, d) R=0 (Re%(vT)%) are shown at
Re = 1000. We can see that the two components vary almost in phase in the far region (c.f. {(a)
and (b)), whereas the phase of the axial component is nearly 7 in advance clockwise compared
with that of the normal one in the near region {(¢.f. (c¢) and (d)). This phase difference is due
to the advection by the swirling flow induced by a vortex tube {see below).

In the far region R > Rer(vT)* (or I'T/R? <« 1) the three components of fluctuation

vorticity (4.3)—(4.5) are written as

T

2 .

wy &S EUDO47;R2 sin{pg — 28), (4.9)
rr .

wy &2 S Dy 5 R sin(go — 26), (4.10)
rr

! ot — p—
wy & SDy 5 R cos(pq — 26). (4.11)

Equations (4.9) and (4.10) show that the phases of w} and —w} coincide with each other since
& < 0. This is because in this region, the effect of advection by the swirling flow is negligibly
small and thus the time-derivative term of w) should be balanced with the production term

5wl (see (4.26) below). For Rei(vT)* 3> R > Rei(vT)% {or I'T/R2 > 1), on the other
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hand, we have

w'l o 252T’}’0 AQ

rr 8rv ¢ I'T \*

+25%T € Dg cos (211’R2 + g — 9) cos 8 exp [_3_1" (Zsz) ] , (4.12)
rr rr , 8wv ¢ I'T \°

w; ~2 _SDO;_'}‘?'E CcOs (W + o — 9) smf?exp [_-ﬁ (27{}?2) ] 3 (413)
. T T 8wv ¢ I'T \?

Wy =~ +SD07T—‘R2- CcOSs (27}?5 + Yo — 8) COSB&XP [_3? (ZWRZ) } . (414)

By comparing (4.12) and (4.13), we can see that along a spiral of (I'T/27R?*) 4 ¢y — # = const.
there is the phase advance of an angle of 37 in w} relative to —w) (or S€wh, i.e. the production
term). This phase difference is a result of the advection by the axi-symmetric swirling motion
(I'/2x R?)8yw, which is effective at R < Ret (vT)F (see (4.26) below).

The generation of w) > 0 and w]| < 0 in the crescent-shaped regions of strong vorticity
implies that in the stationary coordinate system OX;X,;X; the streamwise component of vor-
ticity, which is equal to {(w] cosa — wj sina) and is opposite to that of the vortex tube, is
generated along the outermost spiral vortex layers. Recently, Sendstad & Moin (1992) and
Miyake & Tsujimoto {1996} observed that streamwise vorticity of opposite sign appears around
the near-wall streamwise vortex tube and it develops into a new streamwise vortex. The present
wrapping and tilting mechanism of vorticity lines by a vortex tube is expected to express the
regeneration process of streamwise vortices in near-wall turbulence.

The three-dimensional structure of wrapped vorticity lines around a vortex tube in a simple
shear is drawn in figures 17 for (a) cyclonic (ay = arctan /2, 8 = —1m), (b) neutral (ag = 1.
B = 0) and {c) anti-cyclonic (g = arctan /2, 8 = iw) cases at ST = 1 and Re = 1000. They

are obtained by numerical integration of the total vorticity given by adding the corresponding
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components of the simple shear vorticity to (4.3)—(4.5). The vortex tubes are represented by

isosurfaces of R = (I/T)%, and vorticity lines which starts at different points are labeled with
letters A—E. Contour lines of (w? 4+ w?)? = 25, which represent the double spirals of high
normal vorticity, are also drawn in the normal (z4, z3)-plane.

In the far region the vortex tube wraps and stretches vorticity lines to intensify the normal
component of vorticity so that wrapped vorticity lines tend to be perpendicular to the vortex
tube. As vorticity lines are further and further wrapped, the negative axial vorticity is generated
and thus vorticity lines are tilted toward the axial direction. In the near region, on the other
hand, the normal vorticity component is rapidly dissipated owing to the viscous cancellation
of tightly wrapped vorticity of alternate sign, and eventually only the axial component of the
simple shear is left and stretched. Therefore, vorticity lines near a cyclonic {or anti-cyclonic)
vortex turn to the axial direction and tend to become parallel {or anti-parallel) to the vortex
tube.

In the stationary coordinate system OX; X, X, vorticity vectors at the outermost spirals of
strong vorticity region line up in the direction of X; < 0 and X; < 0 both in the upper and
lower (the upstream and downstream) sides of a cyclonic vortex (figure 18). This is because, as
mentioned above, vorticity lines tend to be perpendicular to the vortex tube and tilted toward
the axial direction due to the generation of negative axial vorticity. Therefore, the vorticity
vector of the cyclonic vortex tube, which has positive streamwise {X;) and negative spanwise
(X3) components, and the resulting vorticity vectors on the upstream and downstream sides of

1t take a zig-zag arrangement in the streamwise direction. Recently, Miyake & Tsujimoto (1996)

observed that the near-wall cyclonic streamwise vortices actually take this type of arrangement,
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in their regeneration process.

4.4.  Spiral vortex layers

The asymptotic analysis at St € 1 described in §3 is exact but not so simple to understand
the physical process involved. In this subsection, we focus only the region of (I'/ V)%(Vt)% <
r& (I'/S )% to discuss intuitively the generation of spiral vortex layers without the short-time
assumption that St < 1.

The flow structure in the far region of 7 > (I'/v)i(rt)? may be analysed more simply by
replacing the vortex tube with a filament. Separating the contribution from the vortex filament

in the streamfunction as

Y = —%Inr—kl/)', (4.15)

and substituting it into (2.23) and (2.24), we obtain

Y, Wi r
o, - ) 4 L] — S sinacosrcon 23 — sin 2300
= Sy(t)w + SE(F)Bsu) + vVi W, (4.16)
and
Bw,uy) T - -
oyl — B a:;) +o 3 Bpuy — Ssin a{cos o cos 3 z9 — sin § 23)8pu)

rs
= —Sy(t)u] + W(cosasinﬂﬁg + cos fx3) — S(cosasin 88, + cos B 83)Y + vV3iuy. (4.17)

These equations are supplemented by initial conditions, w] = 0 and u] = 0.
We first consider a behaviour of the velocity field deformed by a strong vortex filament, and

suppose that
r
> 1 (4.18)
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Within r < {F/S)%, the velocity induced by the filament dominates the simple shear velocity.
It is the first and third terms on the left-hand side and the second term on the right-hand side

that are dominant in (4.17) except for the viscous term which will be taken into account below.

Then we have

I r's .
Byuy + magu; = (cosarsin § x5 + cos B x3). (4.19)
This has a solution
, i It .
u; = SDyr sin (2 5+ o — 9) — SD(t)rsin(p(t) — 8), (4.20)
T

which represents spiral vortex layers, where Dy and w0, and D(t) and () are given by (3.4)

and (2.38), respectively.

In order to take account of the effect of viscous diffusion, we introduce unknown functions

s51(r,t) and s,(r, ) as

It

: I't
uj = sy1(r,t) cos (6 -~ 27rr2> + s2(r,t) sin (9 ~3

wr?

) ~ SD(t)rsin(p(t) —6).  (4.21)

In the region of r 3> (I'/v)¥(vt)7 (which can exist if St < (I"/v)3) the viscous term may be

approximated by

r 2
AVESTES -—41/( ! ) [sl cos (9 — FtE) + s2sin (9 _ )} . (4.22)

273 2mr 272

Substituion of (4.21) and (4.22) into (4.19) added the viscous term gives a set of differential

equations for s, and s,, which are solved easily under initial condition u) = 0, te. 81z =

Srcos 3, sali=o = —Srcosagysin g to yield
It &y ¢ I't \°
1] : .
uy = SDgrsin (Z—W»ﬁ + o — 9) exp [——3? (27”"2) ] — SD(t)rsin(p(t) — §). (4.23)

This is a viscous version of (4.20).
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The z5- and z3-components of the fluctuation vorticity are then calculated to be

y I :
wh = Gsuy = Scosasin f

It It It 8 It \*
—SDg [cos ( + <,00) + — cos ( + g — 9) sin 9] exp |— il ( ) (4.24)
27rr2 12

2rre 3 \2nr?

and
Wy = —Gu} = Scosf
. It It I't gnv ¢ I't \°
s () B o e [ ()]

which agrees with (4.4) and (4.5) for S¢ < 1. The zp-component of the fluctuation vorticity
(4.24) appears in axial-vorticity equation (4.16) as a source term.

In the near-field of r < (I’/S)? and during St < (I/v)? the dominant terms in (4.16) are
the first and third terms on the left-hand side and the second and third terms on the right-hand
side. Then we have

r
Oy + W@gw; = SE(H)su; + vV Wy, (4.26)

A solution to this equation under initial condition «fli=e = 0 is

2

cos f3

of = S(aB2= 30 + [1+0 (7)] 60T

rt dnr? | ¢ It
+S5%€(t) Dy [21‘ cos (21rr2 + @y — 9) cosf — 7 sin (W + @0)

+27rr2 sin( It N 29) . 87y ( It )3
E— X —_—— —
r 27r? ¥o p 30 \2rr?
27rr?

I't 327w ( Tt \°
9 .
-9 G(t)DO T s (%ﬁ + Yo — 29) exp [— 3T (27””2) } (427)

which agrees with (4.3) for St < 1. If we restrict ourselves in a period of 1 5 St < (I'fv):
{(and so the region of (F/u)%(vt)% Lr K (F/v)%(vt)%), four terms containing O{S?r?/I") may

be neglected in (4.27).



It should be emphasized that solutions (4.24), (4.25) and (4.27) have been obtained for
(D/v)i(pt): € r < (I'/8)* without the short-time assumption that St < 1. A similarity in
the functional forms between asymptotic solutions (4.3)—(4.5) and (4.24), (4.25) and (4.27)
suggests that the former may be approximated well even for St 2 1.

The position of the maximum normal vorticity and spacing of the spirals are intuitively
estimated as follows. The spirals of high normal vorticity is primarily generated by a strong

swirling potential velocity induced by the vortex tube in the form (see the first term of (4.20))

6 — o2 = const. (4.28)

The spacing Ar of the spiral is given by the change of r when angle 6 changes by 2, so that

it follows from (4.28) that

It
—SArxl (4.29)

The region in which viscous effects play a role is estimated by equating the viscous and the

{ime-derivative terms
1 I\ ?
7 S (*) s (4.30}

ras (}I> (vt)z. (4.31)

Combination of (4.29) and (4.31) yields
Ar = (vt)i, (4.32)
Finally, we discuss intuitively the order of magnitude of the axial vorticity generated through

the tilting of the z;-component of the simple shear vorticity by the spiral vortex layers. The
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gradient of axial velocity across the spirals may be estimated, by using (4.29), as

uy Sl"t

~ gLt 43
Ar r2’ (+:33)

which works to tilt the simple shear vorticity toward the axial direction. In the region of
(It > r> (I/ v)i(vt)7 the time-scale of the time-derivative term is much smaller
than that of the advection term by the swirling flow,

r

2)

<

o | =

(4.34)

3

so that the former may dominate the latter and balance with the production term in (4.26).

Thus we have

r, ot
Sur St (4.35)

that is, the axial vorticity increases in time as
W) & 5%t (4.36)

In the region of r & (I'/v)*(vt)} (which can exist if S¢ < 1), on the other hand, the two

time-scales are comparable,

1 I
TR (4.37)
and we have
rt? r?
Poes ©24 0 @27 7 o Q2
wy R Stx= S " = S T (4.38)

which increases with radial distance. Therefore, the magnitude of w] can be strongest near the
outermost spirals at least during the initial time St < 1 of evolution because there is no spiral

and so w} decays at r 2 (D)3 (vt)3.
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5. Concluding remarks

Asymptotic solutions describing the mutual interactions between a straight vortex tube of
circulation I and a simple shear flow of shear rate S have been obtained at a large Reynolds
number I'/v 3> 1 and at an early time St < 1 of evolution. These solutions are expected to
be useful for understanding of interactions of tube-like structures with background vorticity in
real turbulent flows.

Let us now summarize the global structure of the present vorticity field in terms of the
original physical coordinate r and time . A thin strong straight vortex tube which starts with
a filament is diffused by viscosity and the core size increases in time as (vt)7 (see figure 19).
This vortex tube induces an axi-symmetric swirling flow around it, which dominates the simple
shear velocity in the near region where r < (I'/S)%. The simple shear vorticity (denoted by
double arrows) is stretched and wrapped by this swirling flow to make double spirals around
the vortex tube. The stretching (in planes normal to the vortex tube) of the vorticity lines
is more effective and intensity of vorticity is enhanced more near the vortex tube because
the swirling motion is more rapid there. Therefore the magnitude of the normal components
of vorticity increases as it approaches the vortex tube. The rapid swirling motion around the
vortex tube also makes the spirals to wind so tightly that viscous effects may become important
there. Because the normal vorticity changes the direction alternately on the neighouring layers
of spirals, viscous diffusion smooths out the vorticity in the region where r < (I'/v)t(vt)s.
This expulsion of normal vorticity around the vortex tube leads to a stretch-and-intensification
of the axial-component of vorticity. This partial cancellation of vorticity by viscous diffusion

has a counter effect against enhancement of normal vorticity due to stretching by the swirling
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motion mentioned above. As a result, the magnitude of the normal vorticity has a peak at
r=0 ((F/ v)3 (vt)%) , where the distance between neighbouring layers of spirals is of O ((Vt)%)
(see (4.32)). The spirals of normal vorticity induce the axial shear velocity which changes the
directions alternately at each successive spiral layer. This axial shear velocity works to tilt (the
z3-component of) the simple shear vorticity toward the axial direction. It is remarkable that
the axial vorticity opposed to that of the vortex tube is being induced in the outermost layers
of the spirals where the axial vorticity is strongest.

Applications of this analysis to real flows should be restricted by the assumption of uni-
formity of the fluctuation flow field along a vortex tube and by the initial condition (3.1).
However, tube-like structures of concentrated intense vorticity in many turbulent flows are
likely elongated rather straight so that the essential process of their vorticity interactions may
be approximately described in terms of the present asymptotic solutions at r > (vt)3. In the
following we discuss a few of relevant aspects in the flow structure of the preseni asymptotic
solutions and real turbulent flows.

First, it has been often observed that vorticity vectors align quite well with tube-like struc-
tures in the core region in spite of the presence of background vorticity in isotropic turbulence,
homogeneous shear turbulence and near-wall turbulence (see She, Jackson & Orszag 1990; Kida
& Tanaka 1994; Bernard, Thomas & Handler 1993). The expulsion of vorticity normal to a
vortex tube (see §3.4) may explain this alignment of tube-like structures and verticity vectors
therein. Secondly, helically winding vorticity lines similar to those in figures 17 were observed
in She, Jackson & Orszag (1990). In their numerical analysis of homogeneous isotropic turbu-
lence, they showed that vorticity lines are wrapped around the vortex tube forming a spiral.

The helically wrapping of vorticity lines was also observed around streamwise vortex tubes in
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near-wall turbulence by Jiménez & Moin (1991). Thirdly, cyclonic vortex tubes, which are
tilted toward the direction of the mean shear vorticity, have often been observed in near-wall
turbulence (see Miyake & Tsujimoto 1996). The selective intensification of a cyclonic vortex
tube (see §4.2) is conjectured to explain the dominance of this type of vortical structures in real
shear flows. Fourthly, it has been alsc observed in near-wall turbulence that streamwise vor-
ticity of the opposite sign is generated around a streamwise vortex tube to develop into a new
streamwise vortex (Sendstad & Moin 1992; Miyake & Tsujimoto 1996) and that the streamwise
vortices take a zig-zag arrangement in the streamwise direction in their regeneration process
(Miyake & Tsujimoto 1996). In our analytical solution, as shown in figure 18, the streamwise
component of vorticity vector in the most-intensified part has an opposite sign to that of the
vortex tube, that is. they are oriented as in the same manner as the above zig-zag arrangement.
All of these similarities between our analytical solution and the observations suggest that the
wrapping, tilting and stretching mechanisms of vorticity lines associated with an oblique vortex
tube may play a key role in the dynamics of vortex tubes in various kinds of turbulence.
Finally, we would like to stress that a vortex tube in a simple shear flow should be inclined
from the streamwise direction both vertically and horizontally in order that all the three funda-
mental processes, i.e. wrapping, tilting and stretching, may take part in the vortex dynamics.
In figure 20 illustrated are typical vorticity lines around (a) a spanwise, (b) a streamwise and
(c) an oblique vortex tube in a simple shear flow. If a vortex tube is aligned with the spanwise
direction (o = %ﬂ', B = %), it is parallel to the background vorticity lines and thus they are
neither wrapped, tilted nor stretched. If a vortex tube is aligned with the streamwise direction
{o = 0), it is stationary and perpendicular to background vorticity lines, so that vorticity lines

are wrapped on planes normal to the tube but they are neither tilted nor stretched to the axial
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direction. Only in the case of an oblique vortex tube inclined from the streamwise direction
both vertically and horizontally, vorticity lines are wrapped around the vortex tube, and tilted
and stretched to the axial direction so that the simple shear vorticity may be converted to the
axial direction as well as the streamwise direction (see §§4.2 and 4.3). When a vortex tube
is inclined only horizontally (o # 1w, 8 = +i7), the simple shear vorticity can be converted
to the streamwise direction via the wrapping on the normal plane but not to the axial direc-
tion (see (2.23)). When a tube is not inclined to the spanwise direction (a # 0, # = 0), the
stretch-and-intensification of the axial component of the simple shear vorticity (see §4.2) is not
observed.

G. K. appreciates helpful discussions with Professor K. Ayukawa, Ehime University, in the
development of this study. This work was partially supported by a Grant-in-Aid for Scientific

Research from the Ministry of Education, Science and Culture.
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Appendix A. Solution to (3.86)

Since the leading-order solutions, w* and | are independent of 6, (3.86) can be rewrit-

ten, using (3.78), as

1
569 H(&,WO))vw(l,l) + (3nw{o,o))w(1,1)}

= —egnd, V2 — e LV 4 1 Bin(8,0,(00) Real [¢(?0—%0)], (A1)
where By and ¢, are given by (3.94). We then seek a solution to {A.1) in the form
1) = Real [Fy(n)el*¥=%)). (A.2)

Substituting (A.2) into (A.1), and using (3.24) and (3.88), we obtain

: 1 9 1 9 16
lrtrea(on]) e (- ) - o= ) o 2]

n 7
if1—e"
= 7_

1 4 4
(F{' +oF - —m) + 4e—v’F1} = —e—By'e™", (A.3)
]

Vi3

where the right-hand side originates from the deformation of the spatial distribution of the
axial vorticity in the (z3,23)-plane by the simple shear (the first term in (3.7)). Boundary
conditions to be imposed are that TFy(n) is regular at n = 0 and TFi(n) — 0 as p — oo {see

(3.18)). For € < 1, we expand a solution to (A.3) in a power series of ¢ as
F1=F10+€F11+"'- (A4)

Substituting (A.4) into (A.3), and equating €’-order terms, we find

1 4 4
Fio + EF{" — n_sz + o fe =0, (A.5)
This has a solution regular at n = 0 as
Fio = asn® as 5 — 0, (A.6)
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where a, is a constant. However, the asymptotic behaviour at large n of this solution can be

numerically shown to be
Fio = boy?  as 1 — oo, (A.T)
where b, is a zero or non-zero constant according as a is zero or non-zero. Equation (A.7)

implies that TFiq = byR?/4 as n — oo, which is inconsistent with the boundary condition

unless b, = 0. Hence, we conclude that

At € order, (A.3) is written as
w1 4 4’ -
P+ Eﬁ - n—gfl = 1(?72 — f1) (= —4Mo(n), say), (A.9)
where
Real {Fi1(n)] =0, Imag[Fi(n)] = —Bofi(n) (A.10)

and (A.8) has been used. Recall that (A.9) is identical with the first-order equation obtained
by Moffatt, Kida & Ohkitani (1994) in their analysis of a large-Reynolds-number asymptotic
solution for a non-axisymmetric Burgers vortex tube. For small n a solution regular at n = 0

is expanded as
f(n) = an® + 1 —a) (n* — En°+ -, (A.11)
where a is a constant. For n 3> 1, it decays as
film) = <+ (). (A12)

Constants a and b were numerically determined to be

a=—1.5259---, b= —43680.-- (A.13)
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by Moffatt, Kida & Ohkitani (1594). By using (3.78), (A.2) and (A.9), we obtain (3.92) in §3.5

up to order e.

Appendix B. Solution to (3.89)

Substitution of (3.25) and (3.78) into (3.89) gives

%39 [i(aﬁb(o))vi,@bu,z) + (an(o'o))w(l’z)]
= €5(1 ~ §n0,)VIp(d) — ¢ Lty 4 €3 B11(8,w?)) Real [¢~1(280—#1)]

—e* 1€ Real [fle=i2¢] 4 ¢ 36 Real [2F + nf'] + €22v9 ), (B.1)

where B; and ¢; are given by (3.100). Suggested by the source terms in (B.1), we seek for a

solution in the form

P2 = Gy(n) + Real [Fy(n)e2). (B.2)
Substituting (B.2) into (B.1). and using (3.24) and (3.88), we obtain, for the f-independent
part,

1

M+ (2n+ —) M} —4M, = —2€ Real [2f + nf'l — 8voXq, (B.3)

U

where
1

is the #-independent part of the vorticity associated with streamfunction G;. The right-hand
side of {B.3) originates from the production of the axial vorticity through the tilting of the

Tz-component of the fluctuation vorticity by the simple shear, the tilting of the r3-component

of the simple shear vorticity via the velocity fluctuation, and the effect of frame rotation. On
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the other hand, for the 8-dependent part, we obtain

3 2
R I e O LR Sl

i f1—e ™ 1 4 4 .
c [_2— (Fg +=F - '_2F2) +4e7" F?] = —e—Be e — &86onf'. (B.5)
T 7 7 " ®

There exist two different types of source terms on the right-hand side of {B.5). The first and
second ones come from the deformation and the production of the axial vorticity by the simple

shear, respectively.

B.1. 8-independent part

We consider here a solution to (B.3). Boundary conditions to be imposed are that T M(n) is
regular at n = 0 and that TMi(n) — 0 as n — o (see (3.17)). The asymptotic expansion of
the solution to (B.3) for small and large values of n may be obtained using (3.28) and (3.27).

For n < Re‘%, we have

Re&Imagi(c
§olmag( 0)714 t-

Mi(n) = 27v0Ao + mq + (Mo — tiuRea.l(cg))r;:2 — G

(B.6)

with some constant mg, where ¢y is an exponentially small constant given by (3.57). For

n > Re?, using (3.4), we find

(B.7)

Re*c i 18R R
M}(ﬂ)=—fu( e osagsm[)’+ e? cos apsin 8 — Re cosﬁ )

967 768n°
The homogeneous equation associated with (B.3) has two linearly independent solutions
]

—8

m (B.8)

My, =149, jlf_flb—(1+77)f

It can be shown that

(s ] e_52
_° _d
f,, s(1+ 2y
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2

Bl - LD e 1
=~ — 4 f 2 2 f . (B.
lnn+[I 51157 s+ A L‘(l+52)2 J ds + O(n*) (for n < 1), (B.9)

and that
2 2
o0 e * e " 5 1
———ds = — (1 - — 1+ O = { } B.1
/ﬂ ST 57 ds 2 [1 > + (714)] (for > 1) (B.10)

By making use of (B.8), we can write a solution to inhomogeneous equation (B.3) as

My = 2900 + (10 + Mia) My, + (c1p + Myy) My, (B.11)

where
Mu(n) = —2¢ fo " s e Real [21(s) + s7'(s)] Mus(s) ds, (B.12)
Mun) = 2, /; " s e Real [2£(s) + '(s)] Mya(s) ds. (B.13)

Constants ¢, and ¢;; are determined by invoking boundary conditions at 7 =0 and oo. For
n < 1, since f(n) and therefore the first term on the right-hand side of (B.3) are very small,

we obtain, using (B.9) and (B.11), that

My~ 270 + c1a My, + ey My,

o ¢ 1 e~ 1
~2m0do e ten {=lnn+ [ S q [l -2 dst. (B4
YoAo + €1 Clb{ n -+ L st ) s+ A [S(1+32)2 8] s} ( )
Thus, the regularity of M; at 7 = 0 requires

Cip = 0. (B15)

By comparing (B.14) with (B.6), we find

My = C14. (B].G)
Since f is very small up to n = O(Re%) (see §3.4), My, and M, may be evaluated to be

ﬂla(q)

71 4 Re Re 7 Re Re?
~ +2§0D0/U. ;3- (1 — 3—2) l:COS (4? + SDU) + E 51n (E*Q" + (,00)} €Xp (—“@) dS, (Bl?)
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M 16("7)

N LI 1 Re Re . [ Re , Re?
= —4£0D0/{; 8 (1 + 5—2) [COS (@ + (Po) + @ s (@ + (,00)] expts — Zé? ds (Blg)

by using (3.63), (3.64), (B.8) and (B.10). After elementary calculation, we arrive at

Hla(n)
N TS0\ Re P 4n? v 8n? 4n? wo Re? |\ 16n% 4n? vo
Re { Re? Re Re?
= 2] sin | — - B.19
o (R ) un (o) o (i) @19
ﬁw(ﬂ)

~ o0 n 47?2 (100 27’]2 4:7?2 (100 p 487}6
Re? Re Re . { Re Ré? 2
+ {(4 - —8174) coS (F4n2 + goo) + —7}’2 sin (—4772 + (Pg)j‘ exp (——_48?}'6) TN } e (B.20)

For 1> Re3, (B.19) and (B.20) are reduced to

~ 8siny, 32cosge . €OS®y  2COS@y Re? cos g

My () = —&D - - s B.21
la (77) §oDo Re Re? + ,,?2 774 + 96,76 + ? ( )

— - 2cospg  Re’cosqy

Mip(n) = —2§Don"e” |cosgo + - + 3278 +-ee (B.22)

Then, M, My, and My M1, can be written, using (B.8), (B.10), (B.21) and (B.22), as

8sin @ cospg  Re?cosypyg

1+ O(Re H](1 + n*) + cos g — 2 + 96 } , (B.23)

ﬂlaMla ~ —&o Dy {

~ cos
My My = —foDonp—- (B.24)

It follows from (3.4), (B.8), (B.10), (B.11), (B.15), (B.23) and (B.24) that

8y cos 3 _ & Re? cos agsin 3 1
M, =~ ey — ———— e 7y~ 7). :
M, [ <8 o(re )] @+ - (for n > Re}). (B.25)
Since M;(n) must approach zerc as 1} — oo, we find
8&ycos B

My = Clg =

- (B.26)
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Then the last term in (B.25) gives leading order, which is consistent wiih the leading term in
asymptotic expansion (B.7). Equations (B.8), (B.11), (B.17) and (B.18) provide a solution to
(B.3) for given constants ¢;, and cy;.

Consider now an asymptotic form of M;(n) at large Reynolds numbers. For n< Re%, the

first term on the right-hand side of (B.3) is very small, and so using (B.15) we have

8¢ cos B
M1 ~ 2’)’0A0 + cIaJWM ~ 2’}’0)\0 + —f'ﬂ-}?ei (B27)

For 7 > Rei, on the other hand, (B.8), (B.10), (B.19) and (B.20) give asymptotic forms of

ﬂla.Mla and ﬂlelb as

— 87 . [ Re Re Re?

M My, = =& Dy [R—e sin (4—7?2' + 900) — cos (Zn_g + ‘:00)] exp (_48175 ; (B.28)
— 1 Re Re . [ Re Re?

Mlblwu, ~ —~5ng [F Cos (W + (Po) + E s (4—1?2 + 900)] exXp (—487']6) . (B29)

Since j}flaMla > Hu,ﬂ/flb for n > Re%, we can express an asymptotic form of M;(n) for
17 > Re%, using (B.11), (B.26) and (B.28), as (3.98) in §3.5. Equation (3.98) matches with

(B.27) for 7 < Res, and thus (3.98) turns out to be available for any value of 7.

B.2.  8-dependent part with zero mean

Solutions to (B.5) are considered here. Boundary conditions to be imposed are that 77 Fy(n)
is regular at 7 = 0 and that T?Fy(n) — 0 as 5 — oo (see (3.18)). Two source terms on the
right-hand side of (B.5) take peak values at extremely different locations for Re 3> 1. The
first term takes a peak value of O(Re ') at 5 = 1 and rapidly decreases as n increases. The
second is, on the other hand, exponentially small up to n = O(Rei), and it takes a peak value
of O(Re™%) at n = 2-% Reb (see §3.4). Hence, for Re > 1, we consider two regions of values of
n separately, that is, n = O(1) and 7 > 1.
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First, in the region of n = O(1) we take only the first term on the right-hand side of (B.5).

By substituting an e-expansion,
Fy=Fy+eFun+-

into (B.5), we obtain, at ¢® order,

e’ — 1
which is the same as (A.5), and therefore
Fp(n)=0.
At € order of (B.5), by putting
Fu(n) = iBie™% fo(n),
we obtain

4 4n?
;]5]’2 = o _ 1(7?2 - fz),

;1
;+Eﬁ_
which is identical to {A.9). Hence, we can take
Real(f>(n)] = fi(n), Imag[fr(n)] =0,

so that

Fai(n) = iBie ' f1(m).

(B.30)

(B.31)

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

Combination of (A.9), (B.30), (B.32) and (B.36) leads to the first equation of (3.99) in §3.5.

By introducing

1 4
GMQ(T]) = —i(Fg -} BFQI -_ EFQ)

(B.37)

and using (3.78) we may express the §-dependent part of vorticity associated with streamfunc-

tion Real [Fo(n)e "’} as

— 1V2Real [Fo(1)e™ ] = eReal [ My(n)e %],
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Second, we consider the region of 7 3 1 in which all the terms that include e="* may be

neglected. By dropping them and using (B.37). we can rewrite (B.5) as

1Re — 2
2

1
M+ (213-{- —) M, +2 (
n n

Boundary conditions to be imposed are that TM>(n) is regular at n = 0 and that TM,(n) — 0

as 11 — oo (see (3.17)). Using (3.28) and (3.27), we can expand a solution to (B.39) as

May(n)

1Re 4 24iRe +(iRe + 6)(8iRe — Re?) , B
o - f Re~}),(B.40
§oco [4(iRe + 6)17 48(iRe + 6)(iRe + 16) n + (for n <« Re™7),( )

and

iRe  Re? (1liRe + 72)Re?
82  24nt 153675

Amm:—&mwﬂ +-} (for 1> Reb), (B.41)

where ¢g is an exponentially small constant given by (3.57).
Now, following the asymptotic analysis performed for (3.26) in §3.4, we employ the WKB
method in order to construct solutions to the homogeneous equation associated with (B.39).

Let us introduce a new dependent variable g2(n) by

My(n) = n_%e*%"zgg(n). (B.42)

By substituting (B.42) into (B.39), we obtain

15 3 1
7o 6= g ) 9= 2ol (B.43)

We consider the region of 7 = O(Ret) and put n = Re’ x. Then, {B.43) becomes

o
gy + Re k—} ~— x}—6Ret + O(Re‘l)] g2 = 2Rei fox? exp (LReix?) f'. (B.44)



The homogeneous equation associated with (B.44) has two linearly independent WKB solutions

1 AL\"3 1
ga = x*{(x*—21)7% (X2 +(x* - 21);) ? exp (-—Re2 al(x)) , (B.45)
3
g = -2+ (- 2)F)  exp (Reta1(x)) (B.46)
where
oi1{x) = 2" 3ed™ {e_i”i(%x‘* — i)% — arctan (e“%’d(%x’* — i)%) + %W] . (B.4T)

For small values of x, function o;(x) may be expressed asymptotically as
oy = 25e i Inx 4 p; + O(x*), (B.48)
where
pr=327%et 2+ L [Ir+14i (37— 1)) (B.49)
For large x, on the other hand, it is expanded as

I 1
NI T T oy

(B.50)

Then, we use (B.48) and (B.50), and restore the original variable 7 to obtain, for 7 < Ret

(x < 1),

g2.(n) = Re‘§2_1n§ exp (—Rel"?(z%e‘%"i Innp+ 97ei™ In Ret + Pl)) ; (B.51)

gn(n) = Re™327e™ 4™y exp (Re%(ﬁe_%"i Inn + 23ei™ In Ret + pl)) , (B.52)

and, for > Ret (x> 1),

a1 _1 iRe  Re?
. ~ 2 :Resy rexp|—in?— — , B.53
922{7) esn xp( > 2 + 12”6) (B.53)
- % _5 5 1 9 iRe R62
gu(n) =~ 22Re” 377 exp (E" + 27 12 (B.54)
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In order to solve the full equation of (B.44), we write a solution in terms of (B.45) and

(B.46) as
92(n) = (c2a + G2a(1))92a(1) + (c2s + Fun(1)) g2s(n), (B.55)
where
Goaln) = —Zfof: s%e%sztgggg%(s) ds, (B.56)
gu(n) = -z«fof:o S%Q%szf’g;gz“(s) ds, (B.57)
with

W(n) = g2a(m)g5 (1) — g5, (Mg{n). (B.58)
It can be shown from (B.51)—(B.54) that
W(n) ~ 2Ret. (B.59)

Constants ¢z, and ¢y are determined by the boundary conditions at n=0and co. Forn < Rei,
since f(n) and therefore the right-hand side of (B.44) are very small, (B.55) is written, using

(B.51) and (B.52), as

92 R Coafaa + ooy R €2 ' ReTFe Vg i utE L epi0d Rese~img s, (B.60)
where
g1 = exp (Re%(zée%”i In Ret + pl)) ) (B.61)
1.1 _i.:
g2 = Rei2ig a™, (B.62)

Since Real({gy) = Re%, and g¢; is exponentially small for Re > 1, we obtain, using definition

(B42) of gdo,
My ~ c:gaZ_lRe_%ql‘ln“i'2 (at n < Re%). (B.63)
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Hence, in order that M; may be connected smoothly with a regular solution at 7 = 0 we must
take

Coqg = 0. (364)

For i > Rei, it can be shown by using (3.64), (B.53) and (B.54) that

- : ; " i3Re  5Re?

G2« = ——Q%gopoewo Res fo s exp (52 + 143; - 48:5) ds, (B.65)
5 : 13 o 1 1Re R62

G = —i2 36 Do R —/ Zexp | —n d B.66

92 12728 Doe™ Re s W exp ( 152 + 1655) 8 ( )

because f is very small up to 7 = O(Re3) (see §3.4). Integrations by parts of the integrals in

(B.65) and (B.66) respectively lead to

Gra ~ —i277£HDoe¥ Res exp (vf + iiff - Z?;: ) , (B.67)
g = —iZ%gODUeinRe‘% [(1 + t—&;) exp (—i:% + 112(:;) - 1] i (B.68)
Thus, it follows from (B.42), (B.53)—(B.55), (B.64), (B.67) and (B.68) that
My(n) = e227 Re™3 7 exp (% - ]ij;)
—i‘EODgei‘pD%g' Kl + ;i;-) exp (% - ;;2) — exp (1{% - 1};(::6)}
_igaDoeisoof_; exp (1:1% - ‘f:;) . (B.69)

Furthermore, for n>» Rei, we expand (B.69) in a series of inverse powers of  to obtain

. 1R
My cop23 Re~ 312 — gODOeWolS - (B.70)
n
Function My(n) must vanish as 7 — co. This requires that
Cop = 0, (B.Tl)
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and then the last term in (B.70) gives the leading order, which is consistent with the leading
term in asymptotic expansion (B.41). Given constants cy, and cy, then (B.55), (B.65) and
(B.66) provide a solution to (B.44), and M,(n) is determined by (B.42).

Let us summarize an asymptotic form of My(n) at a large Reynolds number. For 1 < n <
Res, the right-hand side of {B.39) is very small, and so is M,(7) because ey = ¢y = 0. For
7 > Ret, on the other hand, the second term on the left-hand side of (B.69) dominates the

third (the first term has already vanished}, and then an asymptotic form of M(n) is given by

the second equation of (3.99) in §3.5.
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TABLE 1. List of main symbols

Alt)
B(t}
D(t)
Fin)
Mo(m)
My {n)
M;(7)

2

@

Bl BT =

ol

e e e gl R

3

20

X1, X2, X5
X1, X2, X3
Ty, T2,23
Fry, L2, T3

(3

B
r

¥(t)

o

il

(T T T [

OO VTS T 1 1 |

T O T T T A

1 T I T T VI T

stretch factor along a vortex tube (= exp{S f; v(s)ds))

(v(t)2 + A®)")*  (Bo == Blio)

(cos? asin® B + cos? 8% (Do = Dli=o)

complex amplitude for u(® (see (3.25))

amplitude for w? (see (3.92))

f-independent part of w(t) (see (3.97))

complex amplitude for w1 (see (3.97))

transformation matrix representing a system rotaion (see (2.2))
Reynolds number {= I'/(27v))

modified radial coordinate (= A(t)Er)

radial coordinate

shear tate of a simple shear flow

modified time (= f; A(s)ds)

time .

velocity of a simple shear flow (= SX X 1)

velocity (= U +u')

fluctuation velocity

velocity of a simple shear flow relative to the structural coordinate system
transformed axial velocity fluctuation (= A(t)w{/R = 2@ 42 -
axial component of fluctuation velocity (= uj, + uf

a particular solution to axial-velocity equation (2.24) (see (2.36))
homogeneous solution to axial-velocity equation (2.24)
leading-order transformed axial veloaity fluctuation

stationary coordinates

unit vectors in X;-, X3- and Xj3-directions

structural coordinates

unit vectors in zi-, £z~ and z3-directions

inclination angle of a vortex tube from X;-axis (oo = oli=o)

inclination angle of (z1,2)-plane from X;-axis

circulation of a vortex tube

axial rate of strain of the simple shear 8;U; /S = cos asin acos B (vo0 = "li=0)
v/

similarity variable R/(2(vT)%)

angular coordinate

axial component of the simple shear vorticity (V x U) % /S = —sinasing (A= AMi=0)
kinematic viscosity of fluid

2025/S = —2sinacos 8 (€0 = €li=0)

arctan(A(t)}/7(t)) (o = dhi=o)

arctan{cos 3/(cosasin §)) {(wo = ¢li=0)

streamfunction for fuctuation flow field (= ¥ + LA NN

leading-order streamfunction

first-order streamfuaction (= ST + (ST 4.+

angular velocity of the structural coordinate system

vorticity (= V x u=V x U+ ')

fluctuation vorticity

transformed axial vorticity fluctuation (= }/A(t) = @ + Wl .9
teading-order transformed axial vorticity fluctuation

first-order transformed axial vorticity fluctuation (= wt® + STw) 4.
z1-, 72- and xa-components of fluctuation vorticity
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TABLE 2. Units for variables

Variables T R w P Ru

Units 1/S (v/SYr €S (=TS/v) elv(=T) (vS)}
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FIGURE 1.

FIGURE 2.

FIGURE 3.

FIGURE 4.

FIGURE 5.

FIGURE 6.

FIGURE 7.

FIGURE 8.

Figure captions

A straight vortex tube in a simple shear flow.

Structural coordinate system Oz;xoz; and the original stationary coordinate

system O0X;X,X;.

Movement of a vortex tube (i.e. the z;-axis) which is shown by a white-head

aArTow.
Time-variation of stretch factor A(t) for ag = 1= and for three values of .

Time-variation of modified time T(¢) for ap = 37 and for three values of 3.

Real part of —o + % x? versus x. Dashed and dotted lines denote the asymptotic

forms for small and large x, respectively (see equations (3.48)—(3.50)).

Solution f{n) to equation (3.26) at Re = 1000. Numerical solutions and asymp-
totic form (3.63) are represented by solid and dashed curves respectively. Thick
and thin curves denote the real and imaginary parts respectively. The envelopes,

+ exp (—( Re?/487n°)) are drawn also with thin solid curves.

Reynolds number dependence of asymptotic solution (3.63). The real parts
of solutions are plottec{ against {a) nRe™s and (b) nRe™% at Re = 1000 and
10000. Thick dashed and solid curves denote solutions at Re = 1000 and

10000, respectively. Thin dashed and solid lines represent their envelopes,

+ exp (—( Re? [48n%)).

468_



FIGURE 9.

FIGURE 10.

FIGURE 11.

FIGURE 12.

FiGURE 13.

FIGURE 14.

Spatial distribution of magnitude {w? + w%)% of vorticity normal to a vortex
tube at Re = 1000 for (a) the cyclonic (@ = arctan v/2, 8 = —1ir), (b) neutral
(g = 37, 8 = 0), and (c) anti-cyclonic (o = arctan v2, 8 = ;) cases. The
level of the magnitude is represented by colour: Red is the highest (7S) and
blue is the lowest (i.e. null). Solid curves represent vorticity lines projected on

the (z, z3)-plane. A side-length of the domain is 40 in similarity variable 7.

Amplitude (nf)' of the circumferential component of vorticity wg. Solid and
dashed curves represent the real and imaginary parts respectively. Thin solid

lines denote the magnitude, +|(nf)|.
Amplitude Mo(7) of the first-order axial vorticity w(%(n, §).

The f-independent part Mj(n) of the second-order axial vorticity w(t1)(y, 8).
Solid, dashed and dotted lines represent the cyclonic, neutral and anti-cyclonic

cases, respectively. Thin straight lines denote the values of 2+ A,.

Amplitude Mz(n) of the f-dependent part of the second-order axial vorticity
wt(n, ) for (a) cyclonic, (b) neutral and (c) anti-cyclonic cases. Solid and
dashed bold lines represent real and imaginary parts of My(n). Thin solid lines

denote the magnitude, +|M,(n)|.

Same as figure 9 but for spatial distribution of the fluctuation axial vorticity w}.

The level of w is represented by colour: Red is the highest (+S$?T) and blue is

the lowest (—527).
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FIGURE 15.

FiGgurg 16.

FiGURE 17.

FIiGURE 18.

FIGURE 19.

Generation mechanism of axial vorticity along spiral layers of high normal vor-
ticity which are represented by crescent-shaped shadow regions. Double arrows
denote the direction of normal vorticity. ©® and ® denote the direction of axial
velocity induced by the spiral vorticity layers by which the simple shear vorticity

Y x I is tilted toward the axial direction.

Spatial distributions of the fluctuation vorticity field around a neutral vortex
tube. (a) wi/(S?TlolDo) at R = O (Re}(vT)}), (b) —w}/(25Do) at R =
O (Re3 (vT)3), (c) wi/(S*T 1| Do) at R = O (Re3(VT)3), (d) —wp/(25Dy) at

R=0 (Re%(yT)%). The levels of contour lines are (a, b) +L i%, :t%, +

i
16° 2

and (c, d) £, £2. Dashed lines represent negative values.

Vorticity lines in the structural coordinate system Oz;xq23 for (a) the cyclonic,
(b) the neutral and (c) the anti-cyclonic cases. A rectangular domain of 140 x
60 x 60 (in similarity varible n) is viewed from the negative z;- and the positive
z,-directions in the upper and lower panels, respectively. Thin curves in upper

panels represent contour lines of (w? + w})? = 25.

Vorticity lines distorted by a cyclonic vortex tube in the stationary coordinate
system OX;X,X;. Lines attached with letters A and F are the same as the
corresponding ones in figures 17. Note that the streamwise (X;) component of
vorticity of distorted vorticity lines (which is negative) is opposite to that of the

vortex tube (which is positive).

An illustration of the structure of vorticity field around a straight vortex tube in
a simple shear. Double arrows on the double helical layers denote the direction
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FIGURE 20.

of vorticity

Wrap, tilt and stretch of vorticity lines around a straight vortex tube in a simple
shear flow. (a) Vorticity lines are neither wrapped, tilted nor stretched around
a spanwise vortex tube. (b) They are wrapped on normal planes but are neither
tilted nor stretched toward the axial direction around a streamwise one. (c)

They are wrapped, tilted and stretched around an obligue one.
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